NFAP1060L3TT [ONSEMI]

Intelligent Power Module (IPM), 600 V 10 A with advanced SIP package;
NFAP1060L3TT
型号: NFAP1060L3TT
厂家: ONSEMI    ONSEMI
描述:

Intelligent Power Module (IPM), 600 V 10 A with advanced SIP package

局域网 电动机控制
文件: 总14页 (文件大小:588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intelligent Power Module (IPM)  
600 V, 10 A  
NFAP1060L3TT  
The NFAP1060L3TT is a fullyintegrated inverter power stage  
consisting of a highvoltage driver, six IGBT’s and a thermistor,  
suitable for driving permanent magnet synchronous (PMSM) motors,  
brushlessDC (BLDC) motors and AC asynchronous motors. The  
IGBT’s are configured in a 3phase bridge with separate emitter  
connections for the lower legs for maximum flexibility in the choice of  
control algorithm. The power stage has a full range of protection  
functions including crossconduction protection, external shutdown  
and undervoltage lockout functions. An internal comparator and  
reference connected to the overcurrent protection circuit allows the  
designer to set the overcurrent protection level.  
www.onsemi.com  
Features  
Threephase 10 A/600 V IGBT Module with Integrated Drivers  
Compact 44 mm x 20.9 mm Single Inline Package  
Builtin Under Voltage Protection  
SIP29  
CASE 127FB  
Crossconduction Protection  
ITRIP Input to Shut Down All IGBTs  
Integrated Bootstrap Diodes and Resistors  
Thermistor for Substrate Temperature Measurement  
UL1557 Certification (File number: E339285)  
MARKING DIAGRAM  
NFAP1060L3TT  
ZZZATYWW  
Typical Applications  
Industrial Drives  
Industrial Pumps  
Industrial Fans  
Industrial Automation  
NFAP1060L3TT = Specific Device Code  
ZZZ  
A
T
= Assembly Lot Code  
= Assembly Location  
= Test Location  
= Year  
Y
WW  
= Work Week  
HIN(U)  
LIN(U)  
HIN(V)  
LIN(V)  
HIN(W)  
LIN(W)  
HS1  
LS1  
HS2  
LS2  
HS3  
LS3  
Device marking is on package top side  
HS1  
LS1  
HS2  
LS2  
HS3  
LS3  
Three channel  
halfbridge  
driver  
with  
protection  
circuits  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NFAP1060L3TT  
SIP29  
120 / Box  
(PbFree)  
Figure 1. Functional Diagram  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
March, 2020 Rev. 1  
NFAP1060L3TT/D  
NFAP1060L3TT  
NFAP1060L3TT  
VPN  
P:13  
RC filtering for  
HINx and LINx  
not shown.  
+
C1  
CS  
Recommended  
HV Ground  
From Opamp  
circuit  
in noisy  
RSU  
environments.  
NU:17  
NV:19  
NW:21  
ITRIP:16  
From HV  
Power  
Source  
RSV  
HIN(U):20  
HIN(V):22  
HIN(W):23  
LIN(U):24  
LIN(V):25  
LIN(W):26  
RSW  
To Opamp  
circuit  
VB(U):9  
+
+
Pullup  
VS(U), U:10  
VB(V):5  
RP  
RTH  
Controller  
FLTEN:18  
TH:27  
Motor  
VS(V), V:6  
VB(W):1  
VDD=15V  
from  
external  
regulator  
VDD:28  
VSS:29  
CD4  
+
+
VS(W), W:2  
LV Ground  
Star connection to HV Ground  
Figure 2. Application Schematic  
www.onsemi.com  
2
NFAP1060L3TT  
Bootstrap  
Bootstrap  
Bootstrap  
VB(U) (9)  
VB(V) (5)  
VB(W) (1)  
P (13)  
VDD (28)  
VSS (29)  
TH (27)  
VS(W), W (2)  
VS(V), V (6)  
VS(U), U (10)  
NU (17)  
NV (19)  
NW (21)  
Level  
Shifter  
Level  
Shifter  
Level  
Shifter  
HIN(U) (20)  
HIN(V) (22)  
HIN(W) (23)  
LIN(U) (24)  
LIN(V) (25)  
LIN(W) (26)  
Logic  
Logic  
Logic  
VDD  
VDD  
undervoltage  
shutdown  
FLTEN (18)  
ITRIP (16)  
Over current  
protection  
Internal Voltage  
reference  
Figure 3. Simplified Block Diagram  
www.onsemi.com  
3
NFAP1060L3TT  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
1
Name  
VB(W)  
VS(W), W  
VB(V)  
VS(V), V  
VB(U)  
VS(U), U  
P
Description  
HighSide Bias Voltage for W phase IGBT Driving  
HighSide Bias Voltage GND for W phase IGBT Driving, Output for W Phase  
HighSide Bias Voltage for V phase IGBT Driving  
HighSide Bias Voltage GND for V phase IGBT Driving, Output for V Phase  
HighSide Bias Voltage for U phase IGBT Driving  
HighSide Bias Voltage GND for U phase IGBT Driving, Output for U Phase  
Positive DCLink Input  
2
5
6
9
10  
13  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
ITRIP  
NU  
Input for Over Current Protection  
Negative DCLink Input for U Phase  
FLTEN  
NV  
Fault Output, Enable Input  
Negative DCLink Input for V Phase  
HIN(U)  
NW  
Signal Input for HighSide U Phase  
Negative DCLink Input for W Phase  
HIN(V)  
HIN(W)  
LIN(U)  
LIN(V)  
LIN(W)  
TH  
Signal Input for HighSide V Phase  
Signal Input for HighSide W Phase  
Signal Input for LowSide U Phase  
Signal Input for LowSide V Phase  
Signal Input for LowSide W Phase  
Series Resister for Thermistor (Temperature Detection)  
LowSide Bias Voltage for IC and IGBTs Driving  
LowSide Common Supply Ground  
VDD  
VSS  
NOTE: Pins 3, 4, 7, 8, 11, 12, 14 and 15 are not present  
Table 2. ABSOLUTE MAXIMUM RATINGS at Tc = 25°C (Note 1)  
Parameter  
Symbol  
VPN  
Vces  
Ic  
Conditions  
PNU,NV,NW, VPN (surge) < 500 V (Note 2)  
PU,V,W; UNU; VNV; WNW  
P,U,V,W,NU,NV,NW terminal current  
Tc = 25°C, Under 1ms Pulse Width  
Tc = 25°C, Per One Chip  
Rating  
Unit  
V
Supply Voltage  
450  
Collector Emitter Voltage  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
Corrector Dissipation  
600  
V
10  
20  
A
Icp  
A
Pc  
19  
W
V
HighSide Control Bias voltage  
Control Supply Voltage  
VBS  
VDD  
VIN  
VB(U)VS(U), VB(V)VS(V), VB(W)VS(W) (Note 3)  
VDDVSS  
0.3 to +20.0  
0.3 to +20.0  
V
Input Signal Voltage  
HIN(U), HIN(V), HIN(W), LIN(U), LIN(V), LIN(W)VSS  
FLTENVSS  
0.3 to V  
0.3 to V  
V
DD  
DD  
FLTEN Terminal Voltage  
Current Sensing Input Voltage  
Operating Junction Temperature  
Storage Temperature  
VFLTEN  
VITRIP  
Tj  
V
ITRIPVSS  
0.3 to +7.0  
150  
V
°C  
°C  
°C  
Nm  
Vrms  
Tstg  
Tc  
40 to +125  
40 to +125  
0.9  
Module Case Operation Temperature  
Tightening Torque  
MT  
Case mounting screws  
Isolation Voltage  
Viso  
50 Hz sine wave AC 1 minute (Note 4)  
2000  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2. This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminal.  
3. VBS = VB(U)VS(U), VB(V)VS(V), VB(W)VS(W)  
4. Test conditions: AC2500V, 1 s  
www.onsemi.com  
4
 
NFAP1060L3TT  
Table 3. RECOMMENDED OPERATING RANGES  
Parameter  
Supply voltage  
Symbol  
VPN  
Conditions  
Min  
0
Typ  
280  
15  
Max  
450  
Unit  
V
PNU,NV,NW  
HighSide Control Bias voltage  
VBS  
VB(U)VS(U), VB(V)VS(V),  
VB(W)VS(W)  
13.0  
17.5  
V
Control Supply Voltage  
ONstate Input Voltage  
OFFstate Input Voltage  
PWM Frequency  
VDD  
VIN(ON)  
VIN(OFF)  
fPWM  
VDDVSS  
14.0  
3.0  
0
15  
16.5  
5.0  
0.3  
20  
V
V
HIN(U), HIN(V), HIN(W), LIN(U),  
LIN(V), LIN(W)VSS  
V
1
kHz  
ms  
ms  
Nm  
Dead Time  
DT  
Turnoff to Turnon (external)  
ON and OFF  
0.5  
1
Allowable Input Pulse Width  
Tightening Torque  
PWIN  
‘M3’ type screw  
0.6  
0.9  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Table 4. ELECTRICAL CHARACTERISTICS at Tc = 25°C, V  
(VBS, VDD) = 15 V unless otherwise noted.  
BIAS  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
POWER OUTPUT SECTION  
CollectorEmitter Leakage Current  
Bootstrap Diode Reverse Current  
CollectorEmitter Saturation Voltage  
Vce = 600 V  
Ices  
1
1
mA  
mA  
V
VR(DB) = 600 V  
IR(DB)  
VCE(sat)  
VDD = VBS = 15 V, IN = 5 V, Ic = 10 A,  
Tj = 25°C  
2.1  
2.7  
VDD = VBS = 15 V, IN = 5 V, Ic = 5 A,  
Tj = 100°C  
1.8  
V
FWDi Forward Voltage  
IN = 0 V, Ic = 10 A, Tj = 25°C  
IN = 0 V, Ic = 5 A, Tj = 100°C  
Inverter IGBT Part (per 1/6 Module)  
Inverter FRD Part (per 1/6 Module)  
VF  
2.2  
1.7  
2.8  
V
V
Junction to Case Thermal Resistance  
Rth(jc)Q  
Rth(jc)F  
6.3  
11.6  
°C/W  
°C/W  
DRIVER SECTION  
Quiescent VBS Supply Current  
Quiescent VDD Supply Current  
ON Threshold voltage  
OFF Threshold voltage  
Logic 1 Input Current  
VBS = 15 V, HIN = 0 V, per driver  
IQBS  
IQDDL  
VIN(ON)  
VIN(OFF)  
IIN+  
0.07  
0.85  
0.4  
3.0  
2.5  
mA  
mA  
V
VDD = 15 V, HIN = 0 V, VDDVSS  
HIN(U), HIN(V), HIN(W), LIN(U),  
LIN(V), LIN(W)VSS  
0.8  
V
VIN = +3.3 V  
660  
mA  
mA  
mA  
ms  
V
Logic 0 Input Current  
VIN = 0 V  
IIN−  
2
FLTEN Terminal Sink Current  
FaultOutput Pulse Width  
Enable Threshold  
FAULT: ON / VFLTEN = 0.1 V  
FLTENVSS  
IoSD  
2
tFOD  
20  
FLTENVSS  
VEN+  
2.5  
VEN−  
0.8  
0.44  
10.3  
10.1  
10.3  
10.1  
V
Short Circuit Trip Level  
ITRIPVSS  
VSC(ref)  
UVBSR  
UVBSD  
UVDDR  
UVDDD  
0.49  
11.1  
10.9  
11.1  
10.9  
0.54  
11.9  
11.7  
11.7  
11.5  
V
HighSide Control Bias Voltage Under−  
Voltage Protection  
Reset Level  
V
Detection Level  
Reset Level  
V
Supply Voltage UnderVoltage Protection  
V
Detection Level  
V
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
5
NFAP1060L3TT  
Table 5. ELECTRICAL CHARACTERISTICS  
at Tc = 25°C, V  
(VBS, VDD) = 15 V, VCC = 300 V, L = 3.0 mH unless otherwise noted.  
BIAS  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTER  
Switching Time  
IC = 10 A, Tj = 25°C  
t
0.5  
0.5  
1.0  
1.0  
ms  
ms  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
ns  
ON  
t
OFF  
Turnon Switching Loss  
IC = 5 A, Tj = 25°C  
IC = 5 A, Tj = 100°C  
IC = 5 A, Tj = 100°C  
E
114  
ON  
Turnoff Switching Loss  
E
OFF  
E
TOT  
65  
Total Switching Loss  
179  
136  
75  
Turnon Switching Loss  
E
ON  
OFF  
TOT  
REC  
Turnoff Switching Loss  
E
E
Total Switching Loss  
211  
Diode Reverse Recovery Energy  
Diode Reverse Recovery Time  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
E
27  
t
174  
Full Square  
RR  
IC = 20 A, V = 450 V  
RBSOA  
SCSOA  
CE  
V
CE  
= 400 V, Tj = 100°C  
5
ms  
TYPICAL CHARACTERISTICS INV SECTION  
Figure 4. VCE vs. IC for Different Temperatures  
(VDD = 15 V)  
Figure 5. VF vs. IF for Different Temperatures  
Figure 6. EON vs. IC for Different Temperatures  
Figure 7. EOFF vs. IC for Different Temperatures  
www.onsemi.com  
6
NFAP1060L3TT  
TYPICAL CHARACTERISTICS INV SECTION  
Figure 8. Thermal Impedance Plot  
Figure 10. Turnoff Waveform  
Tj = 100°C, VCC = 300 V  
Figure 9. Turnon Waveform  
Tj = 100°C, VCC = 300 V  
www.onsemi.com  
7
NFAP1060L3TT  
APPLICATIONS INFORMATION  
VBS undervoltage protection reset signal  
HIN  
LIN  
(Note 6)  
VDD undervoltage protection reset voltage  
VDD  
VBS undervoltage protection reset voltage  
(Note 7)  
Voltage w0.54V  
(Note 8)  
VB(U), VB(V), VB(W)  
Voltage < 0.44V  
ITRIP  
FLTEN driven  
output  
FLTEN driven  
input  
Crossconduction prevention period  
(Note 5)  
Upper IGBT  
Gate Drive  
Lower IGBT  
Gate Drive  
Automatic reset after protection (FaultOutput PulseWidth)  
Figure 11. Input / Output Timing Chart  
5. This section of the timing diagram shows the effect of crossconduction prevention.  
6. This section of the timing diagram shows that when the voltage on VDD decreases sufficiently all gate output signals will go low, switching  
off all six IGBTs. When the voltage on VDD rises sufficiently, normal operation will resume.  
7. This section shows that when the bootstrap voltage on VB(U) (VB(V), VB(W)) drops, the corresponding high side output U (V, W) is switched  
off. When the voltage on VB(U) (VB(V), VB(W)) rises sufficiently, normal operation will resume.  
8. This section shows that when the voltage on ITRIP exceeds the threshold, all IGBT’s are turned off. Normal operation resumes later after  
the overcurrent condition is removed.  
Table 6. INPUT / OUTPUT LOGIC TABLE  
INPUT  
OUTPUT  
Low side IGBT  
HIN  
H
LIN  
L
ITRIP  
High side IGBT  
U,V,W  
P
FAULT  
OFF  
OFF  
OFF  
OFF  
ON  
L
L
L
L
H
ON  
OFF  
ON  
L
H
OFF  
OFF  
OFF  
OFF  
NU, NV, NW  
High Impedance  
High Impedance  
High Impedance  
L
L
OFF  
OFF  
OFF  
H
H
X
X
Table 7. THERMISTOR CHARACTERISTICS  
Parameter  
Resistance  
Symbol  
Condition  
Tth=25  
Tth=125℃  
Min  
45.59  
1.34  
3953  
40  
Typ  
47  
Max  
Unit  
kW  
kW  
K
R
48.41  
1.59  
25  
R
1.45  
4021  
125  
BConstant (25 to 50)  
B
4033  
+125  
Temperature Range  
°C  
www.onsemi.com  
8
 
NFAP1060L3TT  
Figure 12. Thermistor Resistance vs. Thermistor Temperature  
Figure 13. Thermistor Voltage vs. Thermistor Temperature  
Conditions: RTH = 4.7 kW, pullup voltage 5.0 V (see Figure 12)  
www.onsemi.com  
9
 
NFAP1060L3TT  
FLTEN Pin  
Minimum Input Pulse Width  
The FLTEN pin is connected to an opendrain FAULT  
output and an ENABLE input, it is required a pullup  
resistor. If the pullup voltage is 5 V, use a pullup resistor  
with a value of 6.8 kW or higher. If the pullup voltage is  
15 V, use a pullup resistor with a value of 20 kW or higher.  
The pulled up voltage in normal operation for the FLTEN  
pin should be above 2.5 V, noting that it is connected to an  
internal ENABLE input. The FAULT output is triggered if  
there is a VDD undervoltage or an overcurrent condition.  
Driving the FLTEN terminal pin is used to enable or shut  
down the builtin driver. If the voltage on the FLTEN pin  
rises above the positive going ENABLE threshold, the  
output drivers are enabled. If the voltage on the FLTEN pin  
falls below the negative going ENABLE threshold, the  
drivers are disabled.  
When input pulse width is less than 1 ms, an output may  
not react to the pulse. (Both ON signal and OFF signal)  
Calculation of Bootstrap Capacitor Value  
The bootstrap capacitor value CB is calculated using the  
following approach. The following parameters influence the  
choice of bootstrap capacitor:  
VBS: Bootstrap power supply.  
15 V is recommended.  
QG: Total gate charge of IGBT at VBS = 15 V.  
17 nC  
UVLO: Falling threshold for UVLO.  
Specified as 12 V.  
IDMAX: Highside drive power dissipation.  
Specified as 0.4 mA  
Undervoltage Protection  
TONMAX: Maximum ON pulse width of high side  
If VDD goes below the VDD supply undervoltage  
lockout falling threshold, the FAULT output is switched on.  
The FAULT output stays on until VDD rises above the VDD  
supply undervoltage lockout rising threshold. After VDD  
has risen above the threshold to enable normal operation, the  
driver waits to receive an input signal on the LIN input  
before enabling the driver for the HIN signal. The hysteresis  
is approximately 200 mV.  
IGBT.  
Capacitance Calculation Formula:  
CB = (QG + IDMAX * TONMAX)/(VBS UVLO)  
The relationship between TONMAX and CB becomes as  
follows. CB is recommended to be approximately 3 times  
the value calculated above. The recommended value of CB  
is in the range of 1 to 47 mF, however, the value needs to be  
verified prior to production. When not using the bootstrap  
circuit, each high side driver power supply requires an  
external independent power supply.  
Overcurrent Protection  
An overcurrent condition is detected if the voltage on the  
ITRIP pin is larger than the reference voltage. There is a  
blanking time of typically 350 ns to improve noise  
immunity. After a shutdown propagation delay of typically  
0.9 ms, the FAULT output is switched on. The FAULT output  
is held on for 20 ms (minimum).  
The overcurrent protection threshold should be set to be  
equal or lower to 2 times the module rated current (Io).  
An additional fuse is recommended to protect against  
system level or abnormal overcurrent fault conditions.  
Capacitors on High Voltage and VDD Supplies  
Both the high voltage and VDD supplies require an  
electrolytic capacitor and an additional high frequency  
capacitor. The recommended value of the high frequency  
capacitor is between 100 nF and 10 mF.  
Figure 14. Bootstrap Capacitance vs. Tonmax  
www.onsemi.com  
10  
NFAP1060L3TT  
TEST CIRCUITS  
Ices, IR(DB)  
VBS=15V  
9
ICE, IR  
U+  
13  
10  
V+  
13  
6
W+  
13  
2
U−  
10  
17  
V−  
6
W−  
A
B
A
10  
A
B
2
VBS=15V  
5
6
19  
21  
VCE, VR  
U+,V+,W+ : High side phase  
U,V,W: Low side phase  
VBS=15V  
1
2
U(DB)  
V(DB)  
W(DB)  
VDD=15V  
28  
A
B
9
5
1
29,17,19,21  
29  
29  
29  
Figure 15. Test Circuit for ICE  
VCE(sat) (Test by pulse)  
VBS=15V  
VBS=15V  
VBS=15V  
9
U+  
13  
10  
20  
V+  
13  
6
W+  
13  
2
U−  
10  
17  
24  
V−  
6
W−  
2
A
10  
A
B
C
5
6
19  
25  
21  
26  
IC  
V
22  
23  
1
VCE(sat)  
2
VDD=15V  
5V  
28  
C
B
29,17,19,21  
Figure 16. Test Circuit for VCE(SAT)  
VF (Test by pulse)  
U+  
V+  
13  
6
W+  
13  
2
U−  
10  
17  
V−  
6
W−  
2
A
A
B
13  
10  
V
VF  
IC  
19  
21  
U(DB)  
9
V(DB)  
5
W(DB)  
B
A
B
1
28  
28  
28  
Figure 17. Test Circuit for VF  
IQBS, IQDDL  
ID  
VBS U+  
VBS V+  
VBS W+  
V
DD  
A
A
A
B
9
5
6
1
2
28  
29  
10  
VD*  
B
Figure 18. Test Circuit for ID  
www.onsemi.com  
11  
NFAP1060L3TT  
SWITCHING TIME (The circuit is a representative  
example of the lower side U phase.)  
VBS =15V  
VBS =15V  
VBS =15V  
9
10  
A
C
U+  
13  
17  
10  
17  
20  
V+  
13  
19  
6
W+  
13  
21  
2
U−  
13  
17  
13  
10  
24  
V−  
13  
19  
13  
6
W−  
13  
21  
13  
2
5
6
A
B
C
D
E
CS  
V
CC  
1
2
D
B
VDD =15V  
Input Signal  
28  
19  
22  
21  
23  
E
Io  
29,17,19,21  
25  
26  
Figure 19. Test Circuit for Switching Time  
Input Signal  
(0 to 5V)  
90%  
lo  
10%  
tON  
tOFF  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SIP29, 44.0x20.9 FP1  
CASE 127FB  
ISSUE A  
DATE 14 JUN 2019  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
ZZZ = Assembly Lot Code  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
XXXXXXXXXXXXXXXXX  
ZZZATYWW  
AT  
Y
= Assembly & Test Location  
= Year  
WW = Work Week  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON01721H  
SIP29, 44.0x20.9 FP1  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NFAQ0560R43T

Intelligent Power Module (IPM), 600V, 5A
ONSEMI

NFAQ0860L33T

Intelligent Power Module (IPM), 600V, 8A, Long lead
ONSEMI

NFAQ0860L36T

Intelligent Power Module (IPM), 600 V, 8 A, Short lead
ONSEMI

NFAQ1060L33T

Intelligent Power Module (IPM), 600 V, 10 A, Long lead
ONSEMI

NFAQ1060L36T

Intelligent Power Module (IPM), 600 V, 10 A
ONSEMI

NFAQ1060L36TB

Intelligent Power Module (IPM), 600 V, 10 A
ONSEMI

NFAQ1560R43T

Intelligent Power Module (IPM), 600V, 15A
ONSEMI

NFAQ1560R43TL

Intelligent Power Module (IPM), 600V, 15A, EMI optimized version
ONSEMI

NFC

Near Field Communication LSI
PANASONIC

NFC10

Single and dual output 10 Watt Wide input DC/DC converters
ARTESYN

NFC10-12D12

Single and dual output 10 Watt Wide input DC/DC converters
ARTESYN

NFC10-12D12-4

Analog IC
ETC