NCV5662DS33R4G [ONSEMI]

FIXED POSITIVE LDO REGULATOR;
NCV5662DS33R4G
型号: NCV5662DS33R4G
厂家: ONSEMI    ONSEMI
描述:

FIXED POSITIVE LDO REGULATOR

输出元件 调节器
文件: 总15页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5662, NCV5662  
Low Output Voltage,  
Ultra-Fast 2.0 A Low Dropout  
Linear Regulator with Enable  
The NCP5662/NCV5662 is a high performance, low dropout linear  
regulator designed for high power applications that require up to 2.0 A  
current. It is offered in both fixed and adjustable output versions. With  
output voltages as low as 0.9 V and ultrafast response times for load  
transients, the NCP5662/NCV5662 also provides additional features  
such as Enable and Error Flag (for the fixed output version),  
increasing the utility of these devices. A thermally robust, 5 pin  
D PAK or DFN8 package, combined with an architecture that offers  
low ground current (independent of load), provides for a superior  
highcurrent LDO solution.  
http://onsemi.com  
MARKING DIAGRAMS AND  
PIN ASSIGNMENTS  
2
Tab = GND  
Pin 1 = EN  
2 = V  
NC  
x5662DSy  
AWLYWWG  
1
in  
5
3 = GND  
4 = V  
2
D PAK  
out  
Features  
DS SUFFIX  
CASE 936AA  
1
5 = ADJ/EF  
UltraFast Transient Response (Settling Time: 13 ms)  
Low Noise Without Bypass Capacitor (26 mV  
rms)  
Low Ground Current Independent of Load (3.0 mA Maximum)  
Fixed/Adjustable Output Voltage Versions  
Enable Function  
NCP5  
662y  
ALYW G  
G
1
DFN8  
MN SUFFIX  
CASE 488AF  
Error Flag (Fixed Output Version)  
Current Limit Protection  
Thermal Shutdown Protection (160°C)  
0.9 V Reference Voltage for UltraLow Output Operation  
Power Supply Rejection Ratio > 65 dB  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
Fixed Version  
Adjustable Version  
Pin 1 = EF  
2 = GND  
3 = N/C  
Pin 1 = ADJ  
2 = GND  
3 = N/C  
4 = EN  
4 = EN  
5, 6 = V  
7, 8 = V  
5, 6 = V  
in  
in  
7 = V  
out  
out  
8 = N/C  
These are PbFree Devices  
x
y
= P or V  
Applications  
Servers  
ASIC Power Supplies  
Post Regulation for Power Supplies  
Constant Current Source  
Networking Equipment  
Gaming and STB Modules  
=A for Adjustable Version  
B for Fixed 1.5 V Version  
C for Fixed 3.3 V Version  
D for Fixed 1.2 V Version  
E for Fixed 1.8 V Version  
F for Fixed 2.5 V Version  
G for Fixed 2.8 V Version  
H for Fixed 3.0 V Version  
= Assembly Location  
= Wafer Lot  
A
L
Y
=Year  
WW = Work Week  
G or G = PbFree Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
May, 2013 Rev. 15  
NCP5662/D  
NCP5662, NCV5662  
R
EF  
V
V
V
out  
V
out  
in  
in  
V
V
out  
V
V
in  
out  
in  
NCP5662  
NCV5662  
NCP5662  
NCV5662  
R1  
R2  
Error Flag  
C
C
out  
in  
EN  
EF  
EN  
ADJ  
GND  
GND  
C
C
in  
out  
Enable  
Enable  
OFF ON  
OFF ON  
Figure 1. Typical Application Schematic, Fixed  
Output  
Figure 2. Typical Application Schematic,  
Adjustable Output  
PIN FUNCTION DESCRIPTION  
Pin  
Pin  
Adj/Fixed Adj/Fixed  
2
D PAK  
DFN8  
Pin Name  
Description  
1
4
EN  
Enable. This pin allows for on/off control of the regulator. To disable  
the device, connect to Ground. If this function is not in use, connect  
to V .  
in  
2
5, 6*  
2
V
Positive Power Supply Input Voltage  
Power Supply Ground  
in  
3, TAB  
GND  
4
5
7, 8  
1
V
Regulated Output Voltage  
out  
ADJ  
This pin is connected to the resistor divider network and programs  
the output voltage.  
(Adjustable Version)  
5
1
EF  
An Error Flag is triggered when the output voltage is out of regulation  
excluding transient signals that may occur. Requires a pullup resistor  
f 100 kW.  
(Fixed Version)  
3, 8  
Pin 3 N/C on Fixed & ADJ Version  
while Pin 8 N/C on ADJ Version only  
No connection. True no connect. PCB runs allowable.  
EPAD  
EPAD  
Exposed thermal pad should be connected to ground.  
*Pins 5 and 6 must be connected together externally for output current full range operation.  
http://onsemi.com  
2
 
NCP5662, NCV5662  
V
in  
EN  
Enable  
Block  
Voltage  
Reference  
Block  
V
ref  
= 0.9 V  
V
out  
R3  
R4  
Output  
Stage  
Cc  
R1  
R2  
EF  
Error  
Flag  
GND  
Figure 3. Block Diagram, Fixed Output  
V
in  
Enable  
Block  
EN  
Voltage  
Reference  
Block  
V
ref  
= 0.9 V  
R3  
R4  
V
out  
Output  
Stage  
ADJ  
GND  
Figure 4. Block Diagram, Adjustable Output  
http://onsemi.com  
3
NCP5662, NCV5662  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
18  
Unit  
V
Input Voltage (Note 1)  
Output Pin Voltage  
V
in  
V
0.3 to (Vin +0.3)  
0.3 to (Vin +0.3)  
0.3 to (Vin +0.3)  
0.3 to (Vin +0.3)  
3.0  
V
out  
Adjust Pin Voltage  
V
ADJ  
V
Enable Pin Voltage  
Error Flag Voltage  
V
EN  
V
V
V
EF  
EF  
Error Flag Current  
I
mA  
°C  
Maximum Junction Temperature  
T
150  
J(max)  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
NOTE: This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM), Class 3A, 2000 V  
Machine Model (MM), Class C, 200 V  
Charge Device Model (CDM), Class IV, 2000 V.  
1. Refer to Electrical Characteristics and Application Information for Safe Operating Area.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
2
Thermal Characteristics, D PAK (Notes 1 and 2)  
Thermal Resistance, JunctiontoAmbient  
Thermal Resistance, JunctiontoCase  
Thermal Reference, JunctiontoLead  
°C/W  
R
q
45  
5.0  
7.0  
q
JA  
R
JC  
R
Y
JL  
Thermal Characteristics, DFN8 (Notes 1 and 2)  
Thermal Resistance, JunctiontoAmbient  
Thermal Reference, JunctiontoLead (Note 3)  
°C/W  
R
Y
78  
14  
q
JA  
JL  
R
2. As measured using a copper heat spreading area of 1 sq in copper, 1 oz copper thickness.  
3. Lead 6.  
OPERATING RANGES  
Rating  
Symbol  
Value  
Unit  
V
Operating Input Voltage (Note 1)  
V
in  
(V +V ), 2 to 9 (Note 4)  
out DO  
Operating Ambient Temperature Range  
NCP5662  
NCV5662  
T
A
40 to +85  
40 to +125  
°C  
Storage Temperature Range  
T
stg  
55 to +150  
°C  
4. Minimum V = (V + V ) or 2 V, whichever is higher.  
in  
out  
DO  
http://onsemi.com  
4
 
NCP5662, NCV5662  
ELECTRICAL CHARACTERISTICS (V = V + 1.5 V, for typical values T = 25°C, for min/max values T = 40°C to 85°C (NCP  
in  
out  
A
A
version), T = 40°C to 125°C (NCV version), C = C = 150 mF unless otherwise noted. (Note 5))  
A
in  
out  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ADJUSTABLE OUTPUT VERSION  
Output Noise Voltage  
V
n
26  
mV  
rms  
Output Voltage  
V
out  
V
T = 25°C (V = V +1.5 V to 7.0 V, I = 10 mA to 2.0 A)  
(1%)  
(1.5%)  
(2%)  
(+1%)  
(+1.5%)  
(+2%)  
A
in  
out  
out  
0.9  
T
A
= 20 to +125°C (V = V +1.5 V to 7.0 V, I = 10 mA to 2.0 A)  
in out out  
T
A
= 40 to +150°C (V = V +1.5 V to 7.0 V, I = 10 mA to 2.0 A)  
in out out  
Adjustable Pin Input Current  
Line Regulation (I = 10 mA, V +1.5 V < V < 7.0 V)  
I
40  
0.03  
0.03  
1.0  
nA  
%
%
V
ADJ  
REG  
out  
out  
in  
line  
Load Regulation (10 mA < I < 2.0 A)  
REG  
out  
load  
Dropout Voltage (I = 2.0 A)  
V
1.3  
out  
DO  
out(peak)  
Peak Output Current Limit  
Internal Current Limitation  
I
2.0  
A
I
3.0  
A
LIM  
Ripple Rejection (120 Hz)  
Ripple Rejection (1 kHz)  
RR  
70  
65  
dB  
Ground Current  
I
= 2.0 A  
I
1.3  
10  
3.0  
300  
mA  
mA  
out  
GND  
Disabled State  
I
GND(DIS)  
Enable Input Threshold Voltage  
V
EN  
V
Voltage Increasing, On state, Logic High  
Voltage Decreasing, Off state, Logic Low  
1.3  
0.3  
Enable Input Current  
I
EN  
Enable Pin Voltage = 0.3 V  
Enable Pin Voltage = 1.3 V  
0.5  
0.5  
mA  
max  
min  
5. Performance guaranteed over specified operating conditions by design, guard banded test limits, and/or characterization, production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
http://onsemi.com  
5
 
NCP5662, NCV5662  
ELECTRICAL CHARACTERISTICS (V = V + 1.5 V, for typical values T = 25°C, for min/max values T = 40°C to 85°C (NCP  
in  
out  
A
A
version), T = 40°C to 125°C (NCV version), C = C = 150 mF unless otherwise noted. (Note 6))  
A
in  
out  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
FIXED OUTPUT VOLTAGE  
Output Noise Voltage (V = 0.9 V)  
V
n
26  
mV  
rms  
out  
Output Voltage (Note 7)  
V
out  
V
T = 25°C (V = V +1.5 V to 7.0 V, I = 10 mA to 2.0 A)  
(1%)  
(1.5%)  
(2%)  
(+1%)  
(+1.5%)  
(+2%)  
A
in  
out  
out  
V
out(nom)  
T
A
= 20 to +125°C (V = V +1.5 V to 7.0 V, I = 10 mA to 2.0 A)  
in out out  
T
A
= 40 to +150°C (V = V +1.5 V to 7.0 V, I = 10 mA to 2.0 A)  
in out out  
Line Regulation (I = 10 mA, V +1.5 V < V < 7.0 V)  
REG  
0.03  
0.2  
1.0  
%
%
V
out  
out  
in  
line  
Load Regulation (10 mA < I < 2.0 A)  
REG  
load  
out  
Dropout Voltage (I = 2.0 A)  
V
1.3  
out  
DO  
out(peak)  
Peak Output Current Limit  
Internal Current Limitation  
I
2.0  
A
I
3.0  
A
LIM  
Ripple Rejection (120 Hz)  
Ripple Rejection (1 kHz)  
RR  
70  
65  
dB  
Ground Current  
I
= 2.0 A  
I
1.3  
30  
3.0  
300  
mA  
mA  
out  
GND  
Disabled State  
I
GND(DIS)  
Enable Input Threshold Voltage  
V
EN  
V
Voltage Increasing, On state, Logic High  
Voltage Decreasing, Off state, Logic Low  
1.3  
0.3  
Enable Input Current  
I
EN  
Enable Pin Voltage = 0.3 V  
Enable Pin Voltage = 1.3 V  
0.5  
0.5  
mA  
max  
min  
Error Flag Voltage Threshold (Fixed Output)  
V
91  
94  
200  
1.0  
50  
97  
% of V  
mV  
EF(VT)  
out  
Error Flag Output Low Voltage Saturation (I = 1.0 mA)  
V
EF(SAT)  
EF  
Error Flag Leakage  
I
mA  
EF(leakage)  
Error Flag Blanking Time (Note 8)  
t
EF  
ms  
6. Performance guaranteed over specified operating conditions by design, guard banded test limits, and/or characterization, production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
7. Fixed output voltage available at 0.9 V per request.  
8. Can be disabled per customer request.  
http://onsemi.com  
6
 
NCP5662, NCV5662  
TYPICAL CHARACTERISTICS  
(Typical characteristics were measured with the same conditions as electrical characteristics, unless otherwise noted)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
25  
0
25  
50  
75  
100  
125  
150  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 5. Dropout Voltage vs. Temperature  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
1.3  
V
C
C
= 1.5 V Fixed  
= 150 mF  
= 10 to 150 mF  
= 25°C  
V
C
C
= 3.3 V Fixed  
= 150 mF  
= 10 to 150 mF  
out  
out  
in  
in  
1.2  
1.1  
1.0  
0.9  
out  
out  
T
A
T = 25°C  
A
0.8  
0.7  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
I
, OUTPUT CURRENT (A)  
I
out  
, OUTPUT CURRENT (A)  
out  
Figure 6. 1.5 V Dropout Voltage vs. Output Current  
Figure 7. 3.3 V Dropout Voltage vs. Output Current  
3.5  
3.5  
3.0  
3.25  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.75  
2.5  
2.25  
2
50  
25  
0
25  
50  
75  
100  
125  
150  
50  
25  
0
25  
50  
75  
100  
125  
150  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Ground Current vs. Temperature  
Figure 9. Short Circuit Current Limit vs.  
Temperature  
http://onsemi.com  
7
NCP5662, NCV5662  
TYPICAL CHARACTERISTICS  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
0.6  
I
C
C
= 10 mA  
= 150 mF  
I
C
C
= 10 mA  
= 150 mF  
out  
out  
in  
in  
= 1.0 to 150 mF  
= 1.0 to 150 mF  
out  
out  
T
= 25°C  
T
= 25°C  
A
A
0.2  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
0
1.0 2.0  
3.0 4.0 5.0  
6.0 7.0 8.0 9.0  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 10. 1.5 V Output Voltage vs. Input Voltage  
Figure 11. 3.3 V Output Voltage vs. Input Voltage  
1.55  
1.53  
1.51  
1.49  
1.47  
1.45  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
V
= 3.3 V  
= 2.0 A maximum  
= 150 mF  
V
= 5.1 V  
= 2.0 A maximum  
= 150 mF  
in  
in  
I
I
out  
out  
C
C
T
A
C
C
in  
in  
= 1.0 to 150 mF  
= 1.0 to 150 mF  
out  
out  
= 25°C  
T = 25°C  
A
3.26  
3.25  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
I
, OUTPUT CURRENT (A)  
I
out  
, OUTPUT CURRENT (A)  
out  
Figure 12. 1.5 V Output Voltage vs. Output Load  
Current  
Figure 13. 3.3 V Output Voltage vs. Output Load  
Current  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
T
= 25°C  
A
L = 25 mm Copper  
I
= 10 mA  
out  
V
= 4.0 V  
= 0.9 V  
= 0 mF  
in  
I
= 1.0 A  
100  
out  
V
out  
C
C
T
A
in  
= 1.0 mF  
out  
= 25°C  
0.0  
0
0
0
1.0  
10  
1000  
2
4
6
8
10  
12  
14  
16  
20  
F, FREQUENCY (kHz)  
INPUTOUTPUT VOLTAGE DIFFERENTIAL (V)  
Figure 14. Output Current vs. InputOutput  
Figure 15. Ripple Rejection vs. Frequency  
Voltage Differential  
http://onsemi.com  
8
NCP5662, NCV5662  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
V
V
= 12 V  
= 0.9 V  
40  
30  
20  
10  
0
V
V
= 3.3 V  
= 0.9 V  
in  
in  
out  
out  
I
= 10 mA  
= 150 mF  
= 150 mF  
I
= 2.36 A  
= 150 mF  
= 150 mF  
out  
out  
C
C
T
C
C
T
in  
out  
in  
out  
= 25°C  
= 25°C  
A
A
Start 1.0 kHz  
Stop 100 kHz  
Start 1.0 kHz  
Stop 100 kHz  
F, FREQUENCY (kHz)  
F, FREQUENCY (kHz)  
Figure 16. Noise Density vs. Frequency  
Figure 17. Noise Density vs. Frequency  
http://onsemi.com  
9
NCP5662, NCV5662  
TYPICAL CHARACTERISTICS  
V
in  
= 3.3 V  
V
out  
= 1.5 V Fixed  
C
C
= 150 mF  
in  
= 150 mF  
out  
T
A
= 25°C  
V
in  
= 3.3 V  
V
out  
= 1.5 V Fixed  
C
C
= 150 mF  
in  
= 150 mF  
out  
T
A
= 25°C  
I
= 2.0 A to 10 mA  
out  
I
= 10 mA to 2.0 A  
out  
TIME (1.0 ms/Div)  
TIME (1.0 ms/Div)  
Figure 18. Load Transient Response  
Figure 19. Load Transient Response  
V
in  
= 3.3 V  
V
out  
= 1.5 V Fixed  
C
C
= 150 mF  
in  
= 150 mF  
out  
T
A
= 25°C  
V
in  
= 3.3 V  
V
out  
= 1.5 V Fixed  
C
C
= 150 mF  
in  
= 150 mF  
out  
T
A
= 25°C  
I
= 2.0 A to 10 mA  
out  
I
= 10 mA to 2.0 A  
out  
TIME (100 ns/Div)  
TIME (100 ns/Div)  
Figure 20. Load Transient Response  
Figure 21. Load Transient Response  
V
in  
= 4.0 V  
V
out  
= 0.9 V  
C
C
= 150 mF  
in  
= 10 mF  
out  
T
A
= 25°C  
V
in  
= 4.0 V  
V
out  
= 0.9 V  
C
C
T
= 150 mF  
in  
= 10 mF  
out  
= 25°C  
I
= 2.0 A to 10 mA  
A
out  
I
= 10 mA to 2.0 A  
out  
TIME (200 ns/Div)  
TIME (200 ns/Div)  
Figure 22. Load Transient Response  
Figure 23. Load Transient Response  
http://onsemi.com  
10  
NCP5662, NCV5662  
APPLICATION INFORMATION  
Current Limit Operation  
The NCP5662 is a high performance low dropout 2.0 A  
linear regulator suitable for high power applications,  
featuring an ultrafast response time and low noise without  
a bypass capacitor. It is offered in both fixed and adjustable  
output versions with voltages as low as 0.9 V. Additional  
features, such as Enable and Error Flag (fixed output  
version) increase the utility of the NCP5662. It is thermally  
robust and includes the safety features necessary during a  
fault condition, which provide for an attractive high current  
LDO solution for server, ASIC power supplies, networking  
equipment applications, and many others.  
As the peak output current increases beyond its limitation,  
the device is internally clampled to 3.0 A, thus causing the  
output voltage to decrease and go out of regulation. This  
allows the device never to exceed the maximum power  
dissipation.  
Error Flag Operation  
The Error Flag pin on the NCP5662 will produce a logic  
Low when it drops below the nominal output voltage. Refer  
to the electrical characteristics for the threshold values at  
which point the Error Flag goes Low. When the NCP5662  
is above the nominal output voltage, the Error Flag will  
remain at logic High.  
Input Capacitor  
The recommended input capacitor value is a 150 mF  
OSCON with an Equivalent Series Resistance (ESR) of  
50 mW. It is especially required if the power source is  
located more than a few inches from the NCP5662. This  
capacitor will reduce device sensitivity and enhance the  
output transient response time. The PCB layout is very  
important and in order to obtain the optimal solution, the Vin  
and GND traces should be sufficiently wide to minimize  
noise and unstable operation.  
The external pullup resistor needs to be connected  
between V and the Error Flag pin. A resistor of  
in  
approximately 100 kW is recommended to minimize the  
current consumption. No pullup resistor is required if the  
Error Flag output is not being used.  
Thermal Consideration  
The maximum package power dissipation is:  
T
* T  
J(max)  
A
Output Capacitor  
Proper output capacitor selection is required to maintain  
stability. The NCP5662 is guaranteed to be stable at an  
P
+
D
R
qJA  
The bipolar process employed for this IC is fully  
characterized and rated for reliable 18 V operation. To avoid  
damaging the part or degrading it’s reliability, power  
dissipation transients should be limited to under 30 W for  
output capacitance of, C > 10 mF with an ESR between  
out  
50 mW and 300 mW over the output current range of 10 mA  
to 2.0 A. For PCB layout considerations, place the  
recommended ceramic capacitor close to the output pin and  
keep the leads short. This should help ensure ultrafast  
transient response times.  
2
D PAK. For opencircuit to shortcircuit transient,  
P
= V  
* I .  
DTransient  
in(operating max) SC  
Adjustable Output Operation  
The application circuit for the adjustable output version is  
shown in Figure 2. The reference voltage is 0.9 V and the  
adjustable pin current is typically 40 nA. A resistor divider  
network, R1 and R2, is calculated using the following  
formula:  
V
V
out  
ref  
R1 + R2 ǒ * 1Ǔ  
V
out  
= 0.9 V  
Output  
Input  
V
out  
V
in  
ON  
NCP5662  
C
C
out  
in  
EN  
ADJ  
OFF  
Enable  
GND  
Figure 24. To achieve the minimum output voltage,  
ADJ to Vout has to be connected together  
http://onsemi.com  
11  
NCP5662, NCV5662  
390  
340  
290  
240  
190  
140  
1 oz Copper  
2 oz Copper  
90  
40  
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER AREA (mm )  
Figure 25. DFN8 Thermal Resistance vs. Copper Area  
NCP5662 Evaluation Board  
Figure 26. Test Board used for Evaluation  
http://onsemi.com  
12  
NCP5662, NCV5662  
ORDERING INFORMATION  
Device  
Nominal Output Voltage  
Package  
Shipping†  
NCP5662DSADJR4G  
Adj  
(PbFree)  
NCP5662DS12R4G  
NCP5662DS15R4G  
NCP5662DS18R4G  
NCP5662DS25R4G  
NCP5662DS28R4G  
NCP5662DS30R4G  
NCP5662DS33R4G  
NCV5662DSADJR4G*  
NCV5662DS15R4G*  
NCV5662DS33R4G*  
NCP5662MNADJR2G  
NCP5662MN15R2G  
NCP5662MN33R2G  
Fixed, 1.2 V  
(PbFree)  
Fixed, 1.5 V  
(PbFree)  
Fixed, 1.8 V  
(PbFree)  
Fixed, 2.5 V  
(PbFree)  
Fixed, 2.8 V  
(PbFree)  
2
D PAK  
800 / Tape & Reel  
Fixed, 3.0 V  
(PbFree)  
Fixed, 3.3 V  
(PbFree)  
Adj  
(PbFree)  
Fixed, 1.5 V  
(PbFree)  
Fixed, 3.3 V  
(PbFree)  
Adj  
(PbFree)  
Fixed, 1.5 V  
(PbFree)  
DFN8  
3000 / Tape & Reel  
Fixed, 3.3 V  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable  
http://onsemi.com  
13  
NCP5662, NCV5662  
PACKAGE DIMENSIONS  
D2PAK 5LEAD  
CASE 936AA  
ISSUE C  
A
NOTES:  
SEATING  
PLANE  
B
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
M
M
B A  
0.10  
A
2. CONTROLLING DIMENSION: INCHES.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH AND GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED  
0.005 MAXIMUM PER SIDE. THESE DIMENSIONS  
TO BE MEASURED AT DATUM H.  
A
E
E1  
L1  
c2  
E/2  
4. THERMAL PAD CONTOUR OPTIONAL WITHIN  
DIMENSIONS E, L1, D1, AND E1. DIMENSIONS  
D1 AND E1 ESTABLISH A MINIMUM MOUNTING  
SURFACE FOR THE THERMAL PAD.  
D1  
D
DETAIL C  
H
INCHES  
MILLIMETERS  
1
2
3
4 5  
DIM  
A
A1 0.000  
b
c
c2  
MIN  
0.170  
MAX  
0.180  
0.010  
0.036  
0.026  
0.055  
0.368  
−−−  
MIN  
4.32  
0.00  
0.66  
0.43  
1.14  
8.25  
6.35  
9.65  
5.08  
MAX  
4.57  
0.25  
0.91  
0.66  
1.40  
9.53  
−−−  
0.026  
0.017  
0.045  
0.325  
VIEW AA  
c
D
e
D1 0.250  
0.380  
E1 0.200  
5X b  
A
SEATING  
PLANE  
E
0.420  
−−−  
10.67  
−−−  
B
M
M
B A  
0.13  
H
e
H
L
L1  
L3  
M
0.067 BSC  
A1  
0.539  
0.058  
−−−  
0.579  
0.078  
0.066  
0.010 BSC  
0
8
_
_
_
RECOMMENDED  
SOLDERING FOOTPRINT*  
L
0.424  
M
GAUGE  
PLANE  
L3  
DETAIL C  
0.310  
0.584  
0.136  
0.067  
PITCH  
5X  
0.040  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
14  
NCP5662, NCV5662  
PACKAGE DIMENSIONS  
8 PIN DFN, 4x4  
CASE 488AF  
ISSUE C  
NOTES:  
A
B
D
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
L
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30MM FROM TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. DETAILS A AND B SHOW OPTIONAL  
CONSTRUCTIONS FOR TERMINALS.  
L1  
PIN ONE  
DETAIL A  
E
REFERENCE  
OPTIONAL  
CONSTRUCTIONS  
2X  
0.15  
C
MILLIMETERS  
2X  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
0.15  
C
A3  
TOP VIEW  
A
EXPOSED Cu  
MOLD CMPD  
A3  
b
D
0.20 REF  
0.25  
0.35  
DETAIL B  
4.00 BSC  
0.10  
C
C
D2 1.91  
2.21  
A1  
A
E
4.00 BSC  
E2 2.09  
2.39  
DETAIL B  
8X  
0.08  
(A3)  
e
K
L
0.80 BSC  
ALTERNATE  
NOTE 4  
A1  
0.20  
0.30  
−−−  
−−−  
0.50  
0.15  
CONSTRUCTIONS  
SEATING  
PLANE  
C
SIDE VIEW  
L1  
D2  
8X L  
SOLDERING FOOTPRINT*  
DETAIL A  
1
4
8X  
0.63  
2.21  
E2  
8
5
K
e
8X b  
2.39  
4.30  
0.10  
0.05  
C
C
A B  
PACKAGE  
OUTLINE  
NOTE 3  
BOTTOM VIEW  
8X  
0.35  
0.80  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP5662/D  

相关型号:

NCV5662DSADJR4G

Low Output Voltage, Ultra−Fast 2.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCV5663DS15R4G

Low Output Voltage, Ultra-Fast 3.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCV5663DSADJR4G

Low Output Voltage, Ultra-Fast 3.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCV5700

High Current IGBT Gate Driver
ONSEMI

NCV57000

Isolated High Current IGBT Gate Driver
ONSEMI

NCV57000D

Isolated High Current IGBT Gate Driver
ONSEMI

NCV57000DWR2G

Isolated High Current IGBT Gate Driver
ONSEMI

NCV57001

Isolated High Current IGBT Gate Driver
ONSEMI

NCV57001D

Isolated High Current IGBT Gate Driver
ONSEMI

NCV57001DWR2G

Isolated High Current IGBT Gate Driver
ONSEMI

NCV57001FDWR2G

Isolated high current and high efficiency IGBT gate driver with internal galvanic isolation
ONSEMI

NCV5700DR2G

High Current IGBT Gate Driver
ONSEMI