NCV4266-2CST50T3G [ONSEMI]

150 mA Low Iq, Low-Dropout Voltage Regulator with Enable;
NCV4266-2CST50T3G
型号: NCV4266-2CST50T3G
厂家: ONSEMI    ONSEMI
描述:

150 mA Low Iq, Low-Dropout Voltage Regulator with Enable

光电二极管 输出元件 调节器
文件: 总11页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4266-2C  
150 mA Low Iq,  
Low-Dropout Voltage  
Regulator with Enable  
The NCV4266−2C is a 150 mA output current integrated low  
dropout, low quiescent current regulator family designed for use in  
harsh automotive environments. It includes wide operating  
temperature and input voltage ranges. The device is offered with  
fixed voltage versions of 3.3 V and 5.0 V available in 2% output  
voltage accuracy. It has a high peak input voltage tolerance and  
reverse input voltage protection. It also provides overcurrent  
protection, overtemperature protection and enable function for  
control of the state of the output voltage. The NCV4266−2C is  
available in SOT−223 surface mount package. The output is stable  
over a wide output capacitance and ESR range. The NCV4266−2C  
has improved startup behavior during input voltage transients.  
www.onsemi.com  
MARKING  
DIAGRAM  
SOT−223  
(TO−261)  
ST SUFFIX  
AYW  
662CxG  
G
CASE 318E  
1
A
Y
W
x
= Assembly Location  
= Year  
= Work Week  
= Voltage Option  
3.3 V (x = 3)  
Features  
Output Voltage Options: 3.3 V, 5.0 V  
Output Voltage Accuracy: 2.0%  
Output Current: up to 150 mA  
Low Quiescent Current (typ. 40 mA @ 100 mA)  
Low Dropout Voltage (typ. 250 mV @ 100 mA)  
Enable Input  
5.0 V (x = 5)  
= Pb−Free Package  
G
(Note: Microdot may be in either location)  
Fault Protection  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 10 of this data sheet.  
+45 V Peak Transient Voltage  
−42 V Reverse Voltage  
Short Circuit  
Thermal Overload  
AEC−Q100 Grade 1 Qualified and PPAP Capable  
These are Pb−Free Devices  
I
Q
Error  
Amplifier  
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
Thermal  
Shutdown  
EN  
GND  
Figure 1. Block Diagram  
©
Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
March, 2015 − Rev. 0  
NCV4266−2C/D  
NCV4266−2C  
PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
Description  
1
2
3
4
I
Input; Battery Supply Input Voltage.  
EN  
Q
Enable Input; Low level disables the IC.  
Output; Bypass with a capacitor to GND.  
Ground.  
GND  
MAXIMUM RATINGS  
Rating  
Symbol  
Min  
−42  
Max  
45  
Unit  
V
Input Voltage  
V
I
V
I
Input Peak Transient Voltage  
Enable Input Voltage  
Output Voltage  
45  
V
V
−42  
45  
V
EN  
V
−0.3  
32  
V
Q
Ground Current  
I
100  
45  
mA  
V
q
Input Voltage Operating Range  
V
V
Q
+ 0.5 V or  
I
4.5 (Note 1)  
ESD Susceptibility  
(Human Body Model)  
3.0  
kV  
°C  
°C  
Junction Temperature  
Storage Temperature  
T
J
−40  
150  
150  
T
stg  
−50  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Minimum V = 4.5 V or (V + 0.5 V), whichever is higher.  
I
Q
LEAD TEMPERATURE SOLDERING REFLOW AND MSL (Note 2)  
Rating  
Symbol  
Min  
Max  
Unit  
Lead Temperature Soldering  
T
SLD  
°C  
Reflow (SMD styles only), Leaded, 60−150 s above 183, 30 s max at peak  
Reflow (SMD styles only), Free, 60−150 s above 217, 40 s max at peak  
Wave Solder (through hole styles only), 12 sec max  
240  
265  
310  
Moisture Sensitivity Level  
MSL  
3
2. Per IPC / JEDEC J−STD−020C.  
THERMAL RESISTANCE  
Parameter  
Junction−to−Ambient  
Junction−to−Tab  
Symbol  
Condition  
Min  
Max  
Unit  
SOT−223  
SOT−223  
R
q
JA  
109 (Note 3)  
10.9  
°C/W  
Ry  
°C/W  
JT  
2
3. 1 oz copper, 100 mm copper area, FR4.  
www.onsemi.com  
2
 
NCV4266−2C  
ELECTRICAL CHARACTERISTICS (−40°C < T < 150°C, V = 13.5 V, V = 5 V; unless otherwise noted.)  
J
I
EN  
Characteristic  
OUTPUT  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage (5.0 V Version)  
Output Voltage (3.3 V Version)  
Output Current Limitation  
V
V
100 mA < I < 150 mA, 6.0 V < V < 28 V  
4.9  
3.234  
150  
5.0  
3.3  
200  
0
5.1  
3.366  
500  
V
V
Q
Q
I
100 mA < I < 150 mA, 4.5 V < V < 28 V  
Q
Q
I
I
Q
V
V
= 90% V  
QTYP  
mA  
mA  
Q
Quiescent Current (Sleep Mode)  
I
q
= 0 V, T = −40°C to 100°C  
1.0  
EN  
J
I = I − I  
q
I
Q
Quiescent Current, I = I − I  
I
I
= 100 mA, T < 85°C  
40  
40  
60  
70  
4.0  
500  
90  
60  
30  
20  
mA  
mA  
q
I
Q
Q
Q
q
q
q
Q
J
Quiescent Current, I = I − I  
I
I
I
Q
I
Q
I
Q
I
Q
I
Q
= 100 mA  
q
I
Quiescent Current, I = I − I  
= 50 mA  
1.7  
250  
50  
mA  
mV  
mV  
mV  
mV  
mV  
dB  
q
I
Dropout Voltage (5.0 V Version)  
Load Regulation (5.0 V Version)  
Load Regulation (3.3 V Version)  
Line Regulation (5.0 V Version)  
Line Regulation (3.3 V Version)  
Power Supply Ripple Rejection  
V
DV  
DV  
= 100 mA, V = V − V (Note 4)  
DR I Q  
DR  
= 1.0 mA to 100 mA  
= 1.0 mA to 100 mA  
Q,LO  
Q,LO  
35  
DV  
DV = 6.0 V to 28 V, I = 1.0 mA  
5.0  
4.0  
68  
Q
I
Q
DV  
DV = 4.5 V to 28 V, I = 1.0 mA  
I Q  
Q
PSRR  
f = 100 Hz, V = 0.5 V  
r
r
PP  
ENABLE INPUT  
Enable Voltage, Output High  
V
V
V
V
V
w V  
QMIN  
3.5  
V
V
EN  
EN  
EN  
Q
Enable Voltage, Output Low (Off)  
v 0.1 V  
0.8  
8.0  
Q
Enable Input Current  
I
= 5.0 V  
4.0  
mA  
EN  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature*  
T
SD  
150  
200  
°C  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performancemay not be indicated by the Electrical Characteristics if operated under different conditions.  
*Guaranteed by design, not tested in production.  
4. Measured when the output voltage V has dropped 100 mV from the nominal value obtained at V = 13.5 V.  
Q
Output  
I
I
I
Q
I 1  
3 Q  
Input  
C
I1  
C
I2  
C
Q
1.0 mF  
100 nF  
3.3 mF  
NCV4266−2C  
EN  
R
L
2
4
I
EN  
GND  
Figure 2. Applications Circuit  
www.onsemi.com  
3
 
NCV4266−2C  
TYPICAL CHARACTERISTICS CURVES − 5 V Version  
100  
10  
1
5.10  
V = 13.5 V  
R = 1 kW  
L
I
Unstable Region  
5.05  
5.00  
Stable Region  
0.1  
4.95  
4.90  
C
Q
= 3.3 mF  
0.01  
0
25  
50  
75  
100  
125  
150  
−40  
0
40  
80  
120  
160  
I , OUTPUT CURRENT (mA)  
Q
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Stability with Output Capacitor ESR  
Figure 4. Output Voltage vs. Junction Temperature  
6
5
4
3
2
1.0  
0.6  
0.2  
−0.2  
R = 6.8 kW  
T = 25°C  
J
L
R = 33 W  
T = 25°C  
J
L
−0.6  
−1.0  
1
0
0
1
2
3
4
5
6
7
8
9
10  
−50 −40 −30 −20 −10  
0
10 20 30 40 50  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 5. Output Voltage vs. Input Voltage  
Figure 6. Input Current vs. Input Voltage  
450  
350  
300  
250  
200  
400  
350  
300  
250  
200  
150  
100  
T = 125°C  
J
T = 25°C  
J
150  
100  
50  
V
= 0 V  
Q
T = 25°C  
J
50  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
25  
50  
75  
100  
125  
150  
V , INPUT VOLTAGE (V)  
I
I , OUTPUT CURRENT (mA)  
Q
Figure 7. Maximum Output Current vs. Input  
Voltage  
Figure 8. Dropout Voltage vs. Output Current  
www.onsemi.com  
4
 
NCV4266−2C  
TYPICAL CHARACTERISTICS CURVES − 5 V Version  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.25  
V = 13.5 V  
T = 25°C  
J
V = 13.5 V  
T = 25°C  
J
I
I
0.20  
0.15  
0.10  
0.05  
0
0.5  
0
0
25  
50  
75  
100  
125  
150  
0
2
4
6
8
10 12 14 16 18 20  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 9. Quiescent Current vs. Output Current  
(High Load)  
Figure 10. Quiescent Current vs. Output  
Current (Low Load)  
6
5
4
3
2
1
0
T = 25°C  
R = 33 W  
L
J
0
5
10  
15  
20  
25  
30  
35  
40  
V , INPUT VOLTAGE (V)  
I
Figure 11. Quiescent Current vs. Input Voltage  
www.onsemi.com  
5
NCV4266−2C  
TYPICAL CHARACTERISTICS CURVES − 3.3 V Version  
3.36  
100  
10  
1
Unstable Region  
3.34  
3.32  
3.30  
Stable Region  
3.28  
3.26  
0.1  
V = 13.5 V  
R = 660 W  
L
I
C
Q
= 3.3 mF  
3.24  
−40  
0.01  
0
25  
50  
75  
100  
125  
150  
0
40  
80  
120  
160  
I , OUTPUT CURRENT (mA)  
Q
T , JUNCTION TEMPERATURE (°C)  
J
Figure 12. Output Stability with Output Capacitor  
ESR  
Figure 13. Output Voltage vs. Junction  
Temperature  
1.0  
0.6  
4
3
2
0.2  
−0.2  
R = 22 W  
T = 25°C  
J
1
0
L
R = 6.8 kW  
T = 25°C  
J
L
−0.6  
−1.0  
0
1
2
3
4
5
6
7
8
9
10  
−50 −40 −30 −20 −10  
0
10 20 30 40 50  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 15. Input Current vs. Input Voltage  
Figure 14. Output Voltage vs. Input Voltage  
5.5  
350  
300  
250  
200  
150  
100  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
T = 25°C  
V
= 0 V  
J
Q
50  
0
R = 22 W  
L
T = 25°C  
J
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 17. Quiescent Current vs. Input Voltage  
Figure 16. Maximum Output Current vs. Input  
Voltage  
www.onsemi.com  
6
NCV4266−2C  
TYPICAL CHARACTERISTICS CURVES − 3.3 V Version  
0.25  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
T = 25°C  
V = 13.5 V  
I
T = 25°C  
J
J
V = 13.5 V  
I
0.20  
0.15  
0.10  
0.05  
0
0.5  
0
0
25  
50  
75  
100  
125  
150  
0
2
4
6
8
10  
12  
14 16 18 20  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 18. Quiescent Current vs. Output Current  
(High Load)  
Figure 19. Quiescent Current vs. Output  
Current (Low Load)  
www.onsemi.com  
7
NCV4266−2C  
Circuit Description  
transient response and loop stability. The capacitor value  
and type should be based on cost, availability, size and  
temperature constraints. The aluminum electrolytic  
capacitor is the least expensive solution, but, if the circuit  
operates at low temperatures (−25°C to −40°C), both the  
value and ESR of the capacitor will vary considerably. The  
capacitor manufacturer’s data sheet usually provides this  
information.  
The NCV4266−2C is an integrated low dropout regulator  
that provides a regulated voltage at 150 mA to the output.  
It is enabled with an input to the enable pin. The regulator  
voltage is provided by a PNP pass transistor controlled by  
an error amplifier with a bandgap reference, which gives it  
the lowest possible dropout voltage. The output current  
capability is 150 mA, and the base drive quiescent current  
is controlled to prevent oversaturation when the input  
voltage is low or when the output is overloaded. The  
regulator is protected by both current limit and thermal  
shutdown. Thermal shutdown occurs above 150°C to  
protect the IC during overloads and extreme ambient  
temperatures.  
The value for the output capacitor C , shown in Figure 2,  
Q
should work for most applications; see also Figures 3 and  
12 for output stability at various load and Output Capacitor  
ESR conditions. Stable region of ESR in Figures 3 and 12  
shows ESR values at which the LDO output voltage does  
not have any permanent oscillations at any dynamic  
changes of output load current. Marginal ESR is the value  
at which the output voltage waving is fully damped during  
five periods after the load change and no oscillation is  
further observable.  
Regulator  
The error amplifier compares the reference voltage to a  
sample of the output voltage (V ) and drives the base of a  
Q
PNP series pass transistor via a buffer. The reference is a  
bandgap design to give it a temperature−stable output.  
Saturation control of the PNP is a function of the load  
current and input voltage. Oversaturation of the output  
power device is prevented, and quiescent current in the  
ground pin is minimized. See Figure 2, Test Circuit, for  
circuit element nomenclature illustration.  
ESR characteristics were measured with ceramic  
capacitors and additional series resistors to emulate ESR.  
Low duty cycle pulse load current technique has been used  
to maintain junction temperature close to ambient  
temperature.  
Enable Input  
The enable pin is used to turn the regulator on or off. By  
holding the pin down to a voltage less than 0.8 V, the output  
of the regulator will be turned off. When the voltage on the  
enable pin is greater than 3.5 V, the output of the regulator  
will be enabled to power its output to the regulated output  
voltage. The enable pin may be connected directly to the  
input pin to give constant enable to the output regulator.  
Regulator Stability Considerations  
The input capacitors (C and C ) are necessary to  
I1  
I2  
stabilize the input impedance to avoid voltage line  
influences. Using a resistor of approximately 1.0 W in  
series with C can stop potential oscillations caused by  
I2  
stray inductance and capacitance.  
The output capacitor helps determine three main  
characteristics of a linear regulator: startup delay, load  
www.onsemi.com  
8
NCV4266−2C  
Calculating Power Dissipation  
Heatsinks  
in a Single Output Linear Regulator  
The maximum power dissipation for a single output  
regulator (Figure 20) is:  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and  
the outside environment will have a thermal resistance.  
Like series electrical resistances, these resistances are  
P
+ [V  
I(max)  
* V  
]I  
D(max)  
Q(min) Q(max)  
(eq. 1)  
) V  
I
I(max) q  
summed to determine the value of R  
:
JA  
where  
q
(eq. 3)  
R
+ R  
qJC  
) R ) R  
qCS qSA  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
application,  
qJA  
I(max)  
Q(min)  
Q(max)  
where  
R
R
R
is the junction−to−case thermal resistance,  
is the case−to−heatsink thermal resistance,  
is the heatsink−to−ambient thermal  
resistance.  
JC  
q
q
q
CS  
SA  
I
is the quiescent current the regulator  
q
consumes at I  
.
Q(max)  
Once the value of P  
permissible value of R  
is known, the maximum  
D(max)  
R
JC  
q
appears in the package section of the data sheet.  
can be calculated:  
JA  
q
Like R , it too is a function of package type. R  
and  
JA  
CS  
q
q
o
T
150 C *  
A
(eq. 2)  
R
qJA  
+
R
are functions of the package type, heatsink and the  
interface between them. These values appear in data sheets  
of heatsink manufacturers.  
SA  
q
P
D
The value of R  
can then be compared with those in the  
JA  
q
package section of the data sheet. Those packages with  
less than the calculated value in Equation 2 will keep  
Thermal, mounting, and heatsinking considerations are  
discussed in the ON Semiconductor application note  
AN1040/D.  
R
JA  
q
the die temperature below 150°C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
I
Q
I
I
SMART  
REGULATOR®  
V
I
V
Q
Control  
Features  
}
Iq  
Figure 20. Single Output Regulator with Key  
Performance Parameters Labeled  
www.onsemi.com  
9
 
NCV4266−2C  
180  
160  
140  
120  
100  
1 oz  
2 oz  
80  
60  
40  
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 21. RqJA vs. Copper Spreader Area,  
SOT−223  
1000  
100  
10  
2
Cu Area 100 mm , 1 oz.  
1
0.1  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (sec)  
Figure 22. Single−Pulse Heating Curve, SOT−223  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV4266−2CST33T3G  
3.3 V  
SOT−223  
(Pb−Free)  
4000 / Tape & Reel  
NCV4266−2CST50T3G  
5.0 V  
SOT−223  
(Pb−Free)  
4000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
10  
NCV4266−2C  
PACKAGE DIMENSIONS  
SOT−223 (TO−261)  
CASE 318E−04  
ISSUE N  
D
b1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCH.  
MILLIMETERS  
INCHES  
NOM  
0.064  
0.002  
0.030  
0.121  
0.012  
0.256  
0.138  
0.091  
0.037  
−−−  
4
2
DIM  
A
A1  
b
b1  
c
D
E
e
e1  
L
MIN  
1.50  
0.02  
0.60  
2.90  
0.24  
6.30  
3.30  
2.20  
0.85  
0.20  
1.50  
6.70  
NOM  
1.63  
0.06  
0.75  
3.06  
0.29  
6.50  
3.50  
2.30  
0.94  
−−−  
1.75  
7.00  
MAX  
MIN  
MAX  
0.068  
0.004  
0.035  
0.126  
0.014  
0.263  
0.145  
0.094  
0.041  
−−−  
H
E
E
1.75  
0.10  
0.89  
3.20  
0.35  
6.70  
3.70  
2.40  
1.05  
−−−  
0.060  
0.001  
0.024  
0.115  
0.009  
0.249  
0.130  
0.087  
0.033  
0.008  
0.060  
0.264  
1
3
b
e1  
e
L1  
2.00  
7.30  
0.069  
0.276  
0.078  
0.287  
C
q
H
E
A
q
0.08 (0003)  
A1  
L
L1  
0°  
10°  
0°  
10°  
SOLDERING FOOTPRINT  
3.8  
0.15  
2.0  
0.079  
6.3  
0.248  
2.3  
0.091  
2.3  
0.091  
2.0  
0.079  
mm  
inches  
1.5  
0.059  
ǒ
Ǔ
SCALE 6:1  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent− Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product  
or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in  
SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must  
be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products  
are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products  
for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against  
all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended  
or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action  
Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCV4266−2C/D  

相关型号:

NCV4266-2C_17

Low-Dropout Voltage Regulator
ONSEMI

NCV4266ST33T3G

150 mA Low-Dropout Voltage Regulator with Enable
ONSEMI

NCV4266ST50T3G

150 mA Low-Dropout Voltage Regulator with Enable
ONSEMI

NCV4269

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269A

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD133R2G

Micropower 150 mA LDO Linear Regulator
ONSEMI

NCV4269AD150G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD150R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI