NCT7491_16 [ONSEMI]

Remote Thermal Monitor and Fan Controller;
NCT7491_16
型号: NCT7491_16
厂家: ONSEMI    ONSEMI
描述:

Remote Thermal Monitor and Fan Controller

文件: 总80页 (文件大小:791K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCT7491  
Remote Thermal Monitor  
and Fan Controller with  
PECI 3.0 Interface and  
SMBus Compatible Master  
www.onsemi.com  
The NCT7491 is a two−wire serially programmable hardware  
monitor. It can monitor 2 remote temperature zones and its own  
ambient temperature. A PECI 3.0 single wire interface allows the  
NCT7491 to monitor CPU temperatures. The NCT7491 also  
implements an SMBus compatible master, allowing it to read  
automatically from thermal sensors on the SMBus. The NCT7491 can  
automatically control the speed of 3 fans using PWM control, and  
monitor the speed of 4 fans. There are 4 analog inputs, used for  
measuring 12 V, 5 V, 2.5 V and Vccp channels. The NCT7491 supply  
QFN24  
MN SUFFIX  
CASE 485L  
QSOP24  
RQ SUFFIX  
CASE 492B  
voltage and PECI V  
voltage are also monitored. Each of the  
TT  
measured temperature, voltage and fan speed values are compared  
with programmable limits and if any channel is outside the  
programmed limit an interrupt is generated via the ALERT output pin.  
A THERM output is also available for fail−safe thermal control. Up to  
3 GPIO pins are available for digital control or signalling.  
MARKING DIAGRAMS  
NCT  
7491  
ALYWG  
G
Communication with the NCT7491 is accomplished via the  
(Top View)  
2
SMBus/I C interface which is compatible with industry standard  
protocols. The SMBus address is set by 2 address selection pins.  
The NCT7491 is available in a 24−lead QFN or QSOP package and  
operates over a supply range of 3.0 V to 3.6 V.  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
Features  
(Note: Microdot may be in either location)  
PECI 3.0 Master for CPU Monitoring  
SMBus Compatible Master  
On−chip Temperature Sensor  
NCT7491  
YYWWG  
A
2 Remote Sensor Channels  
Series Resistance Cancellation on Remote Sensors  
3 PWM Fan Control Outputs  
4 Tach Monitoring Input  
(Top View)  
(Bottom View)  
NCT7491 = Specific Device Code  
A
YY  
WW  
G
= Assembly Location  
= Year  
= Work Week  
PWM Automatic Fan Speed Control  
4 Analog Inputs for Voltage Monitoring  
Vdd Supply Voltage Monitoring  
= Pb−Free Package  
PECI V Voltage Monitoring  
TT  
Overtemperature Outputs  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 79 of this data sheet.  
Limit Comparison of Monitored Channels  
SMBus Address Selection Allows up to 3 Devices  
Meets SMBus 2.0 Electrical Specifications (fully SMBus 1.1  
compliant)  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
June, 2016 − Rev. 3  
NCT7491/D  
 
NCT7491  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
NCT7491 QSOP Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
NCT7491 QFN Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
QSOP & QFN Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Comparison of NCT7491 and ADT7490 QSOP pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Comparison between the NCT7491 and the ADT7490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical System Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SMBus Slave Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Analog Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Push Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PECI 3.0 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SMBus Compatible Master Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Automatic Fan Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Fan Override Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Fan Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
THERM Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
THERM Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SMBALERT Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Voltage Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
GPIO Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
VCCP Low Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
XNOR Tree Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Register Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
QSOP Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
QFN Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
www.onsemi.com  
2
NCT7491  
NCT7491 QSOP Pinout  
24  
23  
22  
21  
20  
PWM1/XTO  
1
2
3
4
5
6
7
8
9
SDA_S  
SCL_S  
GND  
Vccp  
+2.5Vin/THERM  
VDD  
SDA_M/GPIO1  
SCL_M/GPIO2  
PECI  
+12Vin  
+5Vin  
NCT7491  
TOP VIEW  
(Not to scale)  
19 GPIO3/THERM/SMBALERT  
18  
17  
16  
15  
14  
13  
D1+  
D1−  
VTT  
TACH3  
D2+  
D2−  
PWM2/SMBALERT 10  
TACH4/THERM/SMBALERT/  
ADDR SELECT  
TACH1  
TACH2  
11  
12  
PWM3/ADDREN  
NCT7491 QFN Pinout  
www.onsemi.com  
3
NCT7491  
Table 1. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
3.6 V  
Positive Supply Voltage (V  
)
CC  
Maximum Voltage on +12V Pin  
14 V  
IN  
Maximum Voltage on +5V Pin  
6.25 V  
IN  
Maximum Voltage on All Open−Drain Outputs (excluding PWM pins)  
Maximum Voltage on PWM Pins  
3.6 V  
+5.5 V  
Maximum Voltage on TACH Pins  
+5.5 V  
Voltage on Remaining Input or Output Pins  
Input Current at Any Pin  
−0.3 V to +4.2 V  
5 mA  
Package Input Current  
20 mA  
Maximum Junction Temperature (T  
Storage Temperature Range  
Lead Temperature, Soldering  
IR Reflow Peak Temperature  
Pb−Free Peak Temperature  
)
150°C  
J max  
−65°C to +150°C  
220°C  
260°C  
300°C  
Lead Temperature (Soldering, 10 sec)  
ESD Rating  
HBM  
2 kV  
FICDM  
0.5 kV  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
Specifications  
T
A
= T  
to T  
, V = V  
to V  
, unless  
operating down to V  
. Timing specifications are tested at  
MIN  
MAX  
CC  
MIN  
MAX  
MIN  
otherwise noted. All voltages are measured with respect to  
GND, unless otherwise specified. Typical voltages are at T  
logic levels of V = 0.8 V for a falling edge, and V = 2.0 V  
for a rising edge. SMBus timing specifications are  
guaranteed by design and are not production tested.  
IL IH  
A
= 25°C and represent a parametric norm. Logic inputs accept  
input high voltages up to V , even when the device is  
MAX  
Table 2. SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER SUPPLY  
Supply Voltage  
3.0  
3.3  
1.5  
3.6  
5
V
Supply Current, I  
mA  
Interface inactive, ADC active  
CC  
TEMP−TO−DIGITAL CONVERTER  
Local Sensor Accuracy  
0.5  
0.25  
0.5  
3.5  
3.5  
°C  
°C  
°C  
0°C T 85°C  
A
Local Sensor Resolution  
Remote Diode Sensor Accuracy  
0°C T 85°C  
A
−40°C T 125°C  
D
Remote Sensor Resolution  
0.25  
30  
°C  
mA  
mA  
mA  
mA  
W
Remote Sensor Source Current  
Low Level 1  
High Level 1  
Low Level 2  
High Level 2  
240  
37.5  
300  
Series Resistance Cancellation  
270  
www.onsemi.com  
4
 
NCT7491  
Table 2. SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ANALOG−TO−DIGITAL CONVERTER (INCLUDING MUX AND ATTENTUATORS)  
Total Unadjusted Error (TUE)  
2
1.5  
1
%
%
For 12 V channel  
For all other channels  
8 bits  
Differential Nonlinearity (DNL)  
Power Supply Sensitivity  
LSB  
%/V  
ms  
0.1  
11  
Conversion Time (Voltage Input)  
Averaging enabled, 16 samples per  
averaged reading.  
Conversion Time (Local Temperature)  
Conversion Time (Remote Temperature)  
Input Resistance  
38  
38  
ms  
ms  
Averaging enabled, 16 samples per  
averaged reading.  
Averaging enabled, 16 samples per  
averaged reading.  
224  
110  
kW  
kW  
For +12 V channel  
For all other channels  
FAN RPM−TO−DIGITAL CONVERTER  
Accuracy  
10  
14  
%
%
0°C T 85°C  
A
−40°C T 125°C  
A
Full−Scale Count  
65,535  
Nominal Input RPM  
109  
329  
RPM  
RPM  
RPM  
RPM  
Fan count = 0xBFFF  
Fan count = 0x3FFF  
Fan count = 0x0438  
Fan count = 0x021C  
5,000  
10,000  
OPEN−DRAIN DIGITAL OUTPUTS, PWM1 TO PWM3, XTO  
Current Sink, I  
8.0  
0.4  
20  
mA  
V
OL  
Output Low Voltage, V  
I = −8.0 mA  
OUT  
OL  
High Level Output Current, I  
0.1  
mA  
V = V  
OUT CC  
OH  
OPEN−DRAIN SERIAL DATA BUS OUTPUTS (SDA, SDA_M, SCL_M)  
Output Low Voltage, V  
0.4  
1.0  
V
I
= −4.0 mA  
OUT  
OL  
High Level Output Current, I  
0.1  
mA  
V = V  
OUT CC  
OH  
SMBus DIGITAL INPUTS (SCL, SDA, SDA_M)  
Input High Voltage, V  
2.0  
V
V
IH  
Input Low Voltage, V  
Hysteresis  
0.4  
IL  
500  
mV  
DIGITAL I/O (PECI PIN)  
Supply Voltage  
V
TT  
0.85  
1.26  
V
V
Input High Voltage, V  
0.55*V  
IH  
tt  
Input Low Voltage, V  
Hysteresis  
0.5*V  
V
IL  
tt  
0.1V  
−6  
V
Hysteresis between input switching levels  
Output High Voltage, V = 0.75*V  
tt  
High level output source current, I  
mA  
mA  
SOURCE  
OH  
tt  
Low level output sink current, I  
Signal noise immunity, V  
0.5  
1.0  
Output Low Voltage, V = 0.25*V  
SINK  
OL  
tt  
300  
mV  
Noise glitches from 10 − 100MHz  
Width up to 50ns  
noise  
p−p  
www.onsemi.com  
5
NCT7491  
Table 2. SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL INPUT LOGIC LEVELS (TACH INPUTS)  
Input High Voltage, V  
2.0  
V
V
V
V
IH  
5.5  
0.8  
Maximum input voltage  
Minimum input voltage  
Input Low Voltage, V  
IL  
−0.3  
Hysteresis  
0.5  
V
p−p  
DIGITAL INPUT LOGIC LEVELS (THERM)  
Input High Voltage, V  
0.75 x  
V
V
IH  
V
TT  
Input Low Voltage, V  
0.4  
IL  
DIGITAL INPUT CURRENT  
Input High Current, I  
1
1
mA  
mA  
pF  
V
= V  
IH  
IN CC  
Input Low Current, I  
V
= 0  
IL  
IN  
Input Capacitance, C  
5
IN  
SLAVE SERIAL BUS TIMING (See Figure 1)  
Clock Frequency, f  
10  
100  
50  
kHz  
ns  
ms  
SCLK  
Glitch Immunity, t  
SW  
Bus Free Time, t  
SCL Low Time, t  
4.7  
4.7  
4.0  
BUF  
ms  
LOW  
SCL High Time, t  
50  
ms  
HIGH  
SCL, SDA Rise Time, t  
1,000  
300  
ns  
ns  
ns  
ms  
r
SCL, SDA Fall Time, t  
f
Data Setup Time, t  
250  
15  
SU;DAT  
Detect Clock Low Timeout, t  
35  
Can be optionally disabled  
TIMEOUT  
MASTER SERIAL BUS TIMING  
Clock Frequency, f  
100  
kHz  
SCLK  
t
R
t
F
t
LOW  
t
HD; STA  
SCL  
SDA  
t
t
SU; STO  
SU; STA  
t
t
t
HIGH  
t
SU; DAT  
HD; STA  
HD; DAT  
t
P
BUF  
S
P
S
Figure 1. SMBus Timing Diagram for Slave Port and Master Port  
www.onsemi.com  
6
 
NCT7491  
Table 3. QSOP & QFN PACKAGE PIN ASSIGNMENTS  
QSOP  
QFN  
Pin No.  
Pin No.  
Pin Name  
Description  
2
1
22  
SDA_S  
SMBus/I C Slave Serial Bi−directional Data Input/Output. Open−drain pin; Re-  
quires a pull−up resistor.  
2
3
4
5
23  
24  
1
SCL_S  
GND  
Serial Clock Slave Input. Open−drain pin; Requires a pull−up resistor.  
Ground  
VDD  
Positive Supply Voltage  
2
SDA_M / GPIO1  
Open−drain pin; Requires a pull−up resistor.  
GPIO1 = General purpose I/O pin  
2
SDA_M = SMBus/I C Master Serial Bi−directional Data Input/Output.  
6
3
SCL_M / GPIO2  
Open−drain pin; Requires a pull−up resistor.  
GPIO2 = General purpose I/O pin  
SCL_M = Serial Clock Master Output.  
7
8
4
5
PECI  
VTT  
PECI input to report CPU Thermal Information. PECI voltage level is referenced  
to the VTT input.  
Voltage reference for PECI. This is the supply voltage for the PECI interface and  
must be present to communicate over the PECI interface.  
9
6
7
TACH3  
Fan tachometer input to measure Fan3  
10  
PWM2 / #SMBALERT  
PWM output to control Fan2. Can be configured as an SMBALERT output.  
Open−drain pin; Requires a pull−up resistor.  
11  
12  
13  
8
9
TACH1  
TACH2  
Fan tachometer input to measure Fan1  
Fan tachometer input to measure Fan2  
10  
PWM3 /  
PWM output to control Fan3. If pulled low on power−up the NCT7491 enters  
Address Select mode and the ADDRESS SELECT pin determines the slave  
address. Open−drain pin; Requires a pull−up resistor.  
#ADDREN  
14  
11  
TACH4/  
#THERM/  
Fan Tachometer Input to Measure Speed of Fan 4. May be reconfigured as a  
bidirectional THERM. Can be connected to thePROCHOT output of a processor,  
to time and monitor PROCHOT assertions. Can be used as an output to signal  
an overtemperature condition. The SMBALERT pin is used to signal out−of−limit  
comparisons of temperature, voltage, and fan speed. This is compatible with  
SMBus alert. Can also be used at device powerup to assign the SMBus ad-  
dress. If THERM or SMBALERT is enabled then a pull−up resistor is required.  
#SMBALERT/  
#ADDRESS SELECT  
15  
16  
17  
18  
19  
12  
13  
14  
15  
16  
D2−  
D2+  
D1−  
D1+  
Negative Connection for Remote Temperature Sensor 2.  
Positive Connection for Remote Temperature Sensor 2.  
Negative Connection for Remote Temperature Sensor 1.  
Positive Connection for Remote Temperature Sensor 1.  
GPIO3/  
#THERM/  
General−Purpose Open−Drain Digital Input/Output. Requires a pull−up resistor.  
Can be configured as a bidirectional THERM pin or as an SMBALERT pin.  
#SMBALERT  
20  
21  
22  
17  
18  
19  
+5Vin  
+12Vin  
Analog Input. 0 V to 5 V.  
Analog Input. 0 V to 12 V.  
+2.5V / #THERM  
Analog Input. 0 V to 2.5 V. May be reconfigured as a bidirectional THERM pin.  
Can be connected to the PROCHOT output of a processor, to time and monitor  
PROCHOT assertions. Can be used as an output to signal an overtemperature  
condition. In THERM mode it is an open−drain bidirectional pin and requires a  
pull up resistor.  
23  
24  
20  
21  
Vccp  
Analog input. Monitors CPU core voltage (to maximum 0f 3.0 V). This pin must  
be connected to the NCT7491 supply voltage if it is unused.  
PWM1 / XTO  
PWM output to control Fan 1. Open−drain pin; Requires a pull−up resistor. Also  
functions as the output for the XNOR tree test enable mode.  
www.onsemi.com  
7
NCT7491  
Table 4. COMPARISON OF NCT7491 AND ADT7490 QSOP PINOUTS  
QSOP Pin No.  
NCT7491  
SDA_S  
ADT7490  
SDA  
1
2
SCL_S  
SCL  
3
GND  
GND  
4
VDD  
VDD  
5
SDA_M / GPIO1  
SCL_M / GPIO2  
PECI  
GPIO1  
6
GPIO2  
7
PECI  
8
VTT  
VTT  
9
TACH3  
TACH3  
10  
11  
12  
13  
14  
PWM2 / #SMBALERT  
TACH1  
PWM2 / #SMBALERT  
TACH1  
TACH2  
TACH2  
PWM3 /#ADDREN  
PWM3 /#ADDREN  
TACH4/#THERM/#SMBALERT/  
#ADDRESS SELECT  
TACH4/#THERM/#SMBALERT/  
#ADDRESS SELECT  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
D2−  
D2−  
D2+  
D2+  
D1−  
D1−  
D1+  
GPIO3/#THERM/#SMBALERT  
+5Vin  
D1+  
IMON  
+5Vin  
+12Vin  
+12Vin  
+2.5V / #THERM  
Vccp  
+2.5V / #THERM  
Vccp  
PWM1 / XTO  
PWM1 / XTO  
Functional Comparison between the NCT7491 and the ADT7490  
NCT7491 supports PECI 3.0 commands.  
The NCT7491 register map is organized into two pages.  
0x00−0xFF (page 1) and 0x100−0x1FF (page 2)  
NCT7491 uses an SMBus Master port to read digital  
The NCT7491 supports PWM look−up table automatic  
fan control along with the Tmin/Trange control method  
used in the ADT7490  
temperatures.  
I  
voltage monitoring pin (pin 19) on the ADT7490  
is replaced with digital pin  
MON  
The NCT7491 allows temperatures to be written to the  
device from an external master. These values can be  
assigned for fan control and Limit/THERM assertion  
functions  
(SMBALERT/THERM/GPIO) on the NCT7491  
NCT7491 does not support Dynamic Tmin fan control.  
NCT7491 allows any combination of temperature  
sources to control any fan.  
PECI fan control can be implemented in relative or  
absolute modes. Absolute mode uses the Tjmax value  
read from the CPU plus the PECI temperature to  
determine the actual core temperature.  
The reference for voltage measurement has changed  
from 2.25 V on the ADT7490 to 2 V on the NCT7491.  
NCT7491 allows individual PWM responses to  
THERM events.  
NCT7491 THERM behaviour is more flexible,  
allowing stepped response to THERM events.  
REPLACE mode for PECI is not supported by the  
NCT7491  
www.onsemi.com  
8
NCT7491  
Functional Block Diagram  
Figure 2. Functional Block Diagram of NCT7491  
www.onsemi.com  
9
NCT7491  
Typical System Connections  
Figure 3. System Connection Diagram  
www.onsemi.com  
10  
NCT7491  
SMBus Slave Interface  
the data line high after the 10th clock rising edge to assert a  
stop condition. In read mode, the master device overrides the  
acknowledge bit by floating the data line high during the low  
period before the ninth clock pulse; this is known as No  
acknowledge. The master takes the data line low during the  
low period before the 10th clock rising edge, and then high  
afetr the 10th clock rising edge to assert a stop condition.  
In the NCT7491, write operations contain either one or  
two bytes, and read operations contain one byte. To write  
data to one of the device data registers or read data from it,  
the address pointer register must be set so that the correct  
data register is addressed. Then data can be written into that  
register or read from it. The first byte of a write operation  
always contains an address that is stored in the address  
pointer register. If data is to be written to the device, the write  
operation must contain a second data byte that is written to  
the register selected by the address pointer register.  
This write operation is shown in Figure 4. The device  
address is sent over the bus, and then R/W is set to 0. This  
is followed by two data bytes. The first data byte is the  
address of the internal data register to be written to, which  
is stored in the address pointer register. The second data byte  
is the data to be written to the internal data register.  
When reading data from a register, there are two  
possibilities:  
Control of the NCT7491 is carried out using the serial  
system management bus (SMBus). The NCT7491 is  
connected to this bus as a slave device, under the control of  
a master controller. The NCT7491 has a 7−bit serial bus  
address. When the device is powered up with the ADDREN  
pin high, the NCT7491 has a default SMBus address of  
0101110 or 0x2E. The read/write bit must be added to get the  
8−bit address.  
If more than one NCT7491 is to be used in a system, each  
additional NCT7491 is placed in address select mode by  
strapping ADDREN low on power−up. The logic state of the  
ADDRESS SELECT pin then determines the device’s  
SMBus address.  
The device address is latched on the first valid SMBus  
transaction, more precisely on the low−to−high transition at  
the beginning of the eighth SCL pulse, when the serial bus  
address byte matches the selected slave address. Any  
attempted changes in the address have no effect after this.  
SMBus Addressing Options  
Table 5. SETTING THE SMBUS ADDRESS  
ADDREN  
pin state  
ADDRESS SELECT  
pin state  
Address  
0
0
1
Low (10 kW to GND)  
High (10 kW pull−up)  
Don’t care  
0101100 (0x2C)  
0101101 (0x2D)  
0101110 (0x2E)  
If the NCT7491 address pointer register value is  
unknown or not the desired value, it must first be set to  
the correct value before data can be read from the  
desired data register. This is done by performing a write  
to the NCT7491 as before, but only the data byte  
containing the register address is sent because no data is  
written to the register. This is shown in Figure 5.  
A read operation is then performed consisting of the  
serial bus address, R/W bit set to 1, followed by the  
data byte read from the data register. This is shown in  
Figure 6.  
Data is sent over the serial bus in sequences of nine clock  
pulses: eight bits of data followed by an acknowledge bit  
from the slave device. Transitions on the data line must  
occur during the low period of the clock signal and remain  
stable during the high period, because a low−to−high  
transition when the clock is high may be interpreted as a stop  
signal. The number of data bytes that can be transmitted over  
the serial bus in a single read or write operation is limited  
only by what the master and slave devices can handle.  
When all data bytes have been read or written, stop  
conditions are established. In write mode, the master floats  
If the address pointer register is known to be already at  
the desired address, data can be read from the  
corresponding data register without first writing to the  
address pointer register, as shown in Figure 6.  
1
9
1
9
SCL  
D6  
D2  
SDA  
START BY  
0
1
0
1
1
1
0
D7  
D5  
D4  
D3  
D1  
D0  
R/W  
ACK. BY  
ADT7490  
ACK. BY  
ADT7490  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
ADDRESS POINTER REGISTER BYTE  
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
STOP BY  
MASTER  
ACK. BY  
ADT7490  
FRAME 3  
DATA BYTE  
Figure 4. Writing a Register Address to the Address Pointer Register, then Writing Data to the Selected Register  
www.onsemi.com  
11  
 
NCT7491  
1
0
9
1
9
SCL  
SDA  
D6  
D2  
1
0
1
1
1
0
D7  
D5  
D4  
D3  
D1  
R/W  
D0  
ACK. B Y  
ADT7490  
START B Y  
MASTER  
ACK. B Y  
ADT7490  
STOP BY  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
ADDRESS POINTER REGISTER BYTE  
Figure 5. Writing to the Address Pointer Register Only  
1
0
9
1
9
SCL  
D6  
D2  
1
0
1
1
1
0
D7  
D5  
D4  
D3  
D1  
R/W  
D0  
SDA  
START B Y  
ACK. B Y  
ADT7490  
NO ACK. B Y STOP BY  
MASTER MASTER  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
DATA BYTE FROM ADT7490  
Figure 6. Reading Data from a Previously Selected Register  
It is possible to read a data byte from a data register without  
first writing to the address pointer register if the address  
pointer register is already at the correct value. However, it  
is not possible to write data to a register without writing to  
the address pointer register because the first data byte of a  
write is always written to the address pointer register.  
In addition to supporting the send byte and receive byte  
protocols, the NCT7491 also supports the read byte protocol  
(see System Management Bus Specifications Rev. 2 for more  
information; this document is available from the SMBus  
organization).  
6. The master asserts a stop condition on SDA and  
the transaction ends.  
For the NCT7491, the send byte protocol is used to write  
a register address to RAM for a subsequent single−byte read  
from the same address. This operation is illustrated in Figure 7.  
1
2
3
4
5
6
SLAVE  
ADDRESS  
REGISTER  
ADDRESS  
S
W
A
A
P
Figure 7. Setting a Register Address for  
Subsequent Read  
If several read or write operations must be performed in  
succession, the master can send a repeat start condition  
instead of a stop condition to begin a new operation.  
If the master is required to read data from the register  
immediately after setting up the address, it can assert a repeat  
start condition immediately after the final ACK and carry  
out a single−byte read without asserting an intermediate stop  
condition.  
Write Operations  
The SMBus specification defines several protocols for  
different types of read and write operations. The ones used  
in the NCT7491 are discussed here. The following  
abbreviations are used in the diagrams:  
Write Byte  
In this operation, the master device sends a command byte  
and one data byte to the slave device, as follows:  
1. The master device asserts a start condition on SDA.  
2. The master sends the 7−bit slave address followed  
by the write bit (low).  
S – Start  
P – Stop  
R – Read  
/W – Write  
3. The addressed slave device asserts ACK on SDA.  
4. The master sends a command code.  
5. The slave asserts ACK on SDA.  
A – Acknowledge  
/A – No acknowledge  
The NCT7491 uses the following SMBus write protocols.  
6. The master sends a data byte.  
7. The slave asserts ACK on SDA.  
8. The master asserts a stop condition on SDA, and  
the transaction ends.  
Send Byte  
In this operation, the master device sends a single  
command byte to a slave device, as follows:  
1. The master device asserts a start condition on SDA.  
2. The master sends the 7−bit slave address followed  
by the write bit (low).  
The byte write operation is illustrated in Figure 8.  
1
2
3
4
5
6
7
8
SLAVE  
ADDRESS  
REGISTER  
ADDRESS  
S
W
A
A
DATA  
A
P
3. The addressed slave device asserts ACK on SDA.  
4. The master sends a command code.  
5. The slave asserts ACK on SDA.  
Figure 8. Single Byte Write to a Register  
www.onsemi.com  
12  
 
NCT7491  
Read Operations  
The NCT7491 uses the following SMBus read protocols.  
the bus is locked and releases the bus. This prevents the  
device from locking or holding the SMBus expecting data.  
Some SMBus controllers cannot work with the SMBus  
timeout feature, so it can be disabled.  
Register 0x11 <4> TODIS = 0, SMBus timeout enabled  
(default). <4> TODIS = 1, SMBus timeout disabled.  
Receive Byte  
This operation is useful when repeatedly reading a single  
register. The register address must be previously set up. In  
this operation, the master device receives a single byte from  
a slave device, as follows:  
Register Map Paging  
1. The master device asserts a start condition on SDA.  
2. The master sends the 7−bit slave address followed  
by the read bit (high).  
3. The addressed slave device asserts ACK on SDA.  
4. The master receives a data byte.  
5. The master asserts NO ACK on SDA.  
6. The master asserts a stop condition on SDA, and  
the transaction ends.  
The NCT7491 register map is organized into two pages:  
Page 1 contains register addresses 0x00 to 0xFF  
Page 2 contains register addresses 0x100 to 0x1FF  
The default page on power up is page 1, so any SMBus  
read/writes to the NCT7491 will be to addresses in the range  
0x00−0xFF.  
To access page 2 of the register map, bit 0 (RGMP) of  
register 0xFF must be set to 1. Any subsequent read/writes  
after that bit is set will be to addresses in the range 0x100 to  
0x1FF, e.g. reading from address 0x22 when RGMP is set  
will read from register 0x122. Bit 0 of register 0xFF is, in  
effect, the MSb of the address pointer. To return to page 1,  
bit 0 (RGMPCL) of register 0x1FF must be cleared to 0.  
All register read/writes referenced in this document refer  
to registers on SMBus Page 1 unless stated otherwise.  
In the NCT7491, the receive byte protocol is used to read  
a single byte of data from a register whose address has  
previously been set by a send byte or write byte operation.  
This operation is illustrated in Figure 9.  
1
2
3
4
5
6
SLAVE  
ADDRESS  
S
R
A
DATA  
A
P
Analog Temperature Measurement  
A simple method of measuring temperature is to exploit  
the negative temperature coefficient of a diode connected  
transistor, measuring the base emitter voltage (V ) of a  
transistor operated at constant current. However, this  
technique requires calibration to null the effect of the  
Figure 9. Single−Byte Read from a Register  
Alert Response Address  
Alert response address (ARA) is a feature of SMBus  
devices that allows an interrupting device to identify itself  
to the host when multiple devices exist on the same bus.  
The SMBALERT output can be used as either an interrupt  
output or an SMBALERT. One or more outputs can be  
connected to a common SMBALERT line connected to the  
master. If a device’s SMBALERT line goes low, the  
following events occur:  
BE  
absolute value of V , which varies from device to device.  
BE  
The technique used in the NCT7491 measures the change  
in V when the device operates at four different currents.  
BE  
Figure 10 shows the input signal conditioning used to  
measure the output of an external temperature sensor. This  
figure shows the external sensor as a substrate transistor, but  
it can equally be a discrete transistor. If a discrete transistor  
is used, the collector is not grounded but is linked to the base.  
To prevent ground noise interfering with the  
measurement, the more negative terminal of the sensor is not  
referenced to ground, but is biased above ground by an  
internal diode at the D− input. C1 may be added as a noise  
filter (a recommended maximum value of 1000 pF).  
However, a better option in noisy environments is to add a  
filter, as described in the Noise Filtering section.  
1. SMBALERT is pulled low.  
2. The master initiates a read operation and sends the  
alert response address (ARA = 0001 100). This is  
a general call address that must not be used as a  
specific device address.  
3. The device whose SMBALERT output is low  
responds to the alert response address, and the  
master reads its device address. The address of the  
device is now known and can be interrogated in  
the usual way.  
To measure DV , the operating current through the  
4. If more than one device’s SMBALERT output is low,  
the one with the lowest device address has priority  
in accordance with normal SMBus arbitration.  
5. Once the NCT7491 has responded to the alert  
response address, the master must read the status  
registers, and the SMBALERT is cleared only if  
the error condition is gone.  
BE  
sensor is switched among 4 currents, 2 x 2 related currents.  
As shown in Figure 10, N1 x I is a multiple of I and N2 x  
1
1
I is a multiple of I . The currents through the temperature  
2
2
diode are switched between I and N1 x I, giving DV ; and  
BE1  
then between I and N2 x I, giving DV . The temperature  
BE2  
is then calculated using the two DV measurements. This  
BE  
method cancels the effect of any series resistance on the  
temperature measurement.  
SMBus Timeout  
The NCT7491 includes an SMBus timeout feature. If  
there is no SMBus activity for 25 ms, the NCT7491 assumes  
www.onsemi.com  
13  
 
NCT7491  
Figure 10. Analog Temperature Measurement Method  
Series Resistance Cancellation  
ensures that the results read back from the two registers  
come from the same measurement.  
Parasitic resistance to the D+ and D− inputs to the  
NCT7491, seen in series with the remote diode, is caused by  
a variety of factors, including PCB track resistance and track  
length and internal resistance in the CPU. This series  
resistance appears as a temperature offset in the remote  
sensor’s temperature measurement. This error typically  
causes a 0.5 degree C offset per ohm of parasitic resistance  
in series with the remote diode.  
The NCT7491 automatically cancels the effect of this series  
resistance on the temperature reading, giving a more accurate  
result, without the need for user characterization of this  
resistance. The NCT7491 is designed to automatically cancel  
typically up to 270 W of resistance in series with the thermal  
diode. By using an advanced temperature measurement  
method, this process is transparent to the user. This feature  
permits resistances to be added to the sensor path to produce  
a filter, allowing the part to be used in noisy environments.  
Theoretically, the temperature sensor and ADC can  
measure temperatures from −64°C to +127.5°C with a  
resolution of +0.25°C. However, this exceeds the operating  
temperature range of the device, so local temperature  
measurements outside the NCT7491 operating temperature  
range are not possible.  
Remote1 result registers: 0x25 (MSB), 0x77 bits <3:2>  
(2 LSb)  
Local result registers: 0x26 (MSB), 0x77 bits <5:4>  
(2 LSb)  
Remote1 result registers: 0x27 (MSB), 0x77 bits <7:6>  
(2 LSb)  
Table 6. TWO’S COMPLEMENT FORMAT  
Temperature  
−64°C  
Digital Output (10−Bit)  
1100 0000 00  
1100 1001 00  
1101 1000 00  
1111 0110 00  
1111 1111 00  
Temperature Measurement Results  
−55°C  
The results of the Local, Remote 1 and Remote 2 temperature  
measurements are stored in the local (0x26), remote 1 (0x25)  
and remote 2 (0x27) temperature value registers in two’s  
complement format or Offset 64 format, depending on bit 0  
if register 0x7C (1= 2’s complement, 0 = Offset 64). These  
results are then compared with limits programmed into the  
local, remote 1 and remote 2 high and low limit registers.  
The high, low and THERM limits for the local, remote 1 and  
remote 2 channels must be in the same format as the  
temperature reading i.e. 2’s complement or Offset 64.  
All the temperature measurement data for each channel is  
stored in two registers, one for the MSB and one for the LSB.  
This gives the temperature measurement resolution of  
0.25°C. When reading the full external temperature value,  
read the LSB first. This causes the MSB to be locked (that  
is, the ADC does not write to it) until it is read. This feature  
−40°C  
−10°C  
−1°C  
−0.25°C  
0°C  
1111 1111 11  
0000 0000 00  
0000 1010 01  
0001 1001 00  
0111 1101 00  
0111 1111 10  
0111 1111 11  
10.25°C  
25°C  
125°C  
127.5°C  
Diode Fault – 127.75  
NOTE: Bold numbers denote the LSB bits from  
extended resolution register 0x77.  
www.onsemi.com  
14  
NCT7491  
Offset 64 Format  
Local Low Limit register: 0x50  
Local High Limit register: 0x51  
Remote2 Low Limit register: 0x52  
Remote2 High Limit register: 0x53  
In Offset 64 mode the range of values monitored is −64°C  
to 191.5°C (as opposed to −64°C to +127.5°C in 2’s  
complement mode). To read the temperature in this format  
the user must subtract 64 from the value returned from the  
temperature register. Offset 64 mode is enabled by setting bit  
0 if register 0x7C to zero.  
Offset Registers  
Offset errors can be introduced into the temperature  
measurements by clock noise or when the thermal diode is  
located away from the hot spot. To achieve the specified  
accuracy on this channel, these offsets must be removed.  
The offset value is stored as an 8−bit, twos complement  
value. The value in the offset register is added to, or  
subtracted from, the measured value of the relevant  
temperature. The offset register has a default value of 0°C  
and has no effect unless the user writes a different value to  
it. The resolution of the value in the offset register is  
determined by bit 1 of register 0x7C. If the bit is 0 then the  
resolution is 0.5°C. If the bit is 1 then the resolution is 1°C.  
Table 7. OFFSET64  
Register Code  
Temperature  
−64°C  
−32°C  
0°C  
0
32  
64  
100  
255  
36°C  
191°C  
Round Robin Temperature Measurement  
Remote1 Offset, register 0x70  
Local Offset, register 0x71  
Remote2 Offset, register 0x72  
The local and remote sensors are read in sequence in a  
continuous loop when monitoring is enabled (setting bit 0 of  
register 0x40). The user may decide which temperature  
channels are included in the monitoring loop using bits  
<2:0> in register 0x13.  
Push Registers  
Setting <0> of register 0x13 includes the local channel  
in the monitoring loop.  
Setting <1> of register 0x13 includes the remote1  
channel in the monitoring loop.  
The NCT7491 allows the user to program 4 temperatures  
into the device that can then be used for fan control and  
THERM/SMBALERT functions in the same way as other  
temperature sources. These temperatures can be written by  
the system SMBus master and should be programmed as 2’s  
complement values.  
Setting <2> of register 0x13 includes the remote2  
channel in the monitoring loop.  
Push0, register 0xC8  
Any channel not required in an application should be  
removed from the loop to reduce the overall monitoring  
time. Voltage channels may also be selected for the  
monitoring loop. See the Voltage Monitoring section for  
more information.  
Push1, register 0xC9  
Push2, register 0xCA  
Push3, register 0xCB  
Push Limit Registers  
There are high, low and THERM limits associated with the  
Push channels. The same limits are applied to all 4 channels.  
Push Low Limit register, 0xCF  
Push High limit register, 0xCE  
Push THERM Limit register, 0xD0  
Temperature Averaging  
The number of samples over which the temperature  
readings (and voltage readings) are averaged is set by bits  
<7:6> of register 0x40. The options are:  
4 samples per averaged reading, <7:6> = <00>  
8 samples per averaged reading, <7:6> = <01>  
16 samples per averaged reading, <7:6> = <10>  
32 samples per averaged reading, <7:6> = <11>  
Averaging can be disabled for temperature readings by  
setting bit <4> of register 0x73.  
Push Tmin/Trange Registers  
The Push channels also have associated Tmin/Trange  
values for Automatic Fan Control. The hysteresis applied at  
the Tmin value can also be programmed.  
Push Tmin, 0xCC  
Temperature Limits  
Push Trange, 0xCD bits <3:0>  
Push Hysteresis, 0xEB bits <3:0>  
Temperature limits can be set for each channel to detect an  
out of limit condition. These registers are programmed in the  
same format as the temperature reading, so if Offset64 mode  
is enabled then these registers must be programmed in that  
format, otherwise theay are programmed as 2’s  
complement.  
Remote1 Low Limit register: 0x4E  
Remote1 High Limit register: 0x4F  
PECI 3.0 Interface  
The PECI 3.0 interface reads thermal data from the up to  
4 CPUs located at PECI addresses between 0x30 and 0x37  
(the first 4 addresses populated are used), and from 1 or 2  
domains per CPU. The hottest reading from the domains for  
each CPU is stored in the PECI temperature registers. It can  
www.onsemi.com  
15  
NCT7491  
also write thermal data to the Package Configuration Space  
in the CPU. A PECI reading is a negative value, in degrees  
Celsius, which represents the offset from the thermal control  
also be set to indicate that at least one CPU was detected. If  
any processors are detected then the PECI monitoring loop  
will automatically start.  
circuit (T ) activation temperature. PECI information is  
The Vccp pin must be connected to an input voltage for the  
PECI interface to function correctly. If it is not connected to  
the CPU supply voltage then it should be connected to the  
NCT7491 supply voltage, Vcc. If the system processor does  
not support PECI 3.0 then the PECI monitoring loop will not  
automatically start. In that case the user can write to the  
PECI registers to manually configure the interface. The  
register descriptions are given below.  
CC  
returned as a 16−bit 2’s complement value from which the  
8−bit 2’s complement value is derived. See the Platform  
Environment Control Interface (PECI) Specification from  
Intel for more details on the PECI data format. The PECI  
temperature stored for each CPU is an averaged value; the  
averaging window is user programmable.  
The NCT7491 automatically detects the presence of a  
CPU at each of the supported addresses, and also detects the  
number of supported domains for each CPU. The presence  
of each CPU is indicated in the NCT7491 status registers.  
On power up, the PECI interface will become active when  
the voltage measured on VTT is above 0.5 V and the voltage  
on Vccp is above 0.5 V. The returned CPU temperature will  
determine the behavior of the fans on power−up.  
PECI Error Detection  
The PECI 3.0 protocol includes FCS (Frame Check  
Sequence) bytes to guarantee data integrity. If there is a  
mismatch between the data and the FCS then a status bit  
indicates the communication failure (COMM status bit,  
register 0x43 bit <2>). PECI 3.0 also supports processor  
specific error codes to indicate error conditions relating to  
the temperature sensor within the processor (DATA status  
bit, register 0x43 bit <1>). These codes are shown in  
Table 8:  
Thermal data that is collected by the NCT7491 (e.g. the  
DIMM temperatures) can be written to the CPU’s Package  
Configuration Space (PCS) over the PECI 3.0 interface.  
This data can be used by the CPU to modify memory  
operations based on the DIMM temperature.  
Table 8. DATA ERROR CODES  
There are associated high and low limits for each PECI  
reading that can be programmed. The limit values take the  
same format as the PECI reading. Therefore, the  
programmed limits are not absolute temperatures but a  
relative offset in degrees Celcius from the TCC activation  
temperature. An out−of−limit event is recorded as follows:  
DATA code bits  
<6:4>, 0x43  
DATA  
Error code  
Description  
<000>  
<001>  
0x8000  
0x8002  
General Sensor Error  
Temperature below  
operational range  
High Limit > comparison performed  
Low Limit comparison performed  
<010>  
0x8003  
Temperature above  
operational range  
An out−of−limit event is recorded in the associated status  
register and can be used to assert the SMBALERT pin.  
A generic PECI 3.0 interface command structure is also  
available to allow an external master to issue any PECI 3.0  
command in addition to the commands implemented by the  
NCT7491 monitoring loops.  
PECI Completion Code  
Each read or write operation to the CPU Package  
Configuration Space returns a completion code to indicate  
the success or failure of the operation. The completion codes  
supported are shown in Table 9:  
Table 9. COMPLETION CODES  
Completion  
PECI VTT Input  
The PECI V voltage is used as the reference voltage for  
TT  
Code  
the PECI interface. This voltage must be connected to the  
NCT7491 in order for the PECI interface to be operational.  
Description  
0x40  
0x80  
Command Passed, data is valid  
The PECI V input is also monitored by the NCT7491 and  
TT  
Command timed out. Processor cannot gener-  
ate required response in a timely fashion.  
Retry is appropriate.  
has associated high and low limits to allow out−of–limit  
detection on the V channel. The valid operational voltage  
TT  
range for PECI V is 0.85 V to 1.26 V.  
TT  
0x81  
Command timed out. Processor cannot alloc-  
ate resources for the request. Retry is appro-  
priate.  
PECI Startup Operation  
On power up of the NCT7491 the PECI V pin and the  
TT  
0x90  
0x91  
Unknown/Invalid/Illegal request  
Vccp pin are monitored. If the voltage on both of these pins  
rises above 0.5 V then the NCT7491 will wait 5 ms and then  
automatically scan the PECI port to check for the presence  
of PECI 3.0 enabled processors. For any processors that are  
detected the PECI address, the domain count, the Tcontrol  
value and the Tjmax value will be read and stored in the  
NCT7491. The CPU count bits will be set (bits <7:6> of  
register 0x88). The PDET bit (bit <0> 0f register 0x37) will  
PECI Control hardware, firmware or associ-  
ated logic error. The processor cannot process  
the request.  
The completion code status bit in the NCT7491 (register  
0x81 bit <0>) indicates the result of each read/write  
operation.  
www.onsemi.com  
16  
 
NCT7491  
PECI Registers  
PECI CPU Addresses:  
The registers relating to the operation of the PECI 3.0  
interface are as follows:  
PECI0 CPU Address, 0x00  
PECI1 CPU Address, 0x01  
PECI2 CPU Address, 0x02  
Enabling the Interface:  
PECI Monitor, 0x40 bit 4  
PECI3 CPU Address, 0x03  
Setting PECI Monitor to 1 enables the PECI temperature  
monitoring loop. This will be automatically enabled on  
These are the addresses used to access each CPU on the  
PECI interface and are automatically populated by the  
NCT7491 on power up. The values can be overwritten by the  
user.  
power up if the V and V  
voltages have exceeded preset  
TT  
CCP  
thresholds and any PECI 3.0 enabled processors have been  
automatically detected.  
PECI Temperature Values:  
PECI0 Temperature, 0x33  
PECI1 Temperature, 0x1A  
PECI2 Temperature, 0x1B  
NOTE: The PDET bit (bit <0> 0x37) must also be set  
for correct operation.  
Detected number of CPUs:  
CPU Count, 0x88 bits <7:6>  
PDET, 0x37 <0>  
PECI3 Temperature, 0x1C  
These are the relative temperature values returned by the  
CPU. If a CPU is not populated then its associated  
temperature register can be written to by an external master.  
Data is tored in 2’s complement format.  
CPU Count indicates the number of populated CPUs.  
CPUs are automatically detected on power up by the  
NCT7491 and the number found is set here. The number can  
be overwritten by the user and sets the number of CPUs to  
be included in the temperature monitoring loop. The number  
of CPUs is 1 to 4, and the format is as shown in Table 10.  
PDET is set if at least one PECI enabled processor is  
detected. If it is not automatically set then it must be set by  
the user.  
PECI Absolute Temperature Values:  
PECI0_Abs Temperature, 0x04  
PECI1_Abs Temperature, 0x05  
PECI2_Abs Temperature, 0x06  
PECI3_Abs Temperature, 0x07  
These are the absolute CPU temperature values. They are  
automatically calculated by the NCT7491 from the relative  
Table 10. CPU COUNT  
0x88 <7:6>  
<00>  
CPU Count  
temperature and the CPU T  
value. See the PECI  
JMAX  
1
2
3
4
T
JMAX  
Values section. Data is stored in unsigned format.  
<01>  
Absolute PECI mode  
<10>  
The user can enable Absolute PECI mode by setting bit 2  
of register 0x73 (ABS/REL) which will use the value stored  
in the PECI absolute temperature registers for fan control,  
THERM behaviour and SMBALERT behaviour rather than  
the relative PECI values.  
<11>  
Domain Count bits:  
DOM0, 0x36 bit 3  
DOM1, 0x88 bit 5  
DOM2, 0x88 bit 4  
DOM3, 0x88 bit 3  
PECI Averaging  
The number of samples over which the PECI master will  
calculate an averaged temperature reading for each CPU can  
be set in register 0x36, bits <2:0>:  
<000> = No averaging  
<001> = Averaged over 2 samples  
<010> = Averaged over 4 samples  
<011> = Averaged over 8 samples  
<100> to <111> are reserved  
These bits indicate the number of supported domains per  
CPU (0 = 1 domain, 1 = 2 domains). THE NCT7491  
automatically detects these values on power up and sets the  
appropriate bits. They can be overwritten by the user.  
PECI Interval:  
PECI Update Rate, 0x37 bits <5:4>  
This determines the rate at which the PECI temperature  
registers are updated.  
PECI Offsets:  
PECI0 Offset, 0x94  
PECI1 Offset, 0x95  
PECI2 Offset, 0x96  
Table 11. UPDATE RATE  
0x37 <5:4>  
<00>  
PECI Update Rate  
1/sec  
PECI3 Offset, 0x97  
Offset values can be assigned to each temperature channel  
by programming these registers. The value programmed  
should be in 2’s complement format. The resolution is 1°C.  
<01>  
2/sec  
<10>  
5/sec  
<11>  
10/sec  
www.onsemi.com  
17  
 
NCT7491  
PECI Limits:  
The user can choose to use the relative or absolute PECI  
temperature values for fan control. If Absolute PECI mode  
is used then the maximum valid Tmin value is 175°C.  
For full details on the Fan Control implementation see the  
‘Fan Control’ section of this document  
PECI Low Limit, 0x34  
PECI High Limit, 0x35  
These registers are used to set the allowable PECI  
temperature range. If the temperature is above the high limit  
or below the low limit then a status bit is set and pins  
configured as SMBALERT will assert. The high and low  
limit values are common to all PECI channels. The format  
depends on whether Absolute PECI mode is enabled. If it is  
then the limits are in unsigned format. If Absolute PECI  
mode is not enabled then the format is 2’s complement.  
PECI Status Bits:  
PECI0 limit error, 0x43 bit 0  
PECI1 limit error, 0x81 bit 3  
PECI2 limit error, 0x81 bit 4  
PECI3 limit error, 0x81 bit 5  
DATA error, 0x43 bit 1  
COMM error, 0x43 bit 2  
DATA type, 0x43 bits <6:4>  
PECI completion code, 0x81 bit 0  
PECI T  
Values:  
CONTROL  
PECI0 T  
PECI1 T  
PECI2 T  
PECI3 T  
, 0x3D  
CONTROL  
CONTROL  
CONTROL  
CONTROL  
, 0x08  
, 0x09  
, 0x0A  
PECI0 T  
PECI1 T  
PECI2 T  
PECI3 T  
exceeded, 0x89 bit 0  
exceeded, 0x89 bit 1  
exceeded, 0x89 bit 2  
exceeded, 0x89 bit 3  
CONTROL  
CONTROL  
CONTROL  
CONTROL  
These values set the fail−safe fan assertion temperature.  
The response of the fans is determined by the THERM  
configuration registers and is described in the ‘THERM  
Assertion’ section of this document. These values can be  
read from the CPU via the PECI interface or programmed  
directly by the user.  
The Data Type field indicates the returned code if a DATA  
error is generated. Status bits in 0x43 and 0x81 can be  
masked by setting the corresponding mask bits in registers  
0x82 and 0x83.  
The format depends on whether Absolute PECI mode is  
enabled. If it is then the limit is in unsigned format. If  
Absolute PECI mode is not enabled then the format is 2’s  
complement.  
Generic PECI Command Block  
CPU Address, 0xD1  
Data Write Length, 0xD2  
Data Read Length, 0xD3  
PECI T  
Values:  
JMAX  
PECI0 T  
PECI1 T  
PECI2 T  
PECI3 T  
, 0x0B  
JMAX  
JMAX  
JMAX  
JMAX  
Data Write Buffer, 0xD4 to 0xE0  
Data Read Buffer, 0xE1 to 0xE9  
, 0x0C  
, 0x0D  
, 0x0E  
Generic PECI Configuration, 0xEA  
These registers define the generic PECI interface. An  
external master can populate these registers in order to  
execute any supported PECI 3.0 commands.  
Each CPU has a maximum junction temperature T  
.
JMAX  
These values for the populated CPUs are read via the PECI  
3.0 interface by the NCT7491. They can also be  
over−written by the user. They are used to determine the  
absolute PECI temperature. These values are stored as  
unsigned data.  
The byte definitions for this block are as follows:  
CPU Address sets the target address of the PECI client that  
is to be accessed.  
PECI Fan Control:  
PECI Tmin, 0x3B  
Data Write Length sets the number of bytes to be  
transferred to the PECI client. This byte should include the  
AW FCS byte in its count. The AW FCS byte is  
automatically calculated and appended by the NCT7491.  
PECI Trange, 0x3C bits <7:4>  
PWM1 Source1, 0x8A bits <6:3>  
PWM2 Source1, 0x8D bits <6:3>  
Data Read Length sets the number of bytes to be returned  
from the PECI client.  
PWM3 Source1, 0x90 bits <6:3>  
Data Write Buffer is a 13 byte buffer that holds the data to  
be transferred to the client. The first byte of this buffer is the  
command code that defines the command to be executed.  
Tmin sets the turn−on temperature for any fan that is  
controlled by a PECI temperature.  
Trange sets the range over which the PWM output will  
increase from PWMmin to PWMmax.  
Data Read Buffer is a 9 byte buffer that will hold the data  
returned from the client.  
The PECI Tmin and PECI Trange values are common to  
all PECI channels.  
The PWMX Source registers are used to assign  
temperature control to a fan. The PECI assignment is done  
with bits <6:3> in those registers.  
www.onsemi.com  
18  
NCT7491  
The PECI Configuration 5 register (address 0xEA)  
functions. Enabling the SMBus master port overrides any  
GPIO1/GPIO2 configuration settings.  
enables the generic block and allows the command to be  
executed. The configuration bits are:  
AW, bit 1  
SMBus Compatible Master Registers  
The registers relating to the control of the SMBus  
compatible master interface are as follows:  
PEX, bit 2  
Setting AW to 1 indicates that the transfer is an Assured  
Write transaction.  
Enabling the SMBus Master port:  
SMBus Master Enable, 0xB5 bit 0  
Setting PEX to 1 causes the NCT7491 to execute the  
command that has been set up in the generic command  
block. This bit will automatically clear when the transaction  
has completed.  
If a communication error occurs when a Generic PECI  
command is sent then the GCOMM status bit is set. This bit  
can be masked.  
Setting this bit configures pins 5 and 6 on the QSOP  
package, or pins 2 and 3 on the QFN package as the SMBus  
Master Port. It also enables the Thermal slave temperature  
monitoring loop which will gather data from the devices  
configured in the SMBus Master Addressing table.  
When this bit is 0 and pins 5 and 6 on the QSOP package,  
or pins 2 and 3 on the QFN package are not configured as  
GPIOs then the SMBus slave port is internally connected to  
the SMBus master port. This allows the master connected to  
the NCT7491 to communicate directly with devices that are  
on the NCT7491 master port.  
GCOMM, register 0x81 <2>  
GCOMM mask, register 0x83 <2>  
SMBus Compatible Master Port  
Thermal data is gathered from temperature monitoring  
devices attached to the SMBus Master port on the NCT7491.  
This port is used to automatically read temperature data  
from DIMM sensors, the PCH chipset sensor, graphics  
thermal sensors, or any thermal sensor with an SMBus  
interface. Up to 8 thermal slave devices are supported on the  
SMBus master port. The SMBus slave address for each  
device is user programmable. The register address of the  
thermal data within the slave device is also user  
programmable. This is assumed to be a 1−byte address so  
devices with a register address range of 0x00 to 0xFF are  
suitable. Each slave device has associated programmable  
configuration bits to indicate the protocol required to  
communicate over the SMBus and the temperature data  
format returned by the slave device. Status bits will indicate  
if any checksum errors arise from communicating with the  
slave devices.  
The NCT7491 can be connected to the SMLINK1 port of  
the PCH to allow the PCH thermal data to be read. Data is  
automatically read from the PCH using the SMBus Block  
Read protocol. The device can be configured to read the  
DIMM temperature registers from the PCH.  
The SMBus master and slave ports on the NCT7491 can  
be connected together if required.  
Temperature readings returned from the thermal devices  
on the SMBus master port are available for use in the  
Automatic Fan Control algorithm.  
Temperature Addressing Table:  
Device0 Address, 0x98  
Device0 Pointer, 0x99  
Device1 Address, 0x9A  
Device1 Pointer, 0x9B  
Device2 Address, 0x9C  
Device2 Pointer, 0x9D  
Device3 Address, 0x9E  
Device3 Pointer, 0x9F  
Device4 Address, 0xA0  
Device4 Pointer, 0xA1  
Device5 Address, 0xA2  
Device5 Pointer, 0xA3  
Device6 Address, 0xA4  
Device6 Pointer, 0xA5  
Device7 Address, 0xA6  
Device7 Pointer, 0xA7  
The DeviceX Address register sets the 7−bit (R/W bit not  
included) SMBus address of the thermal sensor.  
The DeviceX Pointer register sets the register address of  
the temperature data in the thermal slave device.  
Device0 can be used for SMBus Block Read commands.  
In that case the block read command code should be written  
to the Device0 Pointer register. If the NCT7491 Master port  
is connected to the SMLINK1 port of the Intel PCH then the  
PCH temperature (and possibly the DIMM temperatures)  
can be read from this port. In that case Device0 should be  
reserved for the PCH temperature and Device1 to Device 4  
reserved for DIMM0 to DIMM3.  
The SMBus thermal devices have associated high and low  
temperature limit registers to allow out−of−limit conditions  
to be detected. If the SMBus Master interface is disabled  
then the SMBus master is internally connected to the slave  
interface, if the pins have not been assigned to GPIO  
www.onsemi.com  
19  
NCT7491  
The NCT7491 will not attempt to read from a device that  
has a Device Address byte that is set to 0.  
Table 15. Device3 FORMATS  
0xB2 <7:6>  
Format  
Temperature Values:  
00  
2’s Complement  
Device0 (PCH), 0xA8  
Device1 (DIMM0), 0xA9  
Device2 (DIMM1), 0xAA  
Device3 (DIMM2), 0xAB  
Device4 (DIMM3), 0xAC  
Device5, 0xAD  
01  
10  
11  
JEDEC SPD standard  
Unsigned binary  
reserved  
Table 16. Device4 FORMATS  
0xB3 <1:0>  
Format  
Device6, 0xAE  
00  
2’s Complement  
Device7, 0xAF  
01  
10  
11  
JEDEC SPD standard  
Unsigned binary  
reserved  
The results of the readings from each of the thermal slave  
devices are stored here.  
Thermal Slave Data Formats  
It is necessary for the NCT7491 to be configured so that  
the data format for each SMBus client device is known, e.g.  
if the data is 2’s Complement or unsigned data, or if a JEDEC  
standard SPD device is used so that the data can be correctly  
read from the device. Each SMBus device has a bit field to  
determine the data format for that device. The format  
selected for the device determines its behaviour for  
out−of−limit comparisons, THERM assertions and fan  
control operation. For Device0, if the format is set to PCH  
Block Read then the resulting data is stored as unsigned  
binary. The VR12 literal mode can be selected to allow  
temperature or power data be read from a VR12 controller  
via the PMBus.  
Table 17. Device5 FORMATS  
0xB3 <3:2>  
Format  
00  
2’s Complement  
01  
10  
11  
JEDEC SPD standard  
Unsigned binary  
VR12 Literal  
Table 18. Device6 FORMATS  
0xB3 <5:4>  
Format  
00  
2’s Complement  
01  
10  
11  
JEDEC SPD standard  
Unsigned binary  
VR12 Literal  
Table 12. Device0 FORMATS  
0xB2 <1:0>  
Format  
00  
01  
10  
11  
2’s Complement  
JEDEC SPD standard  
Unsigned binary  
PCH block reads  
Table 19. Device7 FORMATS  
0xB3 <7:6>  
Format  
00  
2’s Complement  
01  
10  
11  
JEDEC SPD standard  
Unsigned binary  
VR12 Literal  
Table 13. Device1 FORMATS  
0xB2 <3:2>  
Format  
00  
2’s Complement  
SMBus Master Update Rate  
The interval between successive reads from an SMBus  
client device is determined by register 0xC7 bits <7:6>:  
01  
10  
11  
JEDEC SPD standard  
Unsigned binary  
reserved  
Table 20. SMBus UPDATE  
0xC7 bits <7:6>  
SMBus Update Rate  
250 ms  
Table 14. Device2 FORMATS  
00  
01  
10  
11  
0xB2 <5:4>  
Format  
500 ms  
00  
2’s Complement  
750 ms  
01  
10  
11  
JEDEC SPD standard  
Unsigned binary  
reserved  
1 sec  
Thermal Slave Limits:  
SMB Slave High Limit, 0xC1  
SMB Slave Low Limit, 0xC2  
www.onsemi.com  
20  
NCT7491  
These registers are used to set the allowable Thermal slave  
If 0xB5 <5> is 1 then registers 0xA9 and 0xAA are  
overwritten by the Remote1 temperature reading.  
If 0xB5 <6> is 1 then registers 0xAB and 0xAC are  
overwritten by the Remote2 temperature reading.  
If bit 7 of 0xB5 (DIMM from PCH) is set then bits 5 and  
6 have no effect.  
temperature range. If the temperature is above the high limit  
or below the low limit then a status bit is set and pins  
configured as SMBALERT will assert. The high and low  
limit values are common to all SMBus Thermal slave  
readings. The low limit is programmed as a 2’s Complement  
value. The high limit is programmed as an unsigned value.  
The difference between the two formats is necessary to cover  
the alternate formats available for the SMBus slave devices.  
Writing DIMM temperatures to the CPUs  
The DIMM temperatures collected from SPD devices,  
from the PCH or from the analog thermal sensors can be  
automatically written to the CPU via PECI. To enable this  
function set the PWEN bit, register 0x37 <7>. The  
temperatures written will be the maximum DIMM  
temperature for each CPU.  
Thermal Slave THERM Value:  
SMBus THERM Limit, 0xC3  
This value sets the fail−safe THERM assertion  
temperature. The response of the fans is determined by the  
THERM configuration registers and is described in the  
‘THERM Assertion’ section of this document. This value is  
programmed as an 8−bit unsigned value.  
DIMM CPU assignments:  
DIMM0 CPU, 0x0F bits <1:0>  
DIMM1 CPU, 0x0F bits <3:2>  
DIMM2 CPU, 0x0F bits <5:4>  
Thermal Slave Fan Control:  
SMB Device Tmin, 0xC6  
SMB Device Trange, 0xC7 bits <3:0>  
PWM1 Source2, 0x8B  
PWM2 Source2, 0x8E  
PWM3 Source2, 0x91  
DIMM3 CPU, 0x0F bits <7:6>  
These bits set the CPU associated with each DIMM. This  
information is necessary in order for the PECI loop to  
program the maximum DIMM temperature for each CPU.  
Selecting DIMMs To Be Written  
Tmin sets the turn−on temperature for any fan that is  
controlled by a Thermal slave device. Trange sets the  
temperature range over which the PWM output will increase  
from PWMmin to PWMmax. The Tmin and Trange values  
apply to all Thermal slave devices. SMB Tmin is  
programmed as an 8−bit unsigned value. The maximum  
valid SMBus Tmin value is 175°C.  
The PWMX Source registers are used to assign  
temperature control to a fan.  
For full details on the Fan Control implementation see the  
‘Fan Control’ section of this document.  
Each DIMM register can be enabled to be written to the  
CPU individually. This is done in register 0x87 bits <7:4>.  
If a DIMM is not populated then the corresponding bit in this  
register should be set to zero:  
Setting 0x87 bit <4> to 1 includes DIMM0 in the PECI write  
Setting 0x87 bit <5> to 1 includes DIMM1 in the PECI write  
Setting 0x87 bit <6> to 1 includes DIMM2 in the PECI write  
Setting 0x87 bit <7> to 1 includes DIMM3 in the PECI write  
SMBus Thermal Slave Error Response  
How the NCT7491 responds to errors on the SMBus  
master port can be configured in the following ways:  
SMBus Master Communication Settings  
Repeated Start Enable, 0xB0 bits <7:0>  
SMBus Retry Interval, 0x10 bits <4:3>  
PWM1 Response, 0x11 bit 5  
PWM2 Response, 0x11 bit 6  
PWM3 Response, 0x11 bit 7  
PEC Supported, 0xB1 bits <7:0>  
The Repeated Start bits enable/disable the repeated start  
protocol for each device.  
The PEC Supported bits can be set if an SMBus client  
device supports CRC−8 PEC. If this bit is set for a client  
device then the NCT7491 will read the PEC byte after the  
data and set the corresponding bit in the PEC status register  
(0xB7) if the PEC byte is incorrect.  
SMBus Retry Interval: If an error is encountered when  
communicating with a Thermal slave device then the  
NCT7491 will attempt to carry out the command up to 3  
times. These bits set the interval between the retry attempts.  
Table 21. SMBUS ERROR RETRY TIMES  
DIMM Temperatures from PCH  
0x10 bits <4:3>  
SMBus Retry Interval  
Read DIMM from PCH, 0xB5 bit 7  
If this bit is set to 1 then the SMBus master port will read  
the DIMM registers from the SMLINK1 port of the PCH and  
store the results in registers 0xA9 to 0xAC. If it is 0 then it  
will read DIMM temperatures from SMBus slave devices.  
00  
01  
10  
11  
1 ms  
2 ms  
4 ms  
8 ms  
DIMM Temperatures from Remote Sensors  
DIMM 0/1 from Remote1, 0xB5 bit 5  
DIMM 2/3 from Remote2, 0xB5 bit 6  
If the device fails 3 consecutive read attempts then the  
PWMx Response bits determine the fan behaviour.  
www.onsemi.com  
21  
NCT7491  
will be calculated for each temperature and the highest  
If bit 5 of 0x11 is 1 then PWM1 will go to 100% duty  
or Max duty. If bit 5 is 0 then the error is ignored.  
If bit 6 of 0x11 is 1 then PWM2 will go to 100% duty  
or Max duty. If bit 6 is 0 then the error is ignored.  
calculated PWM value will be output. If no temperature  
sources are selected then the associated PWM channel  
defaults to manual mode.  
Registers for assigning zones to PWM1:  
If bit 7 of 0x11 is 1 then PWM3 will go to 100% duty  
Local/Remote1/Remote2 Control, 0x8A bits <2:0>  
PECI Control, 0x8A, bits <6:3>  
SMBus Thermal Slave Control, 0x8B bits <7:0>  
Push Temperature Control, 0x8C bits <3:0>  
or Max duty. If bit 7 is 0 then the error is ignored.  
Whether the PWM outputs go to 100% or Max duty is  
determined by bits <4:2> of register 0x16. See the THERM  
ASSERTION section of this document for more details.  
Registers for assigning zones to PWM2:  
SMBus Master Status Registers  
Local/Remote1/Remote2 Control, 0x8D bits <2:0>  
PECI Control, 0x8D, bits <6:3>  
Bad Block read byte count, 0x81 bit 6  
NACK bits, 0xB6 bits <7:0>  
SMBus Thermal Slave Control, 0x8E bits <7:0>  
PEC error bits, 0xB7 bits <7:0>  
Push Temperature Control, 0x8F bits <3:0>  
Registers for assigning zones to PWM3:  
Local/Remote1/Remote2 Control, 0x90 bits <2:0>  
PECI Control, 0x90, bits <6:3>  
SMBus Thermal Slave Control, 0x91 bits <7:0>  
Push Temperature Control, 0x92 bits <3:0>  
For example if the user wants to control PWM1 from the  
hottest of the CPU temperature, PCH temperature and the  
Remote1 sensor then the Control Source registers would be  
programmed as:  
SMBus Timeout bits, 0xB8 bits <7:0>  
High/Low Limit exceeded bits, 0xB9 bits <7:0>  
PCH Data Invalid, 0xBA bits <4:0>  
THERM Limit exceeded, 0xBB bits <7:0>  
Bad Block Read Count will assert if the byte count returned  
by the block read command is insufficient to read the  
required temperatures.  
NACK bits will assert if a device does not acknowledge its  
SMBus address.  
PEC error bits will assert if the PEC byte is incorrect.  
SMBus Timeout bits will assert if the bus is locked.  
0x8A <3> = 1  
0x8A <1> = 1  
0x8B <0> = 1  
(PECI0)  
(Remote1)  
High/Low Limit bits will assert if the temperature returned  
is at or below the programmed low limit value.  
(SMBus Device 0, PCH)  
PCH Data Invalid bits will assert if the PCH returns  
reserved temperature codes  
Tmin/Trange Automatic Fan Control  
The PWM channels can be put into Tmin/Trange in the  
following way:  
Setting bit <0> of register 0x10 to 0 puts PWM1 in  
Tmin/Trange mode  
Setting bit <1> of register 0x10 to 0 puts PWM2 in  
Tmin/Trange mode  
Setting bit <2> of register 0x10 to 0 puts PWM3 in  
Tmin/Trange mode  
THERM Limit bits will assert if the returned temperature  
is greater than the programmed THERM limit  
The status bits ((except THERM status) will hold their  
value until the registers are read through the SMBus slave  
port. Status bits (except THERM status) can be masked by  
setting the corresponding bits in registers 0xBB to 0xBF.  
THERM Limit status bits will automatically clear when the  
temperature is below the SMBus THERM limit, unless  
THERM hysteresis is enabled (setting bit 0 of register 0x11)  
in which case the temperature must drop below THERM  
limit − Hysteresis.  
100%  
PWMmax  
Automatic Fan Control  
There are two automatic fan control methods that can be  
selected in the NCT7491. Each PWM channel can be set to  
use the Tmin/Trange control method or to use an 8 point  
PWM Look−Up Table. In both cases one or more  
temperature channels can be assigned to control each PWM  
output.  
PWMmin  
Fan Off or  
PWMmin  
Assigning Temperature Zones for Automatic Fan Control  
These registers allow the temperature zone to be assigned  
to a PWM channel by setting the appropriate bit. Any  
combination of temperature zones can be assigned to control  
any fan. If more than one zone is selected then a PWM value  
THERM  
Tmin  
Trange  
Figure 11. PWM Control Curve in Tmin/Trange Mode  
www.onsemi.com  
22  
NCT7491  
The control loop behaviour in Tmin/Trange mode is  
PECI Tmin  
determined by the Tmin, PWMmin, Trange and PWMmax  
values. Tmin sets the temperature at which the fan turns on  
and PWMmin is the PWM value at Tmin. Trange sets the  
temperature range over which the PWM output increases  
from PWMmin to PWMmax. These settings set the slope of  
the curve. Each temperature source has its own associated  
Tmin/Trange values. The THERM limit associated with the  
temperature channel can override the fan control curve if a  
THERM event occurs.  
PECI Tmin values must be programmed in the same  
format selected for PECI fan control (selected by bit 2 of  
register 0x73). If relative mode is selected then Tmin is  
programmed in 2’s Complement format. If absolute mode is  
selected then Tmin is programmed as an unsigned value. If  
Absolute PECI mode is used then the maximum valid Tmin  
value is 175°C.  
Analog Sensor Tmin  
The Tmin value for the analog sensors (Remote1/  
Remote2/Local) must be written in the same format as the  
measurement registers, i.e. if they are in Offset 64 format  
then the Tmin value for these channels must also be written  
in Offset 64 format. If they are in 2’s Complement format  
then Tmin must be written in the range 0°C to 127°C.  
Minimum PWM values:  
PWM1 Minimum Duty, 0x64  
PWM2 Minimum Duty, 0x65  
PWM3 Minimum Duty, 0x66  
These set the lowest PWM at which the fan will run. One  
Lsb equals 0.39% duty cycle. Minimum PWM values only  
apply in Tmin/Trange mode.  
SMBus Tmin  
The SMBus Tmin value should be programmed as an  
unsigned 8−bit value in the range 0°C to 175°C.  
Push Tmin  
The Push register Tmin value should be programmed as  
a value in the range 0°C to 127°C.  
Tmin Hysteresis  
Hysteresis can be applied to the Tmin temperature to  
prevent the fan from turning on and off rapidly around Tmin.  
Each temperature has its own hysteresis value that can be  
applied. The range of possible values is 0°C to 15°C.  
Maximum PWM values:  
PWM1 Maximum Duty, 0x38  
PWM2 Maximum Duty, 0x39  
PWM3 Maximum Duty, 0x3A  
These set the maximum duty at which the fans will run.  
THERM assertions can be configured to over−ride this to  
allow the fans to go to 100% duty on a THERM event. See  
the THERM ASSERTION section for more details.  
PWM duty cycle registers:  
PWM1 Duty, 0x30  
PWM2 Duty, 0x31  
Table 22. HYSTERESIS REGISTERS  
Temperature  
Remote1  
Local  
Hystersis  
Register 0x6D <7:4>  
Register 0x6D <3:0>  
Register 0x6E <7:4>  
Register 0x6E <3:0>  
Register 0xB5 <4:1>  
Register 0xEB <3:0>  
PWM3 Duty, 0x32  
The current duty cycle calculated by the control loop can  
be read in these registers. If the PWM channel is not  
associated with a temperature zone then that channel’s duty  
cycle register will become writeable (manual mode).  
Remote2  
PECI  
SMBus slave  
Push registers  
Tmin/Trange values for all Temperature Sources:  
PECI Tmin. 0x3B  
PECI Trange, 0x3C bits <7:4>  
Remote1 Tmin, 0x67  
PWM Behaviour below Tmin:  
PWM1 on below Tmin, 0x62 bit 5  
PWM2 on below Tmin, 0x62 bit 6  
PWM3 on below Tmin, 0x62 bit 7  
Remote1 Trange, 0x5F bits <7:4>  
Local Tmin, 0x68  
Local Trange, 0x60 bits <7:4>  
Remote2 Tmin, 0x69  
Setting these bits to 1 will cause the associated PWM  
output to remain at the minimum PWM value rather than  
shut off when the control temperature is below its Tmin  
value minus hysteresis. This setting applies to both  
Tmin/Trange mode and to Look−Up Table mode.  
Remote2 Trange, 0x61 bits <7:4>  
SMBus slave Tmin, 0xC6  
SMBus slave Trange, 0xC7 bits <3:0>  
Push temperature Tmin, 0xCC  
Push temperature Trange, 0xCD bits <3:0>  
Trange Values  
The Trange values determine the temperature range over  
which the fan control curve will increase from the PWM  
minimum value to the PWM maximum value associated  
with the PWM output.  
www.onsemi.com  
23  
NCT7491  
The 4−bit Trange values that can be assigned for each  
Setting the PWM Frequency  
channel are shown in the following table:  
Each PWM output can be set to high frequency PWM  
mode or low frequency PWM mode. In high frequency  
mode the output will run at 22 kHz. In low frequency mode  
the frequency can be selected for each PWM output.  
Table 23. TRANGE OPTIONS  
Trange Bit Field  
0000  
Trange Value  
2°C  
2.5°C  
3.33°C  
4°C  
Setting bit <3> of register 0x5F to 1 enables high frequency  
for PWM1  
0001  
Setting bit <3> of register 0x60 to 1 enables high frequency  
for PWM2  
0010  
0011  
Setting bit <3> of register 0x61 to 1 enables high frequency  
for PWM3  
0100  
5°C  
0101  
6.67°C  
8°C  
If low frequency is enabled (if bit <3> in 0x5F, 0x60 or 0x61  
is 0) then the frequency is set as follows:  
0110  
0111  
10°C  
Table 25. LOW FREQUENCY PWM SELECTION  
1000  
13.33°C  
16°C  
0x5F, 0x60 or 0x61 bits <2:0>  
Frequency  
11.0 Hz  
14.7 Hz  
22.1 Hz  
29.4 Hz  
35.3 Hz  
44.1 Hz  
58.8 Hz  
88.2 Hz  
1001  
000  
001  
010  
011  
100  
101  
110  
111  
1010  
20°C  
1011  
26.67°C  
32°C  
1100  
1101  
40°C  
1110  
53.33°C  
80°C  
1111  
Enabling Enhanced Acoustics on the PWM Outputs:  
PWM1 Max Ramp Rate, 0x62 bits <2:0>  
PWM1 enable acoustics, 0x62 bit 3  
Look−Up Table Automatic Fan Control  
In this mode the selected PWM output is controlled by an  
8−point look−up table, where a temperature and PWM value  
is programmed for each point. Each channel has its own  
control table. Any combination of temperature sources can  
be assigned to control the PWM output. When more than one  
channel is assigned to control a PWM output in this mode the  
channel that is the hottest will control the output. The  
exception to this is if PECI relative temperatures are  
assigned to contol a channel. Since PECI relative values are  
always negative they cannot be combined with other  
channels, since the other channels would always dominate  
due to the fact that they are positive values. To allow PECI  
readings to be combined with other readings the user can set  
bit 2 of register 0x73 (ABS/REL). This will cause the  
absolute PECI readings to be used for fan control, rather than  
the relative readings.  
If relative PECI readings are assigned for fan control  
then the control temperature values for that PWM  
channel must be programmed in negative 2’s  
complement format (−128°C to 127°C).  
If any temperature source other than relative PECI is  
assigned for fan control (including absolute PECI  
readings) then the control temperatures for that PWM  
channel must be programmed in unsigned format (0°C  
to 255°C).  
PWM2 Max Ramp Rate, 0x63 bits <6:4>  
PWM2 enable acoustics, 0x63 bit 7  
PWM3 Max Ramp Rate, 0x63 bits <2:0>  
PWM3 enable acoustics, 0x63 bit 3  
These settings allow the user to limit the rate at which the  
PWM output changes whenever the fan control loop  
calculates a new value. As this prevents instant changes in  
PWM the acoustic response of the system is improved.  
These settings apply to both Tmin/Trange mode and to  
Look−Up Table mode.  
Table 24. ENHANCED ACOUSTICS TIMES  
Ramp Rate code  
Settling time  
31.75 sec  
15.7 sec  
10.5 sec  
6.33 sec  
4 sec  
000  
001  
010  
011  
100  
101  
110  
111  
2.66 sec  
1.28 sec  
0.75 sec  
www.onsemi.com  
24  
NCT7491  
PWM values are programmed in the range 0x00 to  
Setting bit <1> of register 0x10 to 1 puts PWM2 in  
0xFF. The resolution for this register is 1 lsb = 0.392%.  
The NCT7491 linearly interpolates between the  
programmed points. It is not necessary to program all 8  
points. If fewer than 8 points are required then the user  
should program from the lowest to the highest required  
control temperature and set the unused control temperatures  
to the maximum value (0x00 if relative PECI is assigned,  
0xFF if the PWM channel is controlled by any other  
temperature source).  
Look−up Table mode  
Setting bit <2> of register 0x10 to 1 puts PWM3 in  
Look−up Table mode  
The registers used for setting the control temperatures and  
PWMs for each channel are on page 2 of the register map.  
To access these registers the user must first set bit 0 of  
register 0xFF to 1. This will set the register page to page 2.  
When programming the table is complete the user should  
clear bit 0 of register 0xFF to zero to return to page 1 of the  
register map.  
Setting bit <0> of register 0x10 to 1 puts PWM1 in  
Look−up Table mode  
Table 26. PWM1 LOOK−UP TABLE VALUES  
PWM1 Control Points  
Temperature Address  
0x00 (0x100)  
PWM Address  
0x01 (0x101)  
0x03 (0x103)  
0x05 (0x105)  
0x07 (0x107)  
0x09 (0x109)  
0x0B (0x10B)  
0x0D (0x10D)  
0x0F (0x10F)  
PWM1 Control Point 1  
PWM1 Control Point 2  
PWM1 Control Point 3  
PWM1 Control Point 4  
PWM1 Control Point 5  
PWM1 Control Point 6  
PWM1 Control Point 7  
PWM1 Control Point 8  
0x02 (0x102)  
0x04 (0x104)  
0x06 (0x106)  
0x08 (0x108)  
0x0A (0x10A)  
0x0C (0x10C)  
0x0E (0x10E)  
Table 27. PWM2 LOOK−UP TABLE VALUES  
PWM2 Control Points  
Temperature Address  
0x10 (0x110)  
PWM Address  
0x11 (0x111)  
0x13 (0x113)  
0x15 (0x115)  
0x17 (0x117)  
0x19 (0x119)  
0x1B (0x11B)  
0x1D (0x11D)  
0x1F (0x11F)  
PWM2 Control Point 1  
PWM2 Control Point 2  
0x12 (0x112)  
PWM2 Control Point 3  
0x14 (0x114)  
PWM2 Control Point 4  
0x16 (0x116)  
PWM2 Control Point 5  
0x18 (0x118)  
PWM2 Control Point 6  
0x1A (0x11A)  
0x1C (0x11C)  
0x1E (0x11E)  
PWM2 Control Point 7  
PWM2 Control Point 8  
Table 28. PWM3 LOOK−UP TABLE VALUES  
PWM3 Control Points  
Temperature Address  
0x20 (0x120)  
0x22 (0x122)  
0x24 (0x124)  
0x26 (0x126)  
0x28 (0x128)  
0x2A (0x12A)  
0x2C (0x12C)  
0x2E (0x12E)  
PWM Address  
0x21 (0x121)  
0x23 (0x123)  
0x25 (0x125)  
0x27 (0x127)  
0x29 (0x129)  
0x2B (0x12B)  
0x2D (0x12D)  
0x2F (0x12F)  
PWM3 Control Point 1  
PWM3 Control Point 2  
PWM3 Control Point 3  
PWM3 Control Point 4  
PWM3 Control Point 5  
PWM3 Control Point 6  
PWM3 Control Point 7  
PWM3 Control Point 8  
www.onsemi.com  
25  
NCT7491  
Fan Override Settings  
5
100%  
There are bits in the NCT7491 that allow the PWM  
outputs to be overdriven so that the outputs go to maximum  
speed (as programmed in the maximum PWM registers), to  
go to full speed (100% duty) or to be shut off. These bits will  
override all other fan control settings.  
Setting bit 1 of register 0x11 to 1 runs the fans at the  
maximum programmed PWM duty cycle  
4
3
PWM  
2
1
Setting bit 3 of register 0x40 to 1 runs the fans at 100%  
duty cycle. This bit has precedence over all others.  
Setting bit 0 of register 0x87 to 1 turns off PWM1  
Setting bit 1 of register 0x87 to 1 turns off PWM2  
Setting bit 2 of register 0x87 to 1 turns off PWM3  
3
4 5  
6,7,8  
1
2
0°C  
THERM Override  
255°C  
Temperature  
Setting bit 5 of register 0x40 will allow assertions on any  
pin configured as a THERM pin to drive the fans to 100%  
duty cycle or Max PWM, deending on bits <4:2> of register  
0x16. This will override all other fan settings. This allows an  
external device to bypass the register settings of the  
NCT7491 for fail safe operation.  
Figure 12.  
Figure 12 shows a typical look−up table curve. The  
temperatures are programmed as unsigned data. In this  
example 5 of the 8 control points are used and the remaining  
3 are set to the maximum value of 255°C. This curve applies  
if relative PECI values are not assigned to control the PWM  
channel.  
Fan Drive  
The NCT7491 uses pulse width modulation (PWM) to  
control fan speed. This relies on varying the duty cycle (or  
on/off ratio) of a square wave applied to the fan to vary the  
fan speed. The external circuitry required to drive a fan using  
PWM control is extremely simple. For 4−wire fans, the  
PWM drive may need only a pullup resistor. In many cases  
the 4−wire fan PWM input has an internal pullup resistor.  
The NCT7491 PWM frequency can be set to a selection of  
low frequencies or a single high PWM frequency. The low  
frequency options are used for 3−wire fans, while the high  
frequency option is usually used with 4−wire fans. For  
3−wire fans, a single N−channel MOSFET is the only drive  
device required. The specifications of the MOSFET depend  
on the maximum current required by the fan being driven  
and the input capacitance of the FET. Because a 10 k (or  
greater) resistor must be used as a PWM pullup, an FET with  
large input capacitance can cause the PWM output to  
become distorted and adversely affect the fan control range.  
This is a requirement only when using high frequency PWM  
mode. Typical notebook fans draw a nominal 170 mA,  
therefore, SOT devices can be used where board space is a  
concern. In desktops, fans typically draw 250 mA to 300 mA  
each. If several fans are driven in parallel from a single  
PWM output or drive larger server fans, the MOSFET must  
handle the higher current requirements. The only other  
stipulation is that the MOSFET should have a gate voltage  
drive, VGS < 3.3 V, for direct interfacing to the PWM output  
pin.  
100%  
5
4
3
PWM  
2
1
3
4 5  
6,7,8  
1
2
0°C  
−128°C  
Temperature  
Figure 13.  
Figure 13 shows a typical look−up table curve that applies  
when relative PECI values are assigned to control the PWM  
channel. The temperatures are programmed as negative 2’s  
complement values. In this example 5 of the 8 control points  
are used and the remaining 3 are set to the maximum value  
of 0°C, as this is the maximum value for relative PECI  
values.  
www.onsemi.com  
26  
 
NCT7491  
Figure 14. Driving a 3−Wire Fan Using an N−Channel MOSFET  
Figure 14 uses a 10 k pullup resistor for the TACH signal.  
these devices are inexpensive, they tend to have much lower  
current handling capabilities and higher on resistance than  
MOSFETs. When choosing a transistor, care should be taken  
to ensure that it meets the fan’s current requirements. Ensure  
that the base resistor is chosen so that the transistor is  
saturated when the fan is powered on.  
This assumes that the TACH signal is an open−collector  
from the fan. In all cases, the TACH signal from the fan must  
be kept below 3.6 V maximum to prevent damaging the  
NCT7491.  
Figure 15 shows a fan drive circuit using an NPN  
transistor such as a general purpose MMBT2222. While  
Figure 15. Driving a 3−Wire Fan Using an NPN Transistor  
Because the fan drive circuitry in 4−wire fans is not  
switched on or off, as with previous PWM driven/powered  
fans, the internal drive circuit is always on and uses the  
PWM input as a signal instead of a power supply. This  
enables the internal fan drive circuit to perform better than  
3−wire fans, especially for high frequency applications.  
Figure 16 shows a typical drive circuit for 4−wire fans.  
www.onsemi.com  
27  
 
NCT7491  
Figure 16. Driving a 4−Wire Fan  
Driving Two Fans from PWM3  
The NCT7491 has four TACH inputs available for fan  
speed measurement, but only three PWM drive outputs. If a  
fourth fan is being used in the system, it should be driven  
from the PWM3 output in parallel with the third fan.  
Figure 17 shows how to drive two fans in parallel using a  
MOSFET. Because the MOSFET can handle up to 3.5 A, it  
is simply a matter of connecting another fan directly in  
parallel with the first. Care should be taken in designing  
drive circuits with transistors and FETs to ensure the PWM  
outputs are not required to source current, and that they sink  
less than the 5 mA maximum current specified in the data  
sheet.  
Figure 17. Interfacing Two Fans in Parallel to the PWM3 Output Using a Single N−Channel MOSFET  
Driving up to Three Fans from PWM3  
Synchronization is not required in high frequency mode  
when used with 4−wire fans.  
Setting bit 4 of register 0x62 (SYNC) to 1 synchronizes  
TACH2, TACH3, and TACH4 to PWM3.  
TACH measurements for fans are synchronized to  
particular PWM channels; for example, TACH1 is  
synchronized to PWM1. TACH3 and TACH4 are both  
synchronized to PWM3, so PWM3 can drive two fans.  
Alternatively, PWM3 can be programmed to synchronize  
TACH2, TACH3, and TACH4 to the PWM3 output. This  
allows PWM3 to drive two or three fans. In this case, the  
drive circuitry looks the same, as shown in Figure 17. The  
SYNC bit in Register 0x62 enables this function.  
TACH Inputs  
Pins 9, 11, 12 and 14 on the QSOP package or pins 6, 8,  
9 and 11 on the QFN package (when configured as TACH  
inputs) are high impedance inputs intended for fan speed  
measurement. Signal conditioning in the NCT7491  
www.onsemi.com  
28  
 
NCT7491  
accommodates the slow rise and fall times typical of fan  
clamping must be included to keep inputs within an  
acceptable range. Figure 18 to Figure 20 show circuits for  
the most common fan TACH outputs. If the fan TACH  
output has a resistive pullup to VCC, it can be connected  
directly to the fan input, as shown in Figure 18.  
tachometer outputs. The maximum input signal range is 0 V  
to 3.6 V, even though VCC is 3.3 V. In the event that these  
inputs are supplied from fan outputs that exceed 0 V to 3.6 V,  
either resistive attenuation of the fan signal or diode  
Figure 18. Fan with TACH Pullup to VCC  
If the fan output has a resistive pullup to 12 V, or other  
voltage greater than 3.6 V, the fan output can be clamped  
with a zener diode, as shown in Figure 19. The zener diode  
voltage should be chosen so that it is greater than VIH of the  
TACH input but less than 3.6 V, allowing for the voltage  
tolerance of the zener. A value of between 3.0 V and 3.6 V  
is suitable.  
Figure 19. Fan with TACH Pullup to Voltage > 3.6 V, for Example, 12 V Clamped with Zener Diode  
If the fan has a strong pullup (less than 1 k_) to 12 V or a totem−pole output, a series resistor can be added to limit the zener  
current, as shown in Figure 20.  
Figure 20. Fan with Strong TACH Pullup to >VCC or Totem−Pole Output, Clamped with Zener Diode and Resistor  
www.onsemi.com  
29  
 
NCT7491  
TACH Measurement Overview  
the fan TACH output (see Figure 21) so the accumulated  
count is actually proportional to the fan tachometer period  
and inversely proportional to the fan speed. N, the number  
of pulses counted, is determined by the settings of the TACH  
pulses per revolution register (0x7B). This register contains  
two bits for each fan, allowing one, two (default), three, or  
four TACH pulses to be counted.  
The fan counter does not count the fan TACH output  
pulses directly because the fan speed could be less than 1000  
RPM, and it takes several seconds to accumulate a  
reasonably large and accurate count. Instead, the period of  
the fan revolution is measured by gating an on−chip 78 kHz  
oscillator into the input of a 16−bit counter for N periods of  
Figure 21. Fan Speed Measurement  
Fan Speed Measurement Registers  
Fan TACH Limit Registers  
The fan tachometer registers are 16−bit values consisting  
of a 2−byte read from the NCT7491.  
The fan TACH limit registers are 16−bit values consisting  
of two bytes.  
Register 0x28, TACH1 Low Byte  
Register 0x29, TACH1 High Byte  
Register 0x2A, TACH2 Low Byte  
Register 0x2B, TACH2 High Byte  
Register 0x2C, TACH3 Low Byte  
Register 0x2D, TACH3 High Byte  
Register 0x2E, TACH4 Low Byte  
Register 0x2F, TACH4 High Byte  
Register 0x54, TACH1 Minimum Low Byte = 0xFF  
default  
Register 0x55, TACH1 Minimum High Byte = 0xFF  
default  
Register 0x56, TACH2 Minimum Low Byte = 0xFF  
default  
Register 0x57, TACH2 Minimum High Byte = 0xFF  
default  
Register 0x58, TACH3 Minimum Low Byte = 0xFF  
default  
Reading Fan Speed from the NCT7491  
Register 0x59, TACH3 Minimum High Byte = 0xFF  
The measurement of fan speeds involves a 2−register read  
for each measurement. The low byte should be read first.  
This causes the high byte to be frozen until both high and low  
byte registers have been read, preventing erroneous TACH  
readings. The fan tachometer reading registers report back  
the number of 12.82 us period clocks (78 kHz oscillator)  
gated to the fan speed counter, from the rising edge of the  
first fan TACH pulse to the rising edge of the third fan TACH  
pulse (assuming two pulses per revolution are being  
counted). Because the device is essentially measuring the  
fan TACH period, the higher the count value, the slower the  
fan is actually running. A 16−bit fan tachometer reading of  
0xFFFF indicates that either the fan has stalled or is running  
very slowly (<100 RPM).  
default  
Register 0x5A, TACH4 Minimum Low Byte = 0xFF  
default  
Register 0x5B, TACH4 Minimum High Byte = 0xFF  
default  
Fan Speed Measurement Rate  
The fan TACH readings are normally updated once every  
second. When set, the FAST bit (Bit 3) of Configuration  
Register 3 (0x78), updates the fan TACH readings every  
250 ms.  
DC Bits  
If any of the fans are not being driven by a PWM channel  
but are powered directly from 5.0 V or 12 V, their associated  
dc bit in Configuration Register 3 (0x78) should be set. This  
Because the actual fan TACH period is being measured,  
falling below a fan TACH limit by 1 sets the appropriate  
status bit and can be used to generate an SMBALERT  
www.onsemi.com  
30  
 
NCT7491  
allows TACH readings to be taken on a continuous basis for  
TACH Pulses per Revolution Register 0x7B  
Bits [1:0], FAN1 default = 2 pulses per revolution  
Bits [3:2], FAN2 default = 2 pulses per revolution  
Bits [5:4], FAN3 default = 2 pulses per revolution  
Bits [7:6], FAN4 default = 2 pulses per revolution  
00 = 1 pulse per revolution  
fans connected directly to a dc source. For 4−wire fans, once  
high frequency mode is enabled, the dc bits do not need to  
be set because this is automatically done internally.  
If any tach channels are not connected then the associated  
DC bit should be set for that fan.  
Calculating Fan Speed From Register Values  
01 = 2 pulses per revolution  
Assuming a fan with a two pulses per revolution, and with  
the NCT7491 programmed to measure two pulses per  
revolution, fan speed is calculated by Fan Speed (RPM) =  
(78,000 x 60)/Fan TACH Reading where Fan TACH  
Reading is the 16−bit fan tachometer reading.  
10 = 3 pulses per revolution  
11 = 4 pulses per revolution  
Fan Spin−Up  
The NCT7491 has a unique fan spin−up function. It spins  
the fan at 100% PWM duty cycle until two TACH pulses are  
detected on the TACH input. When two TACH pulses have  
been detected, the PWM duty cycle goes to the expected  
running value, for example, 33%. The advantage of this is  
that fans have different spin−up characteristics and take  
different times to overcome inertia. The NCT7491 runs the  
fans just fast enough to overcome inertia and is quieter on  
spin−up than fans programmed to spin up for a given  
spin−up time.  
Example:  
TACH1 High Byte (Register 0x29) = 0x17  
TACH1 Low Byte (Register 0x28) = 0xFF  
What is Fan 1 speed in RPM?  
Fan 1 TACH Reading = 0x17FF = 6143 (decimal)  
RPM = (f x 60)/Fan 1 TACH Reading  
RPM = (78000 x 60)/6143  
Fan Speed = 762 RPM  
Fan Pulses per Revolution  
Fan Startup Timeout  
Different fan models can output one, two, three, or four  
TACH pulses per revolution. Once the number of fan TACH  
pulses has been determined, it can be programmed into the  
TACH pulses per revolution register (0x7B) for each fan.  
Alternatively, this register can be used to determine the  
number or pulses per revolution output by a given fan. By  
plotting fan speed measurements at 100% speed with  
different pulses per revolution setting, the smoothest graph  
with the lowest ripple determines the correct pulses per  
revolution value.  
To prevent the generation of false interrupts as a fan spins  
up, because the fan is below running speed, the NCT7491  
includes a fan startup timeout function. During this time, the  
NCT7491 looks for two TACH pulses. If two TACH pulses  
are not detected, an interrupt is generated. Fan startup  
timeout can be disabled by setting Bit 3 (FSPDIS) of  
Configuration Register 7 (0x11).  
www.onsemi.com  
31  
NCT7491  
THERM Assertion  
If Offset64 mode is enabled then  
Pins 14, 19 and 22 on the QSOP package, or pins 11, 16  
and 19 on the QFN package can be configured as THERM  
I/O pins. These are open−drain active low pins used to signal  
that a critical temperature limit has been exceeded. If a  
temperature measurement exceeds its associated THERM  
limit (or Tcontrol limit for PECI) then the THERM pin will  
assert low. THERM assertion can be enabled or disabled for  
each thermal measurement channel. PWM outputs can be  
configured to respond to THERM assertions. By default  
THERM assertion will cause the PWM outputs to go to  
100% duty cycle for fail safe cooling. This can be  
individually disabled for each PWM output. THERM  
assertion behavior can be modified so that the outputs do not  
immediately go to 100% when THERM asserts. If this  
function is enabled then an associated temperature step  
register is used to increase the PWM duty in steps. For  
example, if the step register is set to 4 degrees then the PWM  
output will go to PWMStep1 at the THERM limit, to  
PWMStep2 at THERM+4 and 100% at THERM+2x4,  
where PWMStep1 and PWMStep2 are programmable  
PWM levels.  
Remote1/Local/Remote2 THERM limits should be  
programmed in that format. Otherwise those limits  
should be programmed as 2’s complement values.  
If PECI Absolute mode is enabled than PECI Tcontrol  
limits should be programmed as unsigned values,  
otherwise they should be programmed as 2’s  
complement values.  
SMBus THERM limit should be programmed as an  
unsigned value.  
Push THERM limit should be programmed as a 2’s  
complement value.  
THERM Status Bits  
PECI Tcontrol status bits = 0x89 <3:0>  
Remote1 THERM status bit = 0x89 <4>  
Local THERM status bit = 0x89 <5>  
Remote2 THERM status bit = 0x89 <6>  
SMBus slave THERM status bits = 0xBB <7:0>  
Push THERM status bits = 0x7E <7:4>  
Enabling THERM/Tcontrol Assertions for the  
Temperature Channels  
THERM Pin Configuration  
Configuring Pin 14 (QSOP), Pin 11 (QFN) as a THERM pin:  
Set 0x7C bit 4 to 1 to enable PECI T  
pin  
CONTROL  
Setting bits <1:0> of register 0x7D to <01> sets pin 14 on the  
QSOP package or pin 11 on the QFN package as a THERM  
pin.  
assertions  
Set 0x7C bit 5 to 1 to enable Remote1 THERM pin  
assertions,  
Configuring Pin 19 (QSOP), Pin 16 (QFN) as a THERM pin:  
Set 0x7C bit 6 to 1 to enable Local THERM pin  
Setting bits <3:2> of register 0x7C to <01> sets pin 19 on the  
QSOP package or pin 16 on the QFN package as a THERM  
pin.  
assertions,  
Set 0x7C bit 7 to 1 to enable Remote2 THERM pin  
assertions,  
Configuring Pin 22 (QSOP), Pin 19 (QFN) as a THERM pin:  
Set 0x16 bit 5 to 1 to enable Push temperature THERM  
pin assertions,  
Setting bit 1 of register 0x78 to 1 enables pin 22 on the QSOP  
package or pin 19 on the QFN package as a THERM pin.  
Set 0x16 bit 6 to 1 to enable SMBus slave THERM pin  
assertions  
THERM/Tcontrol Limit Registers  
Remote1 THERM Limit, 0x6A  
Local THERM Limit, 0x6B  
Remote2 THERM Limit, 0x6C  
PECI0 Tcontrol Limit, 0x3D  
PECI1 Tcontrol Limit, 0x08  
PECI2 Tcontrol Limit, 0x09  
PECI3 Tcontrol Limit, 0x0A  
PECI T  
enable bit applies to all PECI channels  
CONTROL  
Push temperature THERM enable applies to all Push  
channels  
SMBus slave enable bit applies to all SMBus channels  
The user should also ensure that the THERM Disable bit,  
0x7D <2>, is 0. This is the THERM disable bit and when set  
to 1 will disable all THERM pin assertions.  
Enabling the PWM Response to THERM Assertions  
PWM1 responds to THERM, 0x17 bit 0  
PWM2 responds to THERM, 0x17 bit 1  
SMBus Device THERM Limit, 0xC3 (applies to all  
SMBus devices)  
Push temperature THERM Limit, 0xD0 (applies to all  
PWM3 responds to THERM, 0x17 bit 2  
Push channels)  
If these bits are set to 1 then the associated PWM output  
will be affected by a THERM assertion. There are 3 possible  
responses: go to 100%, go to Maximum PWM or implement  
the THERM Stepping function.  
If any temperature channel exceeds its associated  
THERM limit then a status bit will be set to indicate the  
condition. If that channel is enabled for pin assertions and a  
THERM pin has been configured then the pin will assert. If  
the temperature value goes below its THERM limit then the  
status bit will automatically clear and the pin will de−assert.  
www.onsemi.com  
32  
NCT7491  
Setting the PWM Level for THERM Events  
PWM1 Max/Full, 0x16, bit 2  
Setting the PWM Levels for THERM Stepping  
PWMStep1 Value, 0x14  
PWMStep2 Value, 0x15  
PWM2 Max/Full, 0x16, bit 3  
PWMStep1 sets the PWM level that is output when a  
temperature exceeds its THERM limit (and Stepping is  
enabled). PWMStep2 sets the PWM level if the temperature  
exceeds THERM Limit + Step, where Step is the  
programmed step size for the temperature channel.  
PWMStep1 and PWMStep2 are absolute PWM values  
and have a resolution of 1 lsb = 0.392%.  
PWM3 Max/Full, 0x16, bit 4  
If these bits are set to 1 then the fans will go to 100% on  
THERM assertion. If they are 0 then they will go to the  
Maximum PWM value.  
These bits are ignored if the THERM stepping function is  
enabled.  
NOTE: If stepping is enabled for a temperature channel  
controlling a PWM output, then that PWM  
output will only respond to THERM events  
generated by its own temperature control  
sources and will not respond to THERM events  
from other temperature sources.  
100%  
PWMStep2  
PWMStep1  
THERM Timer  
PWM  
The NCT7491 has an internal timer to measure THERM  
assertion time. For example, the THERM input can be  
connected to the PROCHOT output of a CPU to measure  
system performance. The THERM input can also be  
connected to the output of a trip point temperature sensor.  
The timer is started on the assertion of the NCT7491  
THERM input and stopped when THERM is deasserted.  
The timer counts THERM times cumulatively, that is, the  
timer resumes counting on the next THERM assertion. The  
THERM timer continues to accumulate THERM assertion  
times until the timer is read (it is cleared on read), or until it  
reaches full scale. If the counter reaches full scale, it stops  
at that reading until cleared.  
The 8−bit THERM timer value register (0x79) is designed  
so that Bit 0 is set to 1 on the first THERM assertion. Once  
the cumulative THERM assertion time has exceeded 45.52  
ms, Bit 1 of the THERM timer is set and Bit 0 now becomes  
the LSB of the timer with a resolution of 22.76 ms (see  
Figure 23).  
Step Step  
Tmin  
THERM  
Temperature  
Figure 22. THERM Stepping Function  
THERM Stepping Function  
If the THERM Stepping function is enabled then the  
associated PWM output goes to PWMStep1 when the  
temperature is higher than THERM. The PWM output goes  
to PWMStep2 when the temperature is higher than  
THERM+Step and goes to 100% if the temperature reaches  
THERM+2xStep. THERM stepping does not apply to PWM  
channels in look−up table mode.  
THERM Stepping is enabled by writing a value greater  
than 0°C to the THERM Step Size registers  
After a pin has been configured as a THERM pin the timer  
function can be enabled on the pin using bits <1:0> of  
register 0x16:  
<00> = Timer disabled  
<01> = Timer enabled on pin 14 (QSOP), pin 11 (QFN)  
<10> = Timer enabled on pin 19 (QSOP), pin 16 (QFN)  
<11> = Timer enabled on pin 22 (QSOP), pin 19 (QFN)  
Setting the THERM Step Size  
SMBus slave THERM Step, 0x18, bits <3:0>  
PECI THERM Step, 0x18 bits <7:4>  
Remote1/Local/Remote2 THERM Step, 0x19 bits <3:0>  
Push temperature THERM Step, 0x19 bits <7:4>  
The range of temperature values that can be programmed  
for the Step size is 0 to 15°C. If set to 0 then the stepping  
function is disabled.  
www.onsemi.com  
33  
NCT7491  
Enabling Pins as SMBALERT Pins  
Setting bit 0 of register 0x78 sets pin 10 on the QSOP  
package, or pin 7 on the QFN package as an  
SMBALERT pin.  
Setting bits <1:0> of register 0x7D to <10> sets pin 14  
on the QSOP package or pin 11 on the QFN package as  
an SMBALERT pin.  
Setting bits <3:2> of register 0x7C to <00> sets pin 19  
on the QSOP package or pin 16 on the QFN package as  
an SMBALERT pin.  
NCT7491 Status Bits  
When a status bit is set and the SMBALERT output asserts  
it may be necessary to read the status registers to determine  
the source of the assertion. To minimize to number of  
register reads required the NCT7491 uses Out Of Limit bits  
(OOL bits) to indicate in which registers an assertion has  
occurred.  
By first reading Status OOL register address 0x12 it can  
be determined which other status registers are active. Once  
set, a status bit will remain set until the register that it is  
contained in is read over the SMBus interface, even if the  
fault that caused the assertion is no longer present.  
Figure 23. THERM Timer  
THERM Timer Limit  
The THERM Timer limit register can be used to assert an  
SMBALERT output when the timer measurement exceeds  
the programmed limit value. If the value N is programmed  
to the limit register then the limit time will be (N + 1) x 22.76  
ms.  
OOL register 0x12 Definitions:  
Bit 0 of 0x12 = 1 indicates an assertion in register 0x41  
(Analog temperature and Voltage limit errors)  
Bit 1 of 0x12 = 1 indicates an assertion in register 0x7E  
(Push register limit errors)  
Bit 2 of 0x12 = 1 indicates an assertion in register 0xB6  
(SMBus Master NACK errors)  
Bit 3 of 0x12 = 1 indicates an assertion in register 0xB7  
(SMBus Master PEC errors)  
SMBALERT Functions  
All of the measured temperatures, voltages and fan speeds  
have associated limit registers to detect when an out of limit  
condition occurs on any channel. Each of these channels has  
an associated status bit that can be read over the SMBus to  
determine the limit. There are also status bits to indicate the  
success or failure of various functions, such as the PECI  
interface or the SMBus Master Port interface. If a pin is  
configured as an SMBALERT pin then any of the status bits  
can assert the pin when they are set by the NCT7491. Most  
of the status bits can be masked, allowing the user to prevent  
assertion of the SMBALERT pins by functions that are not  
required in an application. Descriptions of the limit registers  
for each temperature, voltage or fan channel are described  
in their relevant sections of this document.  
Bit 4 of 0x12 = 1 indicates an assertion in register 0xB8  
(SMBus Master Timeout errors)  
Bit 5 of 0x12 = 1 indicates an assertion in register 0xB9  
(SMBus Master limit errors)  
Bit 6 of 0x12 = 1 indicates an assertion in register  
0xBA (SMBus Master Data Invalid errors)  
Bit 7 of 0x12 = 1 indicates an assertion in register 0x89  
(Tcontrol/THERM assertions). This bit relates to  
THERM function and does not affect the SMBALERT  
pins.  
www.onsemi.com  
34  
NCT7491  
List of Status Registers  
the nominal input voltage, and so has adequate headroom to  
cope with overvoltages.  
The complete list of status registers is given below along  
with their associated mask registers. The definitions for the  
status bits for each of the registers can be found in the  
register tables at the end of this document. OOL bits in any  
register do not require to be masked as they do not assert the  
SMBALERT pin.  
Voltage Input Circuitry  
The internal structure for the analog inputs is shown in  
Figure 24. The input circuit consists of an input protection  
diode, an attenuator, plus a capacitor to form a first−order  
low−pass filter that gives input immunity to high frequency  
noise. The attenuators can be disabled for the voltage  
channels, except for the Vcc channel.  
Table 29. STATUS REGISTERS  
Status  
Register  
Address  
Mask  
Register  
Address  
Status Bits  
215.7 k  
12 V  
Indicates status assertions in re-  
gisters 0x41, 0x7E, 0xB6, 0xB7,  
0xB8, 0xB9, 0xBA and 0x89.  
0x12  
Not  
applicable  
2.6 pF  
30.2 k  
85.9 k  
5 V  
Voltage & Analog temperature  
out of limit bits. OOL bit for re-  
gister 0x42.  
0x41  
0x74  
2.6 pF  
2.6 pF  
2.6 pF  
36.6 k  
Voltage, Fans, Diode Faults.  
OOL bit for register 0x43.  
0x42  
0x43  
0x75  
0x82  
49.4 k  
2.5 V  
Vcc  
PECI0 out of limit, PECI COMM/  
DATA error, THERM assertion,  
DATA error code. OOL bit for re-  
gister 0x81.  
74 k  
Mux  
66.7 k  
55.8 k  
PECI completion code error,  
THERM timer error, Generic  
COMM error, PECI1−3 out of lim-  
0x81  
0x83  
it bits, PCH byte count error, V  
out of limit bit.  
TT  
41.1 k  
82.3 k  
Vccp  
2.6 pF  
2.6 pF  
Push register out of limit bits  
SMBus Master NACK errors  
SMBus Master PEC errors  
SMBus Master Timeout errors  
SMBus Master out of limit bits  
0x7E  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0x7F  
0xBC  
0xBD  
0xBE  
0xBF  
0xC0  
13.7 k  
109.7 k  
V
TT  
Figure 24. Voltage Input Structures  
SMBus Master Data Invalid errors  
Voltage Measurement Registers  
Voltage Monitoring  
The NCT7491 has 5 external voltage measurement  
channels. It can also measure its own supply voltage, V  
The NCT7491 can measure 5 V, 12 V, and 2.5 V supplies,  
and the processor core voltage V (0 V to 3 V input). The  
2.5 V input can be used to monitor a chipset supply voltage  
in computer systems. The V supply voltage measurement  
Reg. 0x1E, V Reading = 0x00 default  
TT  
Reg. 0x20, 2.5 V Reading = 0x00 default  
.
CC  
Reg. 0x21, V  
Reading = 0x00 default  
CCP  
Reg. 0x22, V Reading = 0x00 default  
CC  
CCP  
Reg. 0x23, 5 V Reading = 0x00 default  
Reg. 0x24, 12 V Reading = 0x00 default  
CC  
is carried out through the V pin. The PECI V voltage  
CC  
TT  
Extended Resolution Registers  
is also measured and is the dedicated reference voltage for  
the PECI circuitry.  
Voltage measurements can be made with higher accuracy  
using the extended resolution registers (0x1F, 0x76 and  
0x77). Whenever the extended resolution registers are read,  
the corresponding data in the voltage measurement registers  
(0x1E, 0x20 to 0x24) is locked until their data is read. That  
is, if extended resolution is required, the extended resolution  
register must be read first immediately followed by  
the appropriate voltage measurement register.  
Analog−to−Digital Converter  
All analog inputs are multiplexed into the on−chip,  
successive− approximation, analog−to−digital converter.  
This has a resolution of 10 bits. The basic input range is 0 V  
to 2 V, but the inputs have built−in attenuators to allow  
measurement of 2.5 V, 3.3 V, 5 V, 12 V, and the processor  
core voltage V  
without any external components. To  
CCP  
allow the tolerance of these supply voltages, the ADC  
produces an output of 3/4 full scale (768 dec or 300 hex) for  
www.onsemi.com  
35  
 
NCT7491  
Voltage Measurement Selection  
Additional ADC Functions for Voltage Measurements  
A number of other functions are available on the  
NCT7491 to offer the system designer increased flexibility.  
The functions described below are enabled by setting the  
appropriate bit in configuration register 2 (0x73).  
The user can select which voltage channels to include in  
the monitoring loop. By only including the channels that are  
required the loop monitoring time can be reduced.  
Setting <2> of register 0x11 includes the V channel  
TT  
in the monitoring loop.  
Turn−Off Voltage Averaging  
Setting <3> of register 0x13 includes the 12V channel  
in the monitoring loop.  
The averager length that is applied to the temperature  
readings is also applied to the voltage readings. The averager  
length is programmable as 4, 8, 16 or 32 samples. These  
values can be selected in register 0x40 bits <7:6>.  
When faster conversions are needed, setting Bit 3 of  
Configuration Register 2 (Reg. 0x73) turns voltage  
averaging off. This gives a faster reading, but the reading  
can be noisier. The default round−robin cycle time takes  
TBD ms.  
Setting <4> of register 0x13 includes the 5 V channel in  
the monitoring loop.  
Setting <5> of register 0x13 includes the Vccp channel  
in the monitoring loop.  
Setting <6> of register 0x13 includes the 2.5 V channel  
in the monitoring loop.  
Setting <7> of register 0x13 includes the Vcc channel  
in the monitoring loop.  
Bypass Individual Voltage Input Attenuators  
Bits <7:3> of Configuration Register 4 (0x7D) can be  
used to bypass individual voltage channel attenuators.  
Voltage Measurement Resolution  
The NCT7491 uses a reference voltage of 2 V. The ADC  
is 10−bit giving a resolution of 1.953 mV per lsb. This is the  
resolution that applies when the attenuators are disabled.  
With attenuators enabled the resolution for each channel is  
as follows:  
Table 30. BYPASSING VOLTAGE ATTENUATORS  
Configuration Register 4 (0x7D)  
Bit  
3
Channel Attenuated  
Bypass V attenuator  
12 V resolution = 15.92 mV per lsb  
5 V resolution = 6.54 mV per lsb  
2.5 V resolution = 3.26 mV per lsb  
Vccp resolution = 2.93 mV per lsb  
Vcc resolution = 4.29 mV per lsb  
TT  
4
Bypass 2.5 V attenuator  
5
Bypass V  
attenuator  
CCP  
6
Bypass 5 V attenuator  
Bypass 12 V attenuator  
7
V resolution = 2.2 mV per lsb  
TT  
The input range of the ADC without the attenuators is 0 V  
to 2 V.  
Voltage Limit Registers  
Associated with each voltage measurement channel is a  
high and low limit register. Exceeding the programmed high  
or low limit causes the appropriate status bit to be set.  
Exceeding either limit can also generate SMBALERT  
interrupts.  
GPIO Functions  
There are up to 3 pins that can be configured as open−drain  
general purpose digital I/O pins. These are pins 5 (GPIO1),  
6 (GPIO2) and 19 (GPIO3) on the QSOP package and pins  
2 (GPIO1), 3 (GPIO2) and 16 (GPIO3) on the QFN package.  
GPIO1 and GPIO2 are shared with the SMBus Master Port  
pins SCL_M and SDA_M. GPIO3 is shared with THERM  
and SMBALERT functions.  
Reg. 0x84, V Low Limit  
TT  
Reg. 0x86, V High Limit  
TT  
Reg. 0x44, 2.5 V Low Limit  
Reg. 0x45, 2.5 V High Limit  
There are 2 bits that must be programmed to enable the  
GPIO1 and GPIO2 functions:  
Reg. 0x46, V  
Reg. 0x47, V  
Low Limit  
High Limit  
CCP  
Setting bit 1 of register 0x80 to 1 enables GPIO1 and  
CCP  
GPIO2  
Reg. 0x48, V Low Limit  
CC  
Clearing bit 0 of register 0xB5 to 0 disables the SMBus  
Master Port. This bit has priority over the GPIO enable  
bit so must be cleared for GPIOs to function.  
Reg. 0x49, V High Limit  
CC  
Reg. 0x4A, 5 V Low Limit  
Reg. 0x4B, 5 V High Limit  
Reg. 0x4C, 12 V Low Limit  
Reg. 0x4D, 12 V High Limit  
GPIO3 is enabled by setting bits <3:2> of register 0x7C to  
<10>.  
Each GPIO pin has associated direction, polarity and data  
bits.  
www.onsemi.com  
36  
NCT7491  
GPIO1  
Setting bit 6 of register 0x10 enables the Vccp Low  
function. In this mode, if the Vccp voltage falls below the  
value in the Vccp Low Limit register (0x46) then the Vccp  
status bit is set, the THERM timer function is disabled, PECI  
errors are cleared, SMBus Master errors are cleared and all  
PWM outputs shut down. When the Vccp voltage increases  
above the Vccp Low Limit then any of the above functions  
that were previously enabled will become active again.  
Bit 7 of register 0x80 sets GPIO1 direction. 1=Input,  
0=Output  
Bit 5 of register 0x80 sets GPIO1 polarity. 1=active  
high, 0=active low  
Bit 3 of register 0x80 is GPIO1 data. If GPIO1 is an  
input this bit shows the pin state. If it is an output then  
this bit sets the output state.  
XNOR Tree Test Mode  
GPIO2  
The NCT7491 includes an XNOR tree test mode. This  
mode is useful for in−circuit test equipment at board−level  
testing. By applying stimulus to the pins included in the  
XNOR tree, it is possible to detect opens, or shorts, on the  
system board.  
The XNOR tree test is invoked by setting Bit 0 (XEN) of  
the XNOR Tree Test Enable register (Register 0x6F).  
Figure 25 shows the signals that are exercised in the XNOR  
tree test mode.  
Bit 6 of register 0x80 sets GPIO2 direction. 1=Input,  
0=Output  
Bit 4 of register 0x80 sets GPIO2 polarity. 1=active  
high, 0=active low  
Bit 2 of register 0x80 is GPIO2 data. If GPIO2 is an  
input this bit shows the pin state. If it is an output then  
this bit sets the output state.  
GPIO3  
Bit 7 of register 0x85 sets GPIO3 direction. 1=Input,  
0=Output  
PWM2  
PWM3  
Bit 6 of register 0x85 sets GPIO3 polarity. 1=active  
high, 0=active low  
Bit 5 of register 0x85 is GPIO3 data. If GPIO3 is an  
input this bit shows the pin state. If it is an output then  
this bit sets the output state.  
When writing to a GPIO pin that is configured as an output  
the polarity must be taken into account. For example, if the  
pin is set as active low then writing a 1 to the data bit will pull  
the GPIO pin low.  
TACH1  
TACH2  
TACH3  
When GPIOs are configured as inputs the data bit always  
shows the actual pin state.  
VCCP Low Detection  
PWM1/XTO  
TACH4  
If the processor core voltage is being monitored on the  
Vccp channel and the NCT7491 is run from the auxiliary  
rail, then the user can enable a function to suspend various  
functions in the NCT7491 when the core voltage falls below  
a programmable threshold.  
Figure 25. XNOR Tree Test  
www.onsemi.com  
37  
 
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
PECI0 Address  
PECI1 Address  
PECI2 Address  
PECI3 Address  
PECI0_Abs  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
R/W  
R/W  
R/W  
R/W  
R
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
R
PECI1_Abs  
7
6
5
4
3
2
1
0
R
PECI2_Abs  
7
6
5
4
3
2
1
0
R
PECI3_Abs  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R
PECI1 Tcontrol  
PECI2 Tcontrol  
PECI3 Tcontrol  
PECI0 Tjmax  
PECI1 Tjmax  
PECI2 Tjmax  
PECI3 Tjmax  
PECI Config 4  
Config. 6  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
R
7
6
5
4
3
2
1
0
R
7
7
6
6
5
5
4
3
2
2
1
1
0
0
R
4
3
R/W  
R/W  
DM3CPU  
DM3CPU  
DM2CPU  
IFT  
DM2CPU  
SMBRT1  
DM1CPU  
SMBRT0  
DM1CPU  
DM0CPU  
DM0CPU  
V
Low  
PWM3  
Mode  
PWM2  
Mode  
PWM1  
Mode  
CCP  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
R/W  
R
Config. 7  
Interrupt Status 6  
Config. 8  
SMBFS3  
SMBFS2  
SMBFS1  
TODIS  
FSPDIS  
VTT  
OOL5  
Rem2  
2
FSPD  
OOL4  
Rem1  
1
THERMHys  
OOL10  
OOL9  
2.5V  
6
OOL8  
Vccp  
5
OOL7  
OOL6  
12V  
3
OOL0  
Local  
0
Vcc  
7
5V  
4
R/W  
R/W  
R/W  
PWMStep1  
PWMStep2  
7
6
5
4
3
2
1
0
THERM Config1  
SMBus  
THERM  
Push  
THERM  
Max/Full 3 Max/Full 2 Max/Full 1  
TMRP1  
TMRP0  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
R/W  
R/W  
R/W  
R
THERM Config2  
THERM Config3  
THERM Config4  
PECI1  
P3TH  
P2TH  
P1TH  
PECSTEP PECSTEP PECSTEP PECSTEP SMBSTEP SMBSTEP SMBSTEP SMBSTEP  
PSHSTEP PSHSTEP PSHSTEP PSHSTEP SNRSTEP SNRSTEP SNRSTEP SNRSTEP  
7
7
7
7
9
6
6
6
6
8
5
5
4
4
3
3
3
3
5
2
2
2
2
4
1
1
1
1
3
0
0
0
0
2
R
PECI2  
R
PECI3  
5
4
R
Device ID  
5
4
R
Vtt measurement  
Extended resolution 3  
2.5 V Measurement  
7
6
R
Vtt  
7
Vtt  
6
R
9
9
8
8
5
5
4
4
3
3
3
3
3
3
3
3
1
9
1
9
2
2
2
2
2
2
2
2
0
8
0
8
R
V
Measurement  
Measurement  
7
6
CCP  
R
V
CC  
9
8
7
6
5
4
R
5 V Measurement  
12 V Measurement  
Remote 1 Temperature  
Local Temperature  
Remote 2 Temperature  
TACH 1 Low Byte  
9
8
7
6
5
4
R
9
8
7
6
5
4
R
9
8
7
6
5
4
R
9
8
7
6
5
4
R
9
8
7
6
5
4
R
7
6
5
4
3
2
R
TACH 1 High Byte  
TACH 2 Low Byte  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
R
R
TACH 2 High Byte  
15  
14  
13  
12  
11  
10  
www.onsemi.com  
38  
 
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
TACH 3 Low Byte  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
R
7
15  
7
6
14  
6
5
13  
5
4
12  
4
3
2
1
0
R
TACH 3 High Byte  
11  
10  
9
8
R
TACH 4 Low Byte  
3
2
1
0
R
TACH 4 High Byte  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
8
R/W  
R/W  
R/W  
R
PWM1 Current Duty Cycle  
PWM2 Current Duty Cycle  
PWM3 Current Duty Cycle  
PECI0  
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
PECI Low Limit  
7
6
5
4
3
3
1
0
PECI High Limit  
7
6
5
4
2
1
0
PECI configuration Register 1  
PECI Config 3  
DOM0  
AVG2  
AVG1  
AVG0  
PWEN  
Rate1  
Rate0  
RTYDIS  
PDET  
Max PWM 1 Duty Cycle  
Max PWM 2 Duty Cycle  
Max PWM 3 Duty Cycle  
7
6
5
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
7
6
5
4
7
6
5
4
PECI T  
7
RANGE  
7
6
RANGE  
6
5
RANGE  
5
4
RANGE  
4
MIN  
PECI T  
RANGE  
CONTROL  
PECI0 T  
3
3
2
1
0
Company ID Number  
Version/Revision  
Configuration 1  
7
6
5
4
2
1
0
R
Ver3  
AVELN1  
Ver2  
AVELN0  
Ver1  
Ver0  
4−wire  
PECI  
RDY  
REV1  
LOCK  
REV0  
STRT  
R/W  
THERM  
Override  
PECI  
Monitor  
Fan  
Boost  
0x41  
0x42  
R
R
Interrupt Status 1  
Interrupt Status 2  
OOL  
R2T  
LT  
R1T  
5 V  
V
V
2.5 V  
12 V  
CC  
CCP  
D2  
FAULT  
D1  
FAULT  
FAN4  
FAN3  
FAN2  
FAN1  
OOL  
0x43  
R
Interrupt Status 3  
OOL3  
DAT2  
DAT1  
DAT0  
OVT  
(THERM  
Temp  
COMM  
DATA  
PECI0  
Limit)  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2.5 V Low Limit  
2.5 V High Limit  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
15  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
14  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
13  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
12  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
11  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
10  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
V
Low Limit  
High Limit  
Low Limit  
High Limit  
CCP  
V
CCP  
V
CC  
V
CC  
5 V Low Limit  
5 V High Limit  
12 V Low Limit  
12 V High Limit  
Remote 1 Temp Low Limit  
Remote 1 Temp High Limit  
Local Temp Low Limit  
Local Temp High Limit  
Remote 2 Temp Low Limit  
Remote 2 Temp High Limit  
TACH1 Minimum Low Byte  
TACH1 Minimum High Byte  
www.onsemi.com  
39  
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
Bit 7  
7
Bit 6  
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
Bit 0  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TACH2 Minimum Low Byte  
TACH2 Minimum High Byte  
TACH3 Minimum Low Byte  
TACH3 Minimum High Byte  
TACH4 Minimum Low Byte  
TACH4 Minimum High Byte  
6
14  
6
1
0
15  
7
13  
5
12  
4
11  
3
10  
9
8
2
1
0
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
2
15  
14  
13  
12  
INV  
11  
10  
9
8
PWM1 Configuration  
Register  
SPIN  
SPIN  
SPIN  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
R/W  
R/W  
R/W  
R/W  
R/W  
PWM2 Configuration  
Register  
INV  
SPIN  
SPIN  
SPIN  
SPIN  
SPIN  
SPIN  
PWM3 Configuration  
Register  
INV  
Remote 1 T /PWM  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
RANGE  
HF/LF  
HF/LF  
HF/LF  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
1 Frequency  
Local T /PWM 2  
RANGE  
Frequency  
Remote 2 T /PWM3  
RANGE  
Frequency  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Enhance Acoustics Reg. 1  
Enhance Acoustics Reg. 2  
PWM1 Min Duty Cycle  
PWM2 Min Duty Cycle  
PWM3 Min Duty Cycle  
MIN3  
MIN2  
MIN1  
SYNC  
EN1  
ACOU1  
ACOU1  
ACOU1  
EN2  
7
ACOU2  
ACOU2  
ACOU2  
EN3  
3
ACOU3  
ACOU3  
ACOU3  
6
6
6
6
6
6
6
5
5
5
5
5
5
5
4
4
4
4
4
4
4
2
2
2
2
2
2
2
1
1
1
1
1
1
1
0
0
0
0
0
0
0
7
3
7
3
Remote 1 Temp T  
7
3
MIN  
Local Temp T  
7
3
MIN  
Remote 2 Temp T  
7
3
MIN  
Remote 1 THERM Temp  
Limit  
7
3
0x6B  
0x6C  
R/W  
R/W  
Local THERM Temp Limit  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
Remote 2 THERM Temp  
Limit  
0x6D  
0x6E  
R/W  
R/W  
Remote 1 and Local  
HYSR1  
HYSR2  
HYSR1  
HYSR2  
HYSR1  
HYSR2  
HYSR1  
HYRS  
HYSL  
HYSP  
HYSL  
HYSP  
HYSL  
HYSP  
HYSL  
HYSP  
Temp/T  
Hysteresis  
MIN  
Remote 2 and PECI  
Temp/T Hysteresis  
MIN  
0x6F  
0x70  
R/W  
R/W  
XNOR Tree Test Enable  
XEN  
0
Remote 1 Temperature  
Offset  
7
6
5
4
3
2
1
0x71  
0x72  
R/W  
R/W  
Local Temperature Offset  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
Remote 2 Temperature  
Offset  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
R/W  
R/W  
R/W  
R
Configuration Register 2  
Interrupt Mask 1 Register  
Interrupt Mask 2 Register  
Extended Resolution 1  
Extended Resolution 2  
Config. 3  
Shutdown  
FQ1  
R2T  
D1  
FQ0  
LT  
TAVG  
RIT  
VAVG  
5 V  
ABS/REL  
V
CC  
V
2.5 V  
12 V  
2.5 V  
12 V  
CCP  
D2  
5 V  
FAN4  
FAN3  
FAN2  
FAN1  
5 V  
V
CC  
V
CC  
V
CCP  
V
CCP  
2.5 V  
12 V  
R
TDM2  
DC4  
TDM2  
DC3  
LTMP  
DC2  
LTMP  
DC1  
TDM1  
FAST  
TDM1  
R/W  
THERM/2.  
5V  
ALERT  
Enable  
0x79  
0x7A  
R
THERM Timer Value  
THERM Timer Limit  
TMR  
LIMT  
TMR  
LIMT  
TMR  
LIMT  
TMR  
LIMT  
TMR  
LIMT  
TMR  
LIMT  
TMR  
ASRT/  
TMRO  
R/W  
LIMT  
LIMT  
www.onsemi.com  
40  
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x7B  
R/W  
TACH Pulses per  
Revolution  
FAN4  
FAN4  
FAN3  
FAN3  
FAN2  
FAN2  
FAN1  
FAN1  
0x7C  
R/W  
Configuration Register 5  
R2  
THERM  
O/P  
Local  
THERM  
O/P  
R1  
THERM  
O/P  
PECI  
THERM  
O/P  
PIN19  
Func  
PIN19  
Func  
Temp  
Offset  
TWOS  
COMPL  
0x7D  
R/W  
Configuration Register 4  
BpAtt 12 V  
BpAtt  
5 V  
BpAtt  
BpAtt  
2.5 V  
BpAtt Vtt  
THERM  
Disable  
Pin 14  
Func  
Pin 14  
Func  
V
CCP  
0x7E  
0x7F  
0x80  
R
Interrupt Status 5  
Interrupt Mask 5  
OVT_P3  
OVT_P2  
OVT_P1  
OVT_P0  
PUSH3  
PUSH3  
GPIO1  
PUSH2  
PUSH2  
GPIO2  
PUSH1  
PUSH1  
GPEN  
PUSH0  
PUSH0  
R/W  
R/W  
GPIO Configuration  
register  
GPIO1  
DIR  
GPIO2  
DIR  
GPIO1  
POL  
GPIO2  
POL  
0x81  
0x82  
R
Interrupt Status 4  
Interrupt Mask 3  
V
TT  
SMBCNT  
PECI3  
PECI2  
PECI1  
GCOMM  
COMM  
TTS  
PCC  
R/W  
OVT  
THERM  
Temp  
DATA  
PECI0  
Limit  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Interrupt Mask 4  
V
SMBCNT  
6
PECI3  
5
PECI2  
4
PECI1  
3
GCOMM  
2
TTS  
1
PCC  
0
TT  
V
TT  
Low Limit  
7
GPIO Config 2  
High Limit  
GPIO3 DIR GPIO3 POL  
GPIO3  
5
V
TT  
7
6
4
3
2
1
0
Configuration 9  
PECI Config 2  
D4V  
D3V  
D2V  
D1V  
PWM3OFF PWM2OFF PWM1OFF  
#CPU  
OOL11  
#CPU  
OVT_R2  
PEC3  
SMB6  
DOM1  
OVT_LOC  
PEC2  
SMB5  
DOM2  
OVT_R1  
PEC1  
SMB4  
DOM3  
OVT3  
PEC0  
SMB3  
PUSH3  
PEC0  
SMB3  
PUSH3  
PEC0  
SMB3  
PUSH3  
3
Interrupt Status 7  
OVT2  
REM2  
SMB2  
PUSH2  
REM2  
SMB2  
PUSH2  
REM2  
SMB2  
PUSH2  
2
OVT1  
REM1  
SMB1  
PUSH1  
REM1  
SMB1  
PUSH1  
REM1  
SMB1  
PUSH1  
1
OVT0  
LOC  
SMB0  
PUSH0  
LOC  
SMB0  
PUSH0  
LOC  
SMB0  
PUSH0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PWM1 Source Control 1  
PWM1 Source Control 2  
PWM1 Source Control 3  
PWM2 Source Control 1  
PWM2 Source Control 2  
PWM2 Source Control 3  
PWM3 Source Control 1  
PWM3 Source Control 2  
PWM3 Source Control 3  
Revision  
SMB7  
SMB7  
SMB7  
PEC3  
SMB6  
PEC2  
SMB5  
PEC1  
SMB4  
PEC3  
SMB6  
PEC2  
SMB5  
PEC1  
SMB4  
7
7
7
7
7
6
6
6
6
6
6
6
5
5
5
5
5
5
5
4
4
4
4
4
4
4
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PECI0 Offset  
3
2
1
0
PECI1 Offset  
3
2
1
0
PECI2 Offset  
3
2
1
0
PECI3 Offset  
3
2
1
0
SMB Device0 Address  
3
2
1
0
SMB Device 0 Command  
Code  
7
3
2
1
0
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SMB Device1 Address  
SMB Device1 Pointer  
SMB Device2 Address  
SMB Device2 Pointer  
SMB Device3 Address  
SMB Device3 Pointer  
SMB Device4 Address  
SMB Device4 Pointer  
SMB Device5 Address  
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
7
7
7
7
www.onsemi.com  
41  
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
SMB Device5 Pointer  
SMB Device6 Address  
SMB Device6 Pointer  
SMB Device7 Address  
SMB Device7 Pointer  
SMB Device0 Value (PCH)  
SMB Device1 Value (DIMM0)  
SMB Device2 Value (DIMM1)  
SMB Device3 Value (DIMM2)  
SMB Device4 Value (DIMM3)  
SMB Device5 Value  
SMB Device6 Value  
SMB Device7 Value  
SMB Config1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
R/W  
R/W  
R/W  
R/W  
R/W  
R
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
R
7
6
5
4
3
2
1
0
R
7
6
5
4
3
2
1
0
R
7
6
5
4
3
2
1
0
R
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
R
R
7
6
5
4
3
2
1
0
R
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R
RS7  
PEC7  
TFMT3  
TFMT7  
RS6  
PEC6  
TFMT3  
TFMT7  
RS5  
PEC5  
TFMT2  
TFMT6  
RS4  
PEC4  
TFMT2  
TFMT6  
RS3  
PEC3  
TFMT1  
TFMT5  
RS2  
PEC2  
TFMT1  
TFMT5  
RS1  
PEC1  
TFMT0  
TFMT4  
RS0  
PEC0  
TFMT0  
TFMT4  
SMB Config2  
SMB Config3  
SMB Config4  
Reserved  
R/W  
R
SMB Config5  
PCHDIMM  
R2DIMM  
R1DIMM  
NACK5  
PEC5  
TO5  
HILO5  
TIV5  
TH5  
NACK5  
PC5  
TO5  
HILO5  
TIV5  
5
SHYS3  
NACK4  
PEC4  
TO4  
HILO4  
TIV4  
TH4  
NACK4  
PC4  
TO4  
HILO4  
TIV4  
4
SHYS2  
SHYS1  
SHYS0  
SMBMEN  
SMB Status 1  
NACK7  
NACK6  
NACK3  
NACK2  
NACK1  
NACK0  
R
SMB Status 2  
PEC7  
PEC6  
PEC3  
PEC2  
PEC1  
PEC0  
R
SMB Status 3  
TO7  
TO6  
TO3  
TO2  
TO1  
TO0  
R
SMB Status 4  
HILO7  
HILO6  
HILO3  
HILO2  
HILO1  
HILO0  
R
SMB Status 5  
TIV7  
TIV6  
TIV3  
TIV2  
TIV1  
TIV0  
R
SMB Status 6  
TH7  
TH6  
TH3  
TH2  
TH1  
TH0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
SMB Mask 1  
NACK7  
NACK6  
NACK3  
NACK2  
NACK1  
NACK0  
SMB Mask 2  
PC7  
PC6  
PC3  
PC2  
PC1  
PC0  
SMB Mask 3  
TO7  
TO6  
TO3  
TO2  
TO1  
TO0  
SMB Mask 4  
HILO7  
HILO6  
HILO3  
HILO2  
HILO1  
HILO0  
SMB Mask 5  
TIV7  
TIV6  
TIV3  
TIV2  
TIV1  
TIV0  
SMB High Limit  
SMB Low Limit  
7
6
3
2
1
0
7
6
5
4
3
2
1
0
SMB THERM Limit  
Reserved  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
R
Reserved  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SMB Device Tmin  
SMB Device Trange  
Push0 Value  
7
6
5
4
3
2
1
0
SMBINT1  
SMBINT0  
RNG  
RNG  
RNG  
RNG  
7
7
7
7
7
6
6
6
6
6
5
5
5
5
5
4
4
4
4
4
3
2
1
0
Push1 Value  
3
2
1
0
Push2 Value  
3
2
1
0
Push3 Value  
3
3
2
2
1
1
0
0
Push Tmin  
Push Trange  
RNG  
3
RNG  
2
RNG  
1
RNG  
0
Push High Limit  
Push Low Limit  
7
7
6
6
5
5
4
4
3
2
1
0
www.onsemi.com  
42  
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
Push THERM Limit  
Generic PECI Address  
Write Length  
Read Length  
WRDAT0  
Bit 7  
7
Bit 6  
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
0
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
5
4
3
2
1
0
7
5
4
3
2
1
0
7
5
4
3
2
1
0
7
5
4
3
2
1
0
WRDAT1  
7
5
4
3
2
1
0
WRDAT2  
7
5
4
3
2
1
0
WRDAT3  
7
5
4
3
2
1
0
WRDAT4  
7
5
4
3
2
1
0
WRDAT5  
7
5
4
3
2
1
0
WRDAT6  
7
5
4
3
2
1
0
WRDAT7  
7
5
4
3
2
1
0
WRDAT8  
7
5
4
3
2
1
0
WRDAT9  
7
5
4
3
2
1
0
WRDAT10  
WRDAT11  
WRDAT12  
RDDAT0  
7
5
4
3
2
1
0
7
5
4
3
2
1
0
7
5
4
3
2
1
0
7
5
4
3
2
1
0
RDDAT1  
7
5
4
3
2
1
0
RDDAT2  
7
5
4
3
2
1
0
RDDAT3  
7
5
4
3
2
1
0
RDDAT4  
7
5
4
3
2
1
0
RDDAT5  
7
5
4
3
2
1
0
RDDAT6  
7
5
4
3
2
1
0
RDDAT7  
7
5
4
3
2
1
0
RDDAT8  
7
5
4
3
2
1
0
PECI Config 5  
Push Hyst  
Reserved  
PEX  
AW  
PushHys3 PushHys2 PushHys1 PushHys0  
0xEC  
to 0xFE  
0xFF  
0x100  
0x101  
0x102  
0x103  
0x104  
0x105  
0x106  
0x107  
0x108  
0x109  
0x10A  
0x10B  
0x10C  
0x10D  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Page Select  
RGMP  
Fan1 LUT Temp1  
Fan1 LUT PWM1  
Fan1 LUT Temp2  
Fan1 LUT PWM2  
Fan1 LUT Temp3  
Fan1 LUT PWM3  
Fan1 LUT Temp4  
Fan1 LUT PWM4  
Fan1 LUT Temp5  
Fan1 LUT PWM5  
Fan1 LUT Temp6  
Fan1 LUT PWM6  
Fan1 LUT Temp7  
Fan1 LUT PWM7  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
www.onsemi.com  
43  
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
Fan1 LUT Temp8  
Fan1 LUT PWM8  
Fan2 LUT Temp1  
Fan2 LUT PWM1  
Fan2 LUT Temp2  
Fan2 LUT PWM2  
Fan2 LUT Temp3  
Fan2 LUT PWM3  
Fan2 LUT Temp4  
Fan2 LUT PWM4  
Fan2 LUT Temp5  
Fan2 LUT PWM5  
Fan2 LUT Temp6  
Fan2 LUT PWM6  
Fan2 LUT Temp7  
Fan2 LUT PWM7  
Fan2 LUT Temp8  
Fan2 LUT PWM8  
Fan3 LUT Temp1  
Fan3 LUT PWM1  
Fan3 LUT Temp2  
Fan3 LUT PWM2  
Fan3 LUT Temp3  
Fan3 LUT PWM3  
Fan3 LUT Temp4  
Fan3 LUT PWM4  
Fan3 LUT Temp5  
Fan3 LUT PWM5  
Fan3 LUT Temp6  
Fan3 LUT PWM6  
Fan3 LUT Temp7  
Fan3 LUT PWM7  
Fan3 LUT Temp8  
Fan3 LUT PWM8  
Reserved  
Bit 7  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
Bit 6  
Bit 5  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Bit 4  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Bit 3  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Bit 2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Bit 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Bit 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x10E  
0x10F  
0x110  
0x111  
0x112  
0x113  
0x114  
0x115  
0x116  
0x117  
0x118  
0x119  
0x11A  
0x11B  
0x11C  
0x11D  
0x11E  
0x11F  
0x120  
0x121  
0x122  
0x123  
0x124  
0x125  
0x126  
0x127  
0x128  
0x129  
0x12A  
0x12B  
0x12C  
0x12D  
0x12E  
0x12F  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
0x130−  
0x1CF  
0x1D0  
0x1D1  
0x1D2  
0x1D3  
0x1D4  
0x1D5  
0x1D6  
0x1D7  
0x1D8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Test Reg 1  
Test Reg 2  
Test Reg 3  
Test Reg 4  
Test Reg 5  
Test Reg 6  
Test Reg 7  
Test Reg 8  
Test Reg 9  
7
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
www.onsemi.com  
44  
NCT7491  
Table 31. REGISTER TABLES  
Address R/W  
Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x1D9 –  
0x1DF  
Reserved  
0x1E0  
0x1E1  
0x1E2  
0x1E3  
0x1e4  
0x1E5  
0x1E6  
0x1E7  
0x1E8  
0x1E9  
0x1EA  
0x1EB  
0x1FF  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Fuse Reg 1  
Fuse Reg 2  
Fuse Reg 3  
Fuse Reg 4  
Fuse Reg 5  
Fuse Reg 6  
Fuse Reg 7  
Fuse Reg 8  
Fuse Reg 9  
Fuse Reg 10  
Fuse Reg 11  
Fuse Reg 12  
Page Select Clear  
7
7
7
7
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
RGMPCL  
Table 32. PECI ADDRESS REGISTERS (Note 1) (Power−On Default = 0x00)  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
0x00  
0x01  
0x02  
0x03  
PECI0 CPU Address  
PECI1 CPU Address  
PECI2 CPU Address  
PECI3 CPU Address  
1. These registers are automatically populated when the PECI interface is enabled. They can be over−written if necessary.  
Table 33. PECI_Abs REGISTERS (Note 2) (Power−On Default = 0x00)  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
0x04  
0x05  
0x06  
0x07  
PECI0 absolute value. 8 bit unsigned.  
PECI1 absolute value. 8 bit unsigned.  
PECI2 absolute value. 8 bit unsigned.  
PECI3 absolute value. 8 bit unsigned.  
2. These registers return the absolute CPU temperature calculated using the Tjmax value for each PECI channel.  
Table 34. PECI Tcontrol LIMIT REGISTERS (Note 3) (Power−On Default = 0x00)  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
PECI0 Tcontrol  
PECI1 Tcontrol  
PECI2 Tcontrol  
PECI3 Tcontrol  
0x3D  
0x08  
0x09  
0x0A  
3. If any PECI reading exceeds its T  
limit, all PWM outputs drive their fans at 100% duty cycle. This is a fail−safe mechanism  
CONTROL  
incorporated to cool the system in the event of a critical over−temperature. It also ensures some level of cooling in the event that software  
or hardware locks up. If set to 0x80, this feature is disabled. The PWM output remains at 100% until the temperature drops below T  
limit − hysteresis.  
CONTRO  
www.onsemi.com  
45  
 
NCT7491  
Table 35. PECI TJMAX REGISTERS (Note 4) (Power−On Default = 0x00)  
Register Address  
R/W  
R
Description  
PECI0 Tjmax  
PECI1 Tjmax  
PECI2 Tjmax  
PECI3 Tjmaxl  
0x0B  
0x0C  
0x0D  
0x0E  
R
R
R
4. The maximum junction temperature for each CPU is returned in these registers. These are automatically read from the PECI interface on  
power−up  
Table 36. REGISTER 0x0F − PECI Configuration Register 4 (Power−On Default = 0x00)  
Bit  
Mnemonic  
R/W  
Description  
<1:0>  
DM0CPU  
R/W  
Sets the DIMM0 CPU assignment:  
00 = CPU0  
01 = CPU1  
10 = CPU2  
11 = CPU3  
<3:2>  
<5:4>  
<7:6>  
DM1CPU  
DM2CPU  
DM3CPU  
R/W  
R/W  
R/W  
Sets the DIMM1 CPU assignment:  
00 = CPU0  
01 = CPU1  
10 = CPU2  
11 = CPU3  
Sets the DIMM2 CPU assignment:  
00 = CPU0  
01 = CPU1  
10 = CPU2  
11 = CPU3  
Sets the DIMM3 CPU assignment:  
00 = CPU0  
01 = CPU1  
10 = CPU2  
11 = CPU3  
Table 37. REGISTER 0x10 − Configuration Register 6 (Power−On Default = 0x18)  
Bit  
Mnemonic  
R/W  
Description  
<0>  
PWM1Mode  
R/W  
0 = PWM1 uses Tmin/Trange control  
1 = PWM1 uses LUT control  
<1>  
<2>  
PWM2Mode  
PWM3Mode  
R/W  
R/W  
R/W  
0 = PWM 2 uses Tmin/Trange control  
1 = PWM2 uses LUT control  
0 = PWM3 uses Tmin/Trange control  
1 = PWM3 uses LUT control  
<4:3>  
SMBRT  
(Note 5)  
Sets the SMBus Master Retry delay time:  
00 = 1 ms  
01 = 2 ms  
10 = 4 ms  
11 = 8 ms  
<5>  
IFT  
R/W  
1 = Ignore first tach pulse during tach measurement. This can be used to stabilize readings from  
fans that produce erroneous glitches in 3−wire mode.  
5. If an error occurs in the SMBus Master sequence then the interface will attempt to read from the slave device again. The interval between  
read attempts is set by SMBRT  
www.onsemi.com  
46  
 
NCT7491  
Table 37. REGISTER 0x10 − Configuration Register 6 (Power−On Default = 0x18)  
Bit  
Mnemonic  
Low  
R/W  
Description  
<6>  
V
R/W  
VCCPLow = 1. When the power is supplied from 3.3 V STANDBY and the core voltage (VCCP)  
drops below its VCCP low limit value (Reg. 0x46), the following occurs:  
CCP  
Status Bit 1 in Status Register 1 is set.  
SMBALERT is generated, if enabled.  
PROCHOT monitoring is disabled.  
Everything is re−enabled once VCCP increases above the VCCP low limit.  
When VCCP increases above the low limit:  
PROCHOT monitoring is enabled.  
Fans return to their programmed state after a spin−up cycle.  
<7>  
Reserved  
R
5. If an error occurs in the SMBus Master sequence then the interface will attempt to read from the slave device again. The interval between  
read attempts is set by SMBRT  
Table 38. REGISTER 0x11 − Configuration Register 7 (Power−On Default = 0x04)  
Bit  
Mnemonic  
R/W  
Description  
<0>  
THERMHys  
R/W  
Setting this bit to 1 enables THERM hysteresis. Note that hysteresis on THERM is disabled  
by default. To enable hysteresis this bit must be set to logic 1 and also bit <2> of register  
0x7D must be cleared to 0.  
<1>  
FSPD  
R/W  
When set to 1, this bit runs all fans at max speed as programmed in the max PWM duty  
cycle registers (0x38 to 0x3A). Power−on default = 0. This bit is not locked at any time.  
<2>  
<3>  
Vtt  
R/W  
R/W  
Setting this bit to 1 includes Vtt in the analog monitoring cycle  
FSPDIS  
Logic 1 disables fan spin−up for two TACH pulses. Instead, the PWM outputs go high for the  
entire fan spin−up timeout selected.  
<4>  
TODIS  
R/W  
When this bit is set to 1, the SMBus timeout feature is disabled.  
In this state, if at any point during an SMBus transaction involving the NCT7491 activity  
ceases for more than 35 ms, the NCT7491 assumes the bus is locked and releases the bus.  
This allows the NCT7491 to be used with SMBus controllers that cannot handle SMBus  
timeouts. (Lockable.)  
<5>  
<6>  
<7>  
SMBFS1  
SMBFS2  
SMBFS3  
R/W  
R/W  
R/W  
PWM1 response to 3 consecutive SMBus Slave device errors; 0=no response; 1=PWM1 go  
to max speed or 100%  
PWM2 response to 3 consecutive SMBus Slave device errors; 0=no response; 1=PWM2 go  
to max speed or 100%  
PWM3 response to 3 consecutive SMBus Slave device errors; 0=no response; 1=PWM3 go  
to max speed or 100%  
Table 39. REGISTER 0x12 − Interrupt Status 6 (Power−On Default = 0x00)  
Bit  
Mnemonic  
OOL0  
R/W  
R
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
1 = ALERT assertion in register 0x41  
1 = ALERT assertion in register 0x7E  
1 = ALERT assertion in register 0xB6  
1 = ALERT assertion in register 0xB7  
1 = ALERT assertion in register 0xB8  
1 = ALERT assertion in register 0xB9  
1 = ALERT assertion in register 0xBA  
1 = ALERT assertion in register 0x89  
OOL4  
R
OOL5  
R
OOL6  
R
OOL7  
R
OOL8  
R
OOL9  
R
OOL10  
R
www.onsemi.com  
47  
NCT7491  
Table 40. REGISTER 0x13 − Configuration Register 8 (Power−On Default = 0xFF)  
Bit  
Mnemonic  
Local  
Rem1  
Rem2  
12V  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Setting this bit to 1 includes Local temperature in the analog monitoring cycle  
Setting this bit to 1 includes Rem1 temperature in the analog monitoring cycle  
Setting this bit to 1 includes Rem2 temperature in the analog monitoring cycle  
Setting this bit to 1 includes 12V in the analog monitoring cycle  
Setting this bit to 1 includes 5V in the analog monitoring cycle  
Setting this bit to 1 includes Vccp in the analog monitoring cycle  
Setting this bit to 1 includes 2.5V in the analog monitoring cycle  
Setting this bit to 1 includes Vcc in the analog monitoring cycle errors.  
5V  
Vccp  
2.5V  
Vcc  
Table 41. PWM STEPPING LEVEL REGISTERS (Power−On Default = 0x00)  
Register Address  
Register  
PWMStep1  
PWMStep2  
R/W  
R/W  
R/W  
Description  
0x14  
0x15  
Sets the PWM level on a THERM assertion if THERM stepping is enabled  
Sets the PWM level if THERM stepping is enabled and the temperature is greater  
than THERM + Step (Note 6)  
6. The temperature interval for each step is programmed in registers 0x18 and 0x19  
Table 42. REGISTER 0x16 − THERM Configuration Register 1 (Power−On Default = 0x1C)  
Bit  
Mnemonic  
R/W  
Description  
<1:0>  
TMRP  
R/W  
00 = Disabled  
01 = Pin 14 (QSOP), Pin 11 (QFN) is THERM timer input  
10 = Pin 19 (QSOP), Pin 16 (QFN) is THERM timer input  
11 = Pin 22 (QSOP), Pin 19 (QFN) is THERM timer input  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Max/Full 1  
Max/Full 2  
Max/Full 3  
R/W  
R/W  
R/W  
R/W  
R/W  
R
1= PWM1 goes to 100% on THERM  
0= PWM1 goes to Max programmed PWM on THERM  
1= PWM2 goes to 100% on THERM  
0= PWM2 goes to Max programmed PWM on THERM  
1= PWM3 goes to 100% on THERM  
0= PWM3 goes to Max programmed PWM on THERM  
Push  
THERM  
1 = THERM assertions enabled for Push temperatures  
0 = THERM assertions disabled for Push temperatures  
SMBus  
THERM  
1 = THERM assertions enabled for SMBus slave temperatures  
0 = THERM assertions disabled for SMBus slave temperatures  
Reserved  
Table 43. REGISTER 0x17 − THERM Configuration Register 2 (Power−On Default = 0x07)  
Bit  
Mnemonic  
P1TH  
R/W  
R/W  
R/W  
R/W  
R
Description  
If set to 1 then PWM1 will respond to THERM events  
If set to 1 then PWM2 will respond to THERM events  
If set to 1 then PWM3 will respond to THERM events  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
P2TH  
P3TH  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R
R
R
R
www.onsemi.com  
48  
 
NCT7491  
Table 44. REGISTER 0x18 − THERM Configuration Register 3 (Power−On Default = 0x00)  
Bit  
Mnemonic  
R/W  
Description  
<3:0>  
SMBSTEP  
R/W  
Sets the Step size used by the THERM stepping function when applied to SMBus Master  
device THERM assertions  
<7:4>  
PECSTEP  
R/W  
Sets the Step size used by the THERM stepping function when applied to PECI Tcontrol  
assertions  
Table 45. REGISTER 0x19 − THERM Configuration Register 4 (Power−On Default = 0x00)  
Bit  
Mnemonic  
R/W  
Description  
<3:0>  
SNRSTEP  
R/W  
Sets the Step size used by the THERM stepping function when applied to Remote1/Local/  
Remote2 sensor THERM assertions  
<7:4>  
PSHSTEP  
R/W  
Sets the Step size used by the THERM stepping function when applied to Push temperature  
THERM assertions  
Table 46. PECI READING REGISTERS (Power−On Default = 0x80)  
Register Address  
R/W  
R
Description  
PECI0: This register reads the 8 bits representative of PECI0  
PECI1: This register reads the 8 bits representative of PECI1  
PECI2: This register reads the 8 bits representative of PECI2  
PECI3: This register reads the 8 bits representative of PECI 3  
0x33  
0x1A  
0x1B  
0x1C  
R
R
R
Table 47. DEVICE ID REGISTER (Power−On Default = 0x91)  
Register Address  
R/W  
Description  
Power−On Default  
0x1D  
R
Device ID  
0x91  
Table 48. VTT READING REGISTER (Power−On Default = 0x00)  
Register Address  
R/W  
Description  
0x1E  
R
Reflects the voltage measurement at the V input on Pin 8 of the QSOP package, Pin 5 of the  
QFN package (8 MSBs of reading). Input range of 0 to 2v  
TT  
Table 49. REGISTER 0x1F EXTENDED RESOLUTION 3 (Power−On Default = 0x00)  
Bits  
R/W  
R
Description  
<3:0>  
<5:4>  
<7:6>  
RESERVED  
R
Bits <5:4> hold the two LSB’s of the 10−bit V measurement  
TT  
R
RESERVED  
Table 50. VOLTAGE READING REGISTERS (Power−On Default = 0x00) (Note 7)  
Register Address  
R/W  
Description  
0x20  
R
Reflects the voltage measurement at the 2.5 V input on Pin 22 of the QSOP package, Pin 19 of  
the QFN package (8 MSBs of reading).  
0x21  
0x22  
0x23  
0x24  
R
R
R
R
Reflects the voltage measurement (Note 8) at the V  
Pin 20 of the QFN package (8 MSBs of reading).  
input on Pin 23 of the QSOP package,  
CCP  
Reflects the voltage measurement (Note 9) at the V input on Pin 4 of the QSOP package,  
CC  
Pin 1 of the QFN package (8 MSBs of reading).  
Reflects the voltage measurement at the 5 V input on Pin 20 of the QSOP package, Pin 17 of  
the QFN package (8 MSBs of reading).  
Reflects the voltage measurement at the 12 V input on Pin 21 of the QSOP package, Pin 18 of  
the QFN package (8 MSBs of reading).  
7. If the extended resolution bits of these readings are also being read, the extended resolution registers (Reg. 0x76, 0x77) must be read first.  
Once the extended resolution registers have been read, the associated MSB reading registers are frozen until read. Both the extended  
resolution registers and the MSB registers are frozen.  
8. If V  
Low (Bit 6 of 0x10) is set, V  
can control the sleep state of the NCT7491.  
CCP  
CCP  
9. V (Pin 4 on the QSOP package, Pin1 on the QFN package) is the supply voltage for the NCT7491.  
CC  
www.onsemi.com  
49  
 
NCT7491  
Table 51. TEMPERATURE READING REGISTERS (Power−On Default = 0x80) (Notes 10, 11, 12)  
Register Address  
R/W  
R
Description  
0x25  
0x26  
0x27  
Remote 1 temperature reading (Notes 12, 13) (8 MSB of reading).  
Local temperature reading (8 MSB of reading).  
R
R
Remote 2 temperature reading (Notes 12, 13) (8 MSB of reading).  
10.If the extended resolution bits of these readings are also being read, the extended resolution registers (Reg. 0x76, 0x77) must be read first.  
Once the extended resolution registers have been read, all associated MSB reading registers are frozen until read. Both the extended  
resolution registers and the MSB registers are frozen.  
11. These temperature readings can be in twos complement or offset 64 format; this interpretation is determined by Bit 0 of Configuration Register  
5 (0x7C).  
12.In twos complement mode, a temperature reading of −128°C (0x80) indicates a diode fault (open or short) on that channel.  
13.In offset 64 mode, a temperature reading of −64°C (0x00) indicates a diode fault (open or short) on that channel.  
Table 52. FAN TACHOMETER READING REGISTERS (Power−On Default = 0x00) (Note 14)  
Register Address  
0x28  
R/W  
R
Description  
TACH1 low byte.  
TACH1 high byte.  
TACH2 low byte.  
TACH2 high byte.  
TACH3 low byte.  
TACH3 high byte.  
TACH4 low byte.  
TACH4 high byte.  
0x29  
R
0x2A  
R
0x2B  
R
0x2C  
R
0x2D  
R
0x2E  
R
0x2F  
R
14.These registers count the number of 11.11 ms periods (based on an internal 90 kHz clock) that occur between a number of consecutive fan  
TACH pulses (default = 2). The number of TACH pulses used to count can be changed using the fan pulses per revolution register (Reg.  
0x7B). This allows the fan speed to be accurately measured. Because a valid fan tachometer reading requires that two bytes be read, the  
low byte must be read first. Both the low and high bytes are then frozen until read. At power−on, these registers contain 0x0000 until the first  
valid fan TACH measurement is read into these registers. This prevents false interrupts from occurring while the fans are spinning up.  
A count of 0xFFFF indicates that a fan is one of the following: stalled or blocked (object jamming the fan), failed (internal circuitry destroyed),  
or not populated. (The NCT7491 expects to see a fan connected to each TACH. If a fan is not connected to that TACH, its TACH minimum  
high and low bytes should be set to 0xFF.)  
Table 53. CURRENT PWM DUTY CYCLE REGISTERS (Power−On Default = 0xFF) (Note 15)  
Register Address  
R/W  
R/W  
R/W  
R/W  
Description  
0x30  
0x31  
0x32  
PWM1 current duty cycle (0% to 100% duty cycle = 0x00 to 0xFF).  
PWM2 current duty cycle (0% to 100% duty cycle = 0x00 to 0xFF).  
PWM3 current duty cycle (0% to 100% duty cycle = 0x00 to 0xFF).  
15.These registers reflect the PWM duty cycle driving each fan at any given time. When in automatic fan speed control mode, the NCT7491  
reports the PWM duty cycles back through these registers. The PWM duty cycle values vary according to temperature in automatic fan speed  
control mode. During fan startup, these registers report back 0x00. In manual mode, the PWM duty cycle outputs can be set to any duty cycle  
value by writing to these registers.  
Table 54. REGISTER 0x33 PECI0 READING REGISTER (Power−On Default = 0x80)  
Register Address  
R/W  
Description  
0x33  
R
PECI0: This register reads the 8 bits representative of PECI Client Address stored in register 0x00  
Table 55. PECI LIMIT REGISTERS REGISTER  
Register Address  
R/W  
R/W  
R/W  
Description  
PECI Low Limit  
PECI High Limit  
Power−On Default  
0x34  
0x35  
0x81  
0x00  
www.onsemi.com  
50  
 
NCT7491  
Table 56. REGISTER 0x36 PECI CONFIGURATION REGISTER 1 (Power−On Default = 0x00)  
BIT  
NAME  
R/W  
Description  
<2:0>  
AVG  
R/W  
PECI Averaging Count  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
Averaged Samples  
1
2
4
8
Reserved  
Reserved  
Reserved  
Reserved  
<3>  
DOM0  
R/W  
CPU Domain Count information. Set to 0 indicates that CPU 1 associated with the PECI0 reading  
has a single domain (Default). Set to 1 indicates that the system CPU 1 contains two domains.  
<4>  
<5>  
Reserved  
Reserved  
Reserved  
<7:6>  
Table 57. REGISTER 0x37 PECI CONFIGURATION REGISTER 3 (Power−On Default = 0x32)  
Bit  
Name  
R/W  
Description  
<0>  
PDET  
R/W  
1 = at least one PECI enabled processor detected  
0 = no processors detected  
<1>  
RTYDIS  
R/W  
1 = PECI retry bit is disabled  
0 = PECI retry bit is enabled  
This bit allows the user to disable the PECI retry bit for any subsequent commands following a  
bad Completion Code from the CPU. It is enabled by default.  
<2>  
<3>  
Reserved  
Reserved  
Rate  
R
R
<5:4>  
R/W  
PECI update rate  
00 = 1/sec  
01 = 2/sec  
10 = 5/sec  
11 = 10/sec  
<6>  
<7>  
Reserved  
PWEN  
R/W  
1=PECI CPU writes are enabled  
0=PECI CPU writes are disabled  
Table 58. MAXIMUM PWM DUTY CYCLE (Power−On Default = 0xFF) (Note 16)  
2
Register Address  
R/W  
R/W  
R/W  
R/W  
Description  
0x38  
0x39  
0x3A  
Maximum duty cycle for PWM1 output, default = 100% (0xFF.)  
Maximum duty cycle for PWM2 output, default = 100% (0xFF).  
Maximum duty cycle for PWM3 output, default = 100% (0xFF).  
16.These registers set the maximum PWM duty cycle of the PWM output.  
www.onsemi.com  
51  
 
NCT7491  
Table 59. PECI TMIN REGISTER (Power−On Default = 0x80)  
Register Address  
R/W  
Description  
Power−On Default  
0x3B  
R/W  
PECI T  
0xD6 (−42°C)  
MIN  
When the PECI measurement exceeds PECI T  
the appropriate fans run at  
MIN  
PWM  
and increase according to the automatic fan speed control slope.  
MIN  
If Absolute PECI mode is used then the maximum valid Tmin value is 175°C.  
Table 60. REGISTER 0x3C − PECI TRANGE (Power−On Default = 0xC0)  
1
Bit  
Name  
R/W  
R
Description  
<2:0>  
< 3 >  
<7:4>  
Reserved  
Reserved  
R
T
R/W  
These bits determine the PWM duty cycle vs. the PECI temperature range for automatic  
RANGE  
fan control.  
0000 = 2°C  
0001 = 2.5°C  
0010 = 3.33°C  
0011 = 4°C  
0100 = 5°C  
0101 = 6.67°C  
0110 = 8°C  
0111 = 10°C  
1000 = 13.33°C  
1001 = 16°C  
1010 = 20°C  
1011 = 26.67°C  
1100 = 32°C (default)  
1101 = 40°C  
1110 = 53.33°C  
1111 = 80°C  
Table 61. PECI0 TCONTROL LIMIT REGISTER (Note 17)  
Register Address  
0x3D  
R/W  
R/W  
Description  
PECI0 T  
Power−On Default  
limit.  
0x00  
CONTROL  
17.If any PECI reading exceeds the T  
limit, all PWM outputs drive their fans at 100% duty cycle. This is a fail−safe mechanism  
CONTROL  
incorporated to cool the system in the event of a critical overtemperature. It also ensures some level of cooling in the event that software  
or hardware locks up. If set to 0x80, this feature is disabled. The PWM output remains at 100% until the temperature drops below T  
limit − hysteresis.  
CONTRO  
Table 62. COMPANY ID REGISTER  
Register Address  
R/W  
Description  
Power−On Default  
0x1A  
0x3E  
Read  
Company ID  
Table 63. REGISTER 0x3F VERSION/REVISION REGISTER (Power−On−Default = 0x6C)  
Bit  
Name  
R/W  
Description  
<1:0>  
REV  
Read  
These two bits indicate the NCT7491 silicon revision number. 0x00 indicates rev 0, 0x01 indic-  
ates Rev 1 etc  
<2>  
<3>  
PECI  
Read  
Read  
This bit is set to 1 indicating that the NCT7491 supports the PECI interface  
4 Wire  
This bit is set to 1 indicating that the NCT7491 may be configured to drive 4−wire fans using high  
frequency PWM.  
<7:4>  
VER  
Read  
These bits indicate the Heceta version number of the device.  
www.onsemi.com  
52  
 
NCT7491  
Table 64. REGISTER 0x40 − Configuration Register 1 (Power−On Default = 0x84)  
Bit  
Name  
R/W  
Description  
<0>  
STRT  
(Notes 18, 19)  
R/W  
Logic 1 enables monitoring and PWM control outputs based on the limit settings programmed.  
Logic 0 disables monitoring and PWM control is based on the default power−up limit settings.  
Note that the limit values programmed are preserved even if a Logic 0 is written to this bit and  
the default settings are enabled. This bit does not become locked once Bit 1 (LOCK bit) has  
been set.  
<1>  
LOCK  
Write once  
Logic 1 locks all limit values to their current settings. Once this bit is set, all lockable registers  
become read−only and cannot be modified until the NCT7491 is powered down and powered  
up again. This prevents rogue programs such as viruses from modifying critical system limit  
settings. (Lockable.)  
<2>  
<3>  
RDY  
R
This bit is set to 1 by the NCT7491 to indicate that the device is fully powered−up and ready  
to begin system monitoring.  
Fan Boost  
R/W  
When this bit is set to logic 1 all PWM outputs go to 100% regardless of other fan speed  
configurations and automatic fan speed control settings. When this bit is set to 0 the fan  
speed control returns to the fan speed setting calculated by the pre−programmed fan speed  
control settings. This bit remains writable after the lock bit is set.  
<4>  
<5>  
PECI Monitor  
R/W  
R/W  
Set this bit to logic 1 to enable CPU thermal monitoring via PECI interface. This bit becomes  
read only when the lock bit is set.  
THERM  
Override  
When this bit is set to logic 1, any THERM pin assertion will cause the fans to go to 100% or  
Max PWM, depending on bits <4:2> of register 0x16, overriding any other fan setting, even  
when the PWM’s are configured for manual mode, or disabled. This bit becomes read only  
when the lock bit is set.  
<7:6>  
AVELN  
R/W  
Sets the averaging length for all analog channels  
00 = 4 readings per averaged value  
01 = 8 readings per averaged value  
10 = 16 readings per averaged value  
11 = 32 readings per averaged value  
18.Bit 0 (STRT) of Configuration Register 1 (0x40) remains writable after lock bit is set.  
19.When monitoring (STRT) is disabled, PWM outputs always go to 100% for thermal protection.  
Table 65. REGISTER 0x41 − Interrupt Status Register 1 (Power−On Default = 0x00)  
Bit  
Name  
R/W  
Description  
<0>  
2.5 V  
R
2.5 V = 1 indicates that the 2.5 V high or low limit has been exceeded. This bit is cleared on a read of  
the status register only if the error condition has subsided.  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
V
R
R
R
R
R
R
R
V
= 1 indicates that the V  
high or low limit has been exceeded. This bit is cleared on a read of  
CCP  
CCP  
CCP  
the status register only if the error condition has subsided.  
V = 1 indicates that the V high or low limit has been exceeded. This bit is cleared on a read of  
CC  
V
CC  
CC  
the status register only if the error condition has subsided.  
5 V  
RIT  
LT  
A 1 indicates that the 5 V high or low limit has been exceeded. This bit is cleared on a read of the  
status register only if the error condition has subsided.  
RIT = 1 indicates that the Remote 1 low or high temperature has been exceeded. This bit is cleared  
on a read of the status register only if the error condition has subsided.  
LT = 1 indicates that the local low or high temperature has been exceeded. This bit is cleared on a  
read of the status register only if the error condition has subsided.  
R2T  
OOL  
R2T = 1 indicates that the Remote 2 low or high temperature has been exceeded. This bit is cleared  
on a read of the status register only if the error condition has subsided.  
OOL = 1 indicates that an out−of−limit event has been latched in Status Register 2. This bit is a logic-  
al OR of all status bits in Status Register 2 (0x42). Software can test this bit in isolation to determine  
whether any of the voltage, temperature, or fan speed readings represented by Status Register 2 are  
out−of−limit, which eliminates the need to read Status Register 2 during every interrupt or polling  
cycle.  
www.onsemi.com  
53  
 
NCT7491  
Table 66. REGISTER 0x42 − Interrupt Status Register 2 (Power−On Default = 0x00)  
Bit  
Name  
R/W  
Description  
<0>  
12 V  
R
A 1 indicates that the 12 V high or low limit has been exceeded. This bit is cleared on a read of the  
status register only if the error condition has subsided.  
<1>  
OOL  
R
OOL = 1 indicates that an out−of−limit event has been latched in Status Register 3 (0x43). This bit is a  
logical OR of all status bits in Status Register 3 Software can test this bit in isolation to determine  
whether any of the voltage, temperature, or fan speed readings represented by Status Register 3 are  
out−of−limit, which eliminates the need to read Status Register 3 during every interrupt or polling cycle.  
<2>  
<3>  
<4>  
<5>  
FAN1  
FAN2  
FAN3  
FAN4  
R
R
R
R
FAN1 = 1 indicates that Fan 1 has dropped below minimum speed or has stalled. This bit is not set  
when the PWM 1 output is off.  
FAN2 = 1 indicates that Fan 2 has dropped below minimum speed or has stalled. This bit is not set  
when the PWM 2 output is off.  
FAN3 = 1 indicates that Fan 3 has dropped below minimum speed or has stalled. This bit is not set  
when the PWM 3 output is off.  
When Pin 14 on the QSOP package, Pin 11 on the QFN package is programmed as a TACH4 input,  
FAN4 = 1 indicates that Fan 4 has dropped below minimum speed or has stalled. This bit is not set  
when the PWM3 output is off.  
<6>  
<7>  
D1  
D2  
R
R
D1 = 1 indicates either an open or short circuit on the Thermal Diode 1 inputs.  
D2 = 1 indicates either an open or short circuit on the Thermal Diode 2 inputs.  
Table 67. REGISTER 0x43 − Interrupt Status Register 3 (Power−On Default = 0x00)  
Bit  
Name  
R/W  
Description  
<0>  
PECI0  
R
A logic 1 indicates that the PECI high or low limit has been exceeded by the PECI value from PECI client  
address 0x30. This bit is cleared on a read of the status register only if the error condition has subsided.  
<1>  
Data  
R
A logic 1 indicates that valid PECI data cannot be obtained for the processor and a specified error code  
has been recorded.  
<2>  
<3>  
Comm  
OVT  
R
R
A logic 1 indicates that there is a communications error (e.g. invalid FCS) on the PECI interface.  
OVT = 1 indicates that one of the THERM over temperature limits has been exceeded. This bit is cleared  
on a read of the status register when the temperature drops below THERM − T  
.
HYST  
<6:4>  
DAT  
R
If a DATA error occurs then bits <6:4> indicate the error type  
<000> = General sensor error (0x8000)  
<001> = Sensor underflow (0x8002)  
<010> = Sensor overflow (0x8003)  
<111> = Other  
<7>  
OOL3  
R
OOL3 = 1 indicates that an out−of−limit event has been latched in Status Register 4 (0x81). This bit is a  
logical OR of all status bits in Status Register 4 Software can test this bit in isolation to determine wheth-  
er any of the voltage, temperature, or fan speed readings represented by Status Register 4 are out−of−  
limit, which eliminates the need to read Status Register 4 during every interrupt or polling cycle.  
Table 68. VOLTAGE LIMIT REGISTERS (Note 20)  
Register Address  
0x44  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description (Note 21)  
2.5 V low limit.  
Power−On Default  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x45  
2.5 V high limit.  
0x46  
V
V
V
V
low limit.  
CCP  
CCP  
0x47  
high limit.  
0x48  
low limit.  
CC  
CC  
0x49  
high limit.  
0x4A  
5 V low limit.  
5 V high limit.  
12 V low limit.  
12 V high limit.  
0x4B  
0x4C  
0x4D  
20.Setting the Configuration Register 1 lock bit has no effect on these registers.  
21.High limits: An interrupt is generated when a value exceeds its high limit (> comparison). Low limits: An interrupt is generated when a value  
is equal to or below its low limit ( comparison).  
www.onsemi.com  
54  
 
NCT7491  
Table 69. TEMPERATURE LIMIT REGISTERS (Note 22)  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description (Note 23)  
Power−On Default  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
Remote 1 temperature low limit.  
Remote 1 temperature high limit.  
Local temperature low limit.  
0x81  
0x7F  
0x81  
0x7F  
0x81  
0x7F  
Local temperature high limit.  
Remote 2 temperature low limit.  
Remote 2 temperature high limit.  
22.Exceeding any of these temperature limits by 1°C causes the appropriate status bit to be set in the interrupt status register. Setting the  
Configuration Register 1 lock bit has no effect on these registers.  
23.High limits: An interrupt is generated when a value exceeds its high limit (> comparison). Low limits: An interrupt is generated when a value  
is equal to or below its low limit (comparison).  
Table 70. FAN TACHOMETER LIMIT REGISTERS (Note 24)  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
TACH1 minimum low byte.  
Power−On Default  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
TACH1 minimum high byte  
TACH2 minimum low byte.  
TACH2 minimum high byte.  
TACH3 minimum low byte.  
TACH3 minimum high byte.  
TACH4 minimum low byte.  
TACH4 minimum high byte.  
24.Exceeding any of the TACH limit registers by 1 indicates that the fan is running too slowly or has stalled. The appropriate status bit is set  
in Interrupt Status Register 2 to indicate the fan failure.  
Table 71. PWM CONFIGURATION REGISTERS  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Power−On Default  
0x02  
0x5C  
0x5D  
0x5E  
PWM1 configuration.  
PWM2 configuration.  
PWM3 configuration.  
Description  
0x02  
0x02  
Bit  
Name  
SPIN  
<2:0>  
These bits control the startup timeout for PWMx. The PWM output stays high until two valid TACH  
rising edges are seen from the fan. If there is not a valid TACH signal during the fan TACH meas-  
urement directly after the fan startup timeout period, then the TACH measurement reads 0xFFFF  
and Status Register 2 reflects the fan fault. If the TACH minimum high and low bytes contain  
0xFFFF or 0x0000, then the Status Register 2 bit is not set, even if the fan has not started.  
000 = No startup timeout  
001 = 100 ms  
010 = 250 ms (default)  
011 = 400 ms  
100 = 667 ms  
101 = 1 sec  
110 = 2 sec  
111 = 4 sec  
<3>  
<4>  
Reserved  
INV  
R/W  
This bit inverts the PWM output. The default is 0, which corresponds to a logic high output for  
100% duty cycle. Setting this bit to 1 inverts the PWM output, so 100% duty cycle corresponds to  
a logic low output.  
<7:5>  
Reserved  
www.onsemi.com  
55  
 
NCT7491  
Table 72. TEMP TRANGE/PWM FREQUENCY REGISTERS  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
/PWM1 frequency.  
Power−On Default  
0xC3  
0x5F  
0x60  
0x61  
Remote 1 T  
RANGE  
Local temperature T  
/PWM2 frequency.  
0xC3  
0xC3  
RANGE  
Remote 2 T  
/PWM3 frequency.  
RANGE  
Bit  
Name  
Description  
<2:0>  
FREQ  
These bits control the PWMx frequency (only apply when PWM channel is in low frequency  
mode).  
000 = 11.0 Hz  
001 = 14.7 Hz  
010 = 22.1 Hz  
011 = 29.4 Hz (default)  
100 = 35.3 Hz  
101 = 44.1 Hz  
110 = 58.8 Hz  
111 = 88.2 Hz  
<3>  
HF/LF  
R/W  
R/W  
HF/LF = 1, High frequency PWM mode is enabled for PWMx.  
HF/LF = 0, Low frequency PWM mode is enabled for PWMx.  
<7:4>  
RANGE  
These bits determine the PWM duty cycle vs. the temperature range for automatic fan control.  
0000 = 2°C  
0001 = 2.5°C  
0010 = 3.33°C  
0011 = 4°C  
0100 = 5°C  
0101 = 6.67°C  
0110 = 8°C  
0111 = 10°C  
1000 = 13.33°C  
1001 = 16°C  
1010 = 20°C  
1011 = 26.67°C  
1100 = 32°C (default)  
1101 = 40°C  
1110 = 53.33°C  
1111 = 80°C  
www.onsemi.com  
56  
NCT7491  
Table 73. REGISTER 0x62 − Enhanced Acoustics Register 1 (Power−On Default = 0x20)  
Bit  
Name  
R/W  
Description  
<2:0>  
ACOU  
R/W  
These bits define the maximum rate of change of the PWM1 output. Instead of the fan speed jumping  
instantaneously to its newly determined speed, it ramps gracefully at the rate determined by these bits.  
This feature ultimately enhances the acoustics of the fan.  
Time Slot Increase  
000 = 1  
Time for 0% to 100%  
37.5 sec  
18.8 sec  
12.5 sec  
7.5 sec  
001 = 2  
010 = 3  
011 = 4  
100 = 8  
4.7 sec  
101 = 12  
110 = 24  
111 = 48  
3.1 sec  
1.6 sec  
0.8 sec  
<3>  
<4>  
EN1  
R/W  
R/W  
When this bit is 1, smoothing is enabled on PWM1 output.  
SYNC  
SYNC = 1 synchronizes fan speed measurements on TACH2, TACH3, and TACH4 to PWM3. This  
allows up to three fans to be driven from PWM3 output and their speeds to be measured.  
SYNC = 0 synchronizes only TACH3 and TACH4 to PWM3 output.  
<5>  
<6>  
<7>  
MIN1  
MIN2  
MIN3  
R/W  
R/W  
R/W  
When the NCT7491 is in automatic fan control mode, this bit defines whether PWM1 is off (0% duty  
cycle) or at PWM1 minimum duty cycle when the controlling temperature is below its T  
value.  
– hysteresis  
MIN  
0 = 0% duty cycle below T  
– hysteresis.  
MIN  
1 = PWM1 minimum duty cycle below T  
– hysteresis.  
MIN  
When the NCT7491 is in automatic fan speed control mode, this bit defines whether PWM2 is off (0%  
duty cycle) or at PWM2 minimum duty cycle when the controlling temperature is below its T  
teresis value.  
– hys-  
MIN  
0 = 0% duty cycle below T  
– hysteresis.  
MIN  
1 = PWM 2 minimum duty cycle below T  
– hysteresis.  
MIN  
When the NCT7491 is in automatic fan speed control mode, this bit defines whether PWM3 is off (0%  
duty cycle) or at PWM3 minimum duty cycle when the controlling temperature is below its T  
teresis value.  
– hys-  
MIN  
0 = 0% duty cycle below T  
– hysteresis.  
MIN  
1 = PWM3 minimum duty cycle below T  
– hysteresis.  
MIN  
Table 74. REGISTER 0x63 − Enhanced Acoustics Register 2 (Power−On Default = 0x00)  
Bit  
Name  
R/W (Note 25)  
Description  
<2:0>  
ACOU3  
R/W  
These bits define the maximum rate of change of the PWM3 output. Instead of the fan speed  
jumping instantaneously to its newly determined speed, it ramps gracefully at the rate determ-  
ined by these bits. This feature ultimately enhances the acoustics of the fan.  
Time Slot Increase  
000 = 1  
Time for 0% to 100%  
37.5 sec  
18.8 sec  
12.5 sec  
7.5 sec  
001 = 2  
010 = 3  
011 = 4  
100 = 8  
4.7 sec  
101 = 12  
110 = 24  
111 = 48  
3.1 sec  
1.6 sec  
0.8 sec  
< 3 >  
EN3  
R/W  
When this bit is 1, smoothing is enabled on the PWM3 output.  
25.These registers become read−only when the NCT7491 is in automatic fan control mode.  
www.onsemi.com  
57  
 
NCT7491  
Table 74. REGISTER 0x63 − Enhanced Acoustics Register 2 (Power−On Default = 0x00)  
Bit  
Name  
R/W (Note 25)  
Description  
<6:4>  
ACOU2  
R/W  
These bits define the maximum rate of change of the PWM2 output. Instead of the fan speed  
jumping instantaneously to its newly determined speed, it ramps gracefully at the rate determ-  
ined by these bits. This feature ultimately enhances the acoustics of the fan.  
Time Slot Increase  
000 = 1  
Time for 0% to 100%  
37.5 sec  
18.8 sec  
12.5 sec  
7.5 sec  
001 = 2  
010 = 3  
011 = 4  
100 = 8  
4.7 sec  
101 = 12  
110 = 24  
111 = 48  
3.1 sec  
1.6 sec  
0.8 sec  
<7>  
EN2  
R/W  
When this bit is 1, smoothing is enabled on the PWM2 output.  
25.These registers become read−only when the NCT7491 is in automatic fan control mode.  
Table 75. PWM MINIMUM DUTY CYCLE REGISTERS  
Register Address  
R/W (Note 26)  
R/W  
Description  
PWM1 minimum duty cycle.  
PWM2 minimum duty cycle.  
PWM3 minimum duty cycle.  
Power−On Default  
0x80 (50% duty cycle)  
0x80 (50% duty cycle)  
0x80 (50% duty cycle)  
0x64  
0x65  
0x66  
R/W  
R/W  
Bit  
<7:0>  
Name  
R/W (Note 26)  
R/W  
Description  
PWM duty cycle  
These bits define the PWM  
duty cycle for PWMx.  
MIN  
0x00 = 0% duty cycle (fan off).  
0x40 = 25% duty cycle.  
0x80 = 50% duty cycle.  
0xFF = 100% duty cycle (fan full speed).  
26.These registers become read−only when the NCT7491 is in automatic fan control mode.  
Table 76. TMIN REGISTERS (Note 27)  
Register Address  
R/W  
R/W  
R/W  
R/W  
Description  
Power−On Default  
0x5A (90°C)  
0x67  
0x68  
0x69  
Remote 1 Temperature T  
.
MIN  
Local Temperature T  
.
0x5A (90°C)  
MIN  
Remote 2 Temperature T  
.
0x5A (90°C)  
MIN  
27.These are the T  
registers for each temperature channel. When the temperature measured exceeds T , the appropriate fan runs at  
MIN  
MIN  
minimum speed and increases with temperature according to T  
.
RANGE  
Table 77. THERM LIMIT REGISTERS (Note 28)  
Register Address  
R/W  
R/W  
R/W  
R/W  
Description  
Power−On Default  
0x64 (100°C)  
0x6A  
0x6B  
0x6C  
Remote 1 THERM limit.  
Local THERM limit.  
0x64 (100°C)  
Remote 2 THERM limit.  
0x64 (100°C)  
28.If any temperature measured exceeds its THERM limit, all PWM outputs drive their fans at 100% duty cycle. This is a fail−safe mechanism  
incorporated to cool the system in the event of a critical over temperature. It also ensures some level of cooling in the event that software  
or hardware locks up. If set to 0x80, this feature is disabled. The PWM output remains at 100% until the temperature drops below THERM  
limit − hysteresis. If the THERM pin is programmed as an output, exceeding these limits by 0.25°C can cause the THERM pin to assert low  
as an output.  
www.onsemi.com  
58  
 
NCT7491  
Table 78. TEMPERATURE/TMIN HYSTERESIS REGISTERS (Note 29)  
Register Address  
0x6D  
R/W  
R/W  
Description  
Power−On Default  
Remote 1 and Local Temperature hysteresis.  
0x44  
<3:0>  
HYSL  
Local Temperature hysteresis. 0°C to 15°C of hys-  
teresis can be applied to the Local temperature  
AFC control loops.  
<7:4>  
HYSR1  
Remote 1 Temperature hysteresis. 0°C to 15°C of  
hysteresis can be applied to the Remote 1 Temper-  
ature AFC control loops.  
0x6E  
R/W  
PECI and Remote 2 Temperature hysteresis.  
0x44  
<3:0>  
HYSP  
PECI Temperature hysteresis. 0°C to 15°C of hys-  
teresis can be applied to the PECI AFC control  
loops.  
<7:4>  
HYSR2  
Remote 2 Temperature hysteresis. 0°C to 15°C of  
hysteresis can be applied to the Local Temperature  
AFC control loops.  
29.Each 4−bit value controls the amount of temperature hysteresis applied to a particular temperature channel. Once the temperature for that  
channel falls below its T value, the fan remains running at PWM duty cycle until the temperature = T  
– hysteresis. Up to 15°C of  
MIN  
MIN  
MIN  
hysteresis can be assigned to any temperature channel. The hysteresis value chosen also applies to that temperature channel, if its THERM  
limit is exceeded. The PWM output being controlled goes to 100%, if the THERM limit is exceeded and remains at 100% until the temperature  
drops below THERM – hysteresis. For acoustic reasons, it is recommended that the hysteresis value not be programmed less than 4°C.  
Setting the hysteresis value lower than 4°C causes the fan to switch on and off regularly when the temperature is close to T  
.
MIN  
Table 79. REGISTER 0x6F − XNOR Tree Test Enable (Power−On Default = 0x00)  
Register Address  
R/W (Note 30)  
Description  
<0>  
XEN  
If the XEN bit is set to 1, the device enters the XNOR tree test mode. Clearing  
the bit removes the device from the XNOR tree test mode.  
<7:1>  
Reserved  
Unused. Do not write to these bits.  
30.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have no effect.  
Table 80. REMOTE 1 TEMPERATURE OFFSET (Note 31)  
Register Address  
0x70  
R/W (Note 31)  
R/W  
Description  
Power−On Default  
Remote 1 temperature offset.  
0x00  
<7:0>  
R/W  
Allows a temperature offset to be automatically ap-  
plied to the remote temperature 1 channel meas-  
urement. Bit 1 of 0x7C (Configuration Register 5)  
determines the range and resolution of this register.  
31.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have no effect.  
Table 81. LOCAL TEMPERATURE OFFSET (Note 32)  
Register Address  
0x71  
Description  
Local temperature offset.  
Power−On Default  
R/W (Note 32)  
R/W  
0x00  
<7:0>  
R/W  
Allows a temperature offset to be automatically ap-  
plied to the local temperature measurement. Bit 1 of  
0x7C (Configuration Register 5) determines the  
range and resolution of this register.  
32.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have no effect.  
Table 82. REMOTE 2 TEMPERATURE OFFSET (Note 33)  
Register Address  
0x72  
Description  
Power−On Default  
R/W (Note 33)  
R/W  
Remote 2 temperature offset.  
0x00  
<7:0>  
R/W  
Allows a temperature offset to be automatically ap-  
plied to the remote temperature 2 channel meas-  
urement. Bit 1 of 0x7C (Configuration Register 5)  
determines the range and resolution of this register.  
33.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have no effect.  
www.onsemi.com  
59  
 
NCT7491  
Table 83. REGISTER 0x73 − Configuration Register 2 (Power−On Default = 0x00) (Note 34)  
Bit  
0
Name  
Description  
R/W (Note 34)  
Reserved  
Reserved  
ABS/REL  
R
R
1
2
R/W  
0 = PECI uses relative values for fan control  
1 = PECI uses absolute value for fan control  
3
4
VAVG  
TAVG  
FQ  
R/W  
R/W  
R/W  
VAVG = 1 indicates that averaging on the voltage measurements is turned off. This  
allows measurements on each channel to be made much faster.  
TAVG = 1 indicates that averaging on the temperature measurements is turned off.  
This allows measurements on each channel to be made much faster.  
<6:5>  
Sets the fault queue length:  
<00> = 1 event  
<01> = 2 events  
<10> = 3 events  
<11> = 4 events  
7
Shutdown  
R/W  
34.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have no effect.  
Table 84. REGISTER 0x74 − Interrupt Mask Register 1 (Power−On Default = 0x00)  
Bit  
0
Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Description  
2.5 V  
2.5 V = 1, masks SMBALERT for out−of−limit conditions on the 2.5 V channel.  
1
V
CCP  
V
V
= 1 masks SMBALERT for out−of−limit conditions on the V  
channel.  
CCP  
CCP  
2
V
CC  
= 1 masks SMBALERT for out−of−limit conditions on the V channel.  
CC CC  
3
5 V  
RIT  
LT  
5 V = 1 masks SMBALERT for out−of−limit conditions on the 5 V channel.  
RIT = 1 masks SMBALERT for out−of−limit conditions on the Remote 1 Temperature channel.  
LT = 1 masks SMBALERT for out−of−limit conditions on the Local Temperature channel.  
R2T = 1 masks SMBALERT for out−of−limit conditions on the Remote 2 Temperature channel.  
Reserved  
4
5
6
R2T  
7
Table 85. REGISTER 0x75 − Interrupt Mask Register 2 (Power−On Default = 0x00)  
Bit  
0
Name  
R/W  
R/W  
R
Description  
12 V = 1, masks SMBALERT for out−of−limit conditions on the 12 V channel.  
Reserved  
12 V  
1
2
FAN1  
FAN2  
FAN3  
FAN4  
D1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FAN1 = 1 masks SMBALERT for a Fan 1 fault.  
3
FAN2 = 1 masks SMBALERT for a Fan 2 fault.  
4
FAN3 = 1 masks SMBALERT for a Fan 3 fault.  
5
FAN4 = 1 masks SMBALERT for a Fan 4 fault.  
6
D1 = 1 masks SMBALERT for a diode open or short on a Remote 1 channel.  
D2 = 1 masks SMBALERT for a diode open or short on a Remote 2 channel.  
7
D2  
Table 86. REGISTER 0x76 − Extended Resolution Register 1 (Note 35) (Power−On Default = 0x00)  
Bit  
Name  
R/W  
R
Description  
<1:0>  
<3:2>  
<5:4>  
<7:6>  
2.5 V  
2.5 V LSBs. Holds the 2 LSBs of the 10−bit 2.5 V measurement.  
V
CCP  
R
V
V
LSBs. Holds the 2 LSBs of the 10−bit V  
measurement.  
CCP  
CCP  
V
CC  
R
LSBs. Holds the 2 LSBs of the 10−bit V measurement.  
CC CC  
5 V  
R
5 V LSBs. Holds the 2 LSBs of the 10−bit 5 V measurement.  
35.If this register is read, this register and the registers holding the MSB of each reading are frozen until read.  
www.onsemi.com  
60  
 
NCT7491  
Table 87. REGISTER 0x77 − Extended Resolution Register 2 (Note 36) (Power−On Default = 0x00)  
Bit  
Name  
12 V  
R/W  
R
Description  
<1:0>  
<3:2>  
<5:4>  
<7:6>  
12 V LSBs. Holds the 2 LSBs of the 10−bit 12 V measurement.  
TDM1  
LTMP  
TDM2  
R
Remote 1 Temperature LSBs. Holds the 2 LSBs of the 10−bit Remote 1 temperature measurement.  
Local Temperature LSBs. Holds the 2 LSBs of the 10−bit local temperature measurement.  
Remote 2 Temperature LSBs. Holds the 2 LSBs of the 10−bit Remote 2 temperature measurement.  
R
R
36.If this register is read, this register and the registers holding the MSB of each reading are frozen until read.  
Table 88. REGISTER 0x78 − Configuration Register 3 (Power−On Default = 0x00)  
R/W  
(Note 37)  
Bit  
Name  
Description  
<0>  
ALERT  
R/W  
ALERT = 1, Pin 10 on the QSOP package, Pin 7 on the QFN package (PWM2/SMBALERT) is  
configured as an SMBALERT interrupt output to indicate out−of−limit error conditions.  
ALERT = 0, Pin 10 on the QSOP package, Pin 7 on the QFN package (PWM2/SMBALERT ) is  
configured as the PWM2 output.  
<1>  
THERM /  
2.5 V  
R/W  
THERM = 1 enables THERM functionality on Pin 22 on the QSOP package, Pin 19 on the QFN  
package  
<2>  
<3>  
Reserved  
FAST  
R
R/W  
FAST = 1 enables fast TACH measurements on all channels. This increases the TACH measure-  
ment rate from once per second to once every 250 ms (4 x).  
<4>  
<5>  
<6>  
<7>  
DC1  
DC2  
DC3  
DC4  
R/W  
R/W  
R/W  
R/W  
DC1 = 1 enables TACH measurements to be continuously made on TACH1. Fans must be driven  
by dc. Setting this bit prevents pulse stretching because it is not required for dc−driven motors.  
DC2 = 1 enables TACH measurements to be continuously made on TACH2. Fans must be driven  
by dc. Setting this bit prevents pulse stretching because it is not required for dc−driven motors.  
DC3 = 1 enables TACH measurements to be continuously made on TACH3. Setting this bit pre-  
vents pulse stretching because it is not required for dc−driven motors.  
DC4 = 1 enables TACH measurements to be continuously made on TACH4. Setting this bit pre-  
vents pulse stretching because it is not required for dc−driven motors.  
37.Bits <3:0> of this register become read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to bits <3:0>  
have no effect.  
Table 89. REGISTER 0x79 − THERM Timer Value Register (Power−On Default = 0x00)  
Bit  
Name  
R/W  
Description  
<7:1>  
TMR  
R
Times how long THERM input is asserted. These seven bits read zero until the THERM assertion time  
exceeds 45.52 ms.  
<0>  
ASRT/  
TMR0  
R
This bit is set high on the assertion of the THERM input and is cleared on read. If the THERM asser-  
tion time exceeds 45.52 ms, this bit is set and becomes the LSB of the 8−bit TMR reading. This allows  
THERM assertion times from 45.52 ms to 5.82 sec to be reported back with a resolution of 22.76 ms.  
Table 90. REGISTER 0x7A − THERM Timer Limit Register (Power−On Default = 0xFF)  
Bit  
Name  
R/W  
Description  
<7:0>  
LIMT  
R/W  
Sets maximum THERM assertion length allowed before an interrupt is generated. This is an  
8−bit limit with a resolution of 22.76 ms allowing THERM assertion limits of 45.52 ms to 5.82 s  
to be programmed. If the THERM assertion time exceeds this limit, Bit 5 (F4P) of Interrupt  
Status Register 2 (Reg. 0x42) is set. If the limit value is 0x00, an interrupt is generated immedi-  
ately on the assertion of the THERM input. If THERM is configured as an output the THERM  
timer limit should be set to 0xFF to avoid unwanted alerts from being generated.  
www.onsemi.com  
61  
 
NCT7491  
Table 91. REGISTER 0x7B − TACH Pulses per Revolution Register (Power−On Default = 0x55)  
Bit  
Name  
R/W  
Description  
<1:0>  
FAN1  
R/W  
Sets number of pulses to be counted when measuring Fan 1 speed. Can be used to determine fan  
pulses per revolution for unknown fan type.  
Pulses Counted  
00 = 1  
01 = 2 (default)  
10 = 3  
11 = 4  
<3:2>  
<5:4>  
<7:6>  
FAN2  
FAN3  
FAN4  
R/W  
R/W  
R/W  
Sets number of pulses to be counted when measuring Fan 2 speed. Can be used to determine fan  
pulses per revolution for unknown fan type.  
Pulses Counted  
00 = 1  
01 = 2 (default)  
10 = 3  
11 = 4  
Sets number of pulses to be counted when measuring Fan 3 speed. Can be used to determine fan  
pulses per revolution for unknown fan type.  
Pulses Counted  
00 = 1  
01 = 2 (default)  
10 = 3  
11 = 4  
Sets number of pulses to be counted when measuring Fan 4 speed. Can be used to determine fan  
pulses per revolution for unknown fan type.  
Pulses Counted  
00 = 1  
01 = 2 (default)  
10 = 3  
11 = 4  
Table 92. REGISTER 0x7C − Configuration Register 5 (Power−On Default = 0x05)  
R/W  
(Note 38)  
Bit  
Name  
Description  
<0>  
2sC  
R/W  
2sC = 1 sets the temperature range to the twos complement temperature range.  
2sC = 0 changes the temperature range to the offset 64 temperature range. When this bit is  
changed, the NCT7491 interprets all relevant temperature register values as defined by this bit.  
<1>  
TempOffset  
R/W  
R/W  
TempOffset = 0 sets offset range to −63C to +64C with 0.5°C resolution.  
TempOffset = 1 sets offset range to −63°C to +127°C with 1°C resolution.  
These settings apply to registers 0x70, 0x71, and 0x72 (Remote 1, Internal and Remote2 Tem-  
perature offset registers. Note: PECI offset is always 1°C resolution.)  
<3:2>  
Pin19  
00 = Pin 19 is SMBALERT  
Function  
01 = Pin 19 is THERM  
10 = Pin 19 is GPIO3  
11 = reserved  
Note: Pin 19 refers to the QSOP package. The equivalent pin on the QFN package is pin 16.  
38.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have  
no effect.  
www.onsemi.com  
62  
 
NCT7491  
Table 92. REGISTER 0x7C − Configuration Register 5 (Power−On Default = 0x05)  
R/W  
(Note 38)  
Bit  
Name  
Description  
<4>  
PECI  
CONTROL  
R/W  
PECI = 1 enables THERM assertions when the PECI temperature read is higher than the PECI  
T
T
limit and the THERM pin is bidirectional. If THERM is configured as an output the  
CONTROL  
THERM timer limit (register 0x7A) should be set to 0xFF to avoid unwanted alerts from being  
generated.  
PECI = 0 indicates that the THERM pin is configured as a timer input only. Can also be disabled  
by writing −128°C to the relevant PECI T  
limit register.  
CONTROL  
<5>  
R1 THERM  
R/W  
R1 = 1 enables THERM assertions when the Remote 1 temperature read is higher than the  
Remote 1 THERM limit and the THERM pin is bidirectional. If THERM is configured as an out-  
put the THERM timer limit (register 0x7A) should be set to 0xFF to avoid unwanted alerts from  
being generated.  
R1 = 0 indicatesthat the THERM pin is configured as a timer input only.  
can also be disabled by writing one of the below values to the Remote 1 THERM limit register  
(0x6A): Writing −64°C in offset 64 mode.  
Writing −128°C in twos complement mode.  
<6>  
<7>  
Local  
THERM  
R/W  
R/W  
Local = 1 enables THERM assertions when the Local temperature read is higher than the Local  
THERM limit and the THERM pin is bidirectional. If THERM is configured as an output the  
THERM timer limit (register 0x7A) should be set to 0xFF to avoid unwanted alerts from being  
generated.  
can also be disabled by writing one of the below values to the Remote 1 THERM limit register  
(0x6B): Writing −64°C in offset 64 mode.  
Writing −128°C in twos complement mode.  
R2 THERM  
R2 = 1 enables THERM assertions when the Remote 2 temperature read is higher than the  
Remote 2 THERM limit and the THERM pin is bidirectional. If THERM is configured as an out-  
put the THERM timer limit (register 0x7A) should be set to 0xFF to avoid unwanted alerts from  
being generated.  
can also be disabled by writing one of the below values to the Remote 1 THERM limit register  
(0x6C): Writing −64°C in offset 64 mode.  
Writing −128°C in twos complement mode.  
38.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have  
no effect.  
Table 93. REGISTER 0x7D − Configuration Register 4 (Power−On Default = 0x00)  
R/W  
(Note 39)  
Bit  
Name  
Description  
<1:0>  
PIN14FUNC  
R/W  
These bits set the functionality of Pin 14:  
00 = TACH4 (default)  
01 = THERM  
10 = SMBALERT  
11 = RESERVED  
Note: Pin 14 refers to the QSOP package. The equivalent pin on the QFN package is pin 11.  
<2>  
THERM  
Disable  
R/W  
THERM Disable = 0 enables THERM overtemperature output assuming THERM is correctly  
configured (registers 0x78, 0x7C, 0x7D).  
THERM Disable = 1 disables THERM overtemperature output on all channels.  
THERM can also be disabled on any channel by:  
Writing −64°C to the appropriate THERM temperature limit in offset 64 mode.  
Writing −128°C to the appropriate THERM temperature limit in twos complement mode.  
<3>  
<4>  
<5>  
<6>  
<7>  
BpAtt Vtt  
R/W  
R/W  
R/W  
R/W  
R/W  
Bypass Vtt attenuator. When set, the measurement scale for this channel changes from 0 V  
(0x00) to 2 V (0xFF).  
BpAtt2.5 V  
Bypass 2.5 V attenuator. When set, the measurement scale for this channel changes from 0 V  
(0x00) to 2 V (0xFF).  
BpAttV  
Bypass V  
attenuator. When set, the measurement scale for this channel changes from 0 V  
CCP  
CCP  
(0x00) to 2 V (0xFF).  
BpAtt5 V  
Bypass 5 V attenuator. When set, the measurement scale for this channel changes from 0 V  
(0x00) to 2 V (0xFF).  
BpAtt12 V  
Bypass 12 V attenuator. When set, the measurement scale for this channel changes from 0 V  
(0x00) to 2 V (0xFF).  
39.This register becomes read−only when the Configuration Register 1 lock bit is set to 1. Any further attempts to write to this register have no  
effect.  
www.onsemi.com  
63  
 
NCT7491  
Table 94. REGISTER 0x7E − Interrupt Status 5 (Power−On Default = 0x00)  
Bit  
Name  
PUSH0  
PUSH1  
PUSH2  
PUSH3  
OVT_P0  
OVT_P1  
OVT_P2  
OVT_P3  
R/W  
R
Description  
Logic 1 indicates ALERT assertion for Push0 temperature  
Logic 1 indicates ALERT assertion for Push1 temperature  
Logic 1 indicates ALERT assertion for Push2 temperature  
Logic 1 indicates ALERT assertion for Push3 temperature  
Logic 1 indicates THERM assertion for Push0 temperature  
Logic 1 indicates THERM assertion for Push1 temperature  
Logic 1 indicates THERM assertion for Push2 temperature  
Logic 1 indicates THERM assertion for Push3 temperature  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
R
R
R
R
R
R
R
Table 95. REGISTER 0x7F − Interrupt Mask 5 (Power−On Default = 0x00)  
Bit  
Name  
PUSH0  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 masks PUSH0 ALERT assertions  
Logic 1 masks PUSH1 ALERT assertions  
Logic 1 masks PUSH2 ALERT assertions  
Logic 1 masks PUSH3 ALERT assertions  
Reserved  
PUSH1  
PUSH2  
PUSH3  
Reserved  
Reserved  
Reserved  
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
Table 96. REGISTER 0x80 − GPIO Register (Power−On Default = 0xCE )  
Bit  
<0>  
<1>  
Name  
RES  
R/W  
Description  
RESERVED  
GPEN  
1= GPIO1 enabled on pin 5, GPIO2 enabled on pin 6  
0 = GPIO1 and GPIO2 are disabled  
This bit only has effect if the SMBus master port is disabled (0xB5 <0> =0)  
<2>  
<3>  
GPIO2  
GPIO1  
R/W  
R/W  
If GPIO2 is set to input, this register reflects the state of the pin. If GPIO2 is configured as  
an output, writing to this register asserts the output high or low depending on the polarity.  
If GPIO1 is set to input, this register reflects the state of the pin. If GPIO1 is configured as  
an output, writing to this register asserts the output high or low depending on the polarity.  
<4>  
<5>  
<6>  
GPIO2 POL  
GPIO1 POL  
GPIO2 DIR  
R/W  
R/W  
R/W  
GPIO2 polarity bit. Set to 0 for active low. Set to1 for active high.  
GPIO1 polarity bit. Set to 0 for active low. Set to1 for active high.  
GPIO2 direction bit. Set to 1 for GPIO2 to act as an input, set to 0 for GPIO2 to act as an  
output.  
<7>  
GPIO1 DIR  
R/W  
GPIO1 direction bit. Set to 1 for GPIO1 to act as an input, set to 0 for GPIO1 to act as an  
output.  
Table 97. REGISTER 0x81 − Interrupt Status Register 4 (Power−On Default = 0x00)  
Bit  
Name  
PCC  
R/W  
R
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
PECI Completion code interrupt  
TTS  
R
Logic 1 indicates that the THERM Timer limit has been exceeded.  
GCOMM  
PECI1  
PECI2  
PECI3  
R
Logic 1 indicates a COMM error resulting from a Generic PECI instruction  
R
A logic 1 indicates that the PECI high or low limit has been exceeded by the PECI1 value.  
A logic 1 indicates that the PECI high or low limit has been exceeded by the PECI2 value.  
A logic 1 indicates that the PECI high or low limit has been exceeded by the PECI3 value.  
R
R
www.onsemi.com  
64  
 
NCT7491  
Table 97. REGISTER 0x81 − Interrupt Status Register 4 (Power−On Default = 0x00)  
Bit  
Name  
R/W  
Description  
<6>  
SMBCNT  
R
Logic 1 indicates that the byte count returned by the SMBus Master Block Read is too low. If the  
PCH temperature only is required then the returned byte count should be 2 or greater. If DIMM  
temperatures are being read from the PCH then the returned byte count should be 9 or greater.  
<7>  
V
TT  
R
A logic 1 indicates that the V high or low limit has been exceeded. This bit is cleared on a read  
of the status register only if the error condition has subsided.  
TT  
Table 98. REGISTER 0x82 − Interrupt Mask Register 3 (Power−On Default = 0x00)  
Bit  
<0>  
<1>  
Name  
PECI0  
DATA  
R/W  
R/W  
R/W  
Description  
A logic 1 masks SMBALERT assertions for out−of−limit conditions on PECI0.  
A logic 1 masks SMBALERT assertions for PECI Data errors. This also disables the fan over−ride  
function for PECI errors.  
<2>  
COMM  
R/W  
A logic 1 masks SMBALERT assertions for PECI communications errors. This also disables the  
fan over−ride function for PECI errors.  
<3>  
<6:4>  
<7>  
OVT  
RES  
R/W  
R/W  
R
OVT = 1 masks SMBALERT for over temperature THERM conditions.  
Reserved  
Reserved  
NOTE: If the mask bits in register 0x82 are set it is also necessary to set the OOL mask bit in register 0x75 to ensure the SMBALERT  
output is not asserted.  
Table 99. REGISTER 0x83 − Interrupt Mask Register 4 (Power−On Default = 0x00)  
Bit  
Name  
PCC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 masks ALERT assertions for PECI completion codes.  
Logic 1 masks assertions for THERM Timer status bit  
TTS  
GCOMM  
PECI1  
PECI2  
PECI3  
SMBCNT  
Logic 1 masks the GCOMM PECI status bit  
A logic 1 masks ALERT assertions for out−of−limit conditions on PECI1.  
A logic 1 masks ALERT assertions for out−of−limit conditions on PECI2.  
A logic 1 masks ALERT assertions for out−of−limit conditions on PECI3.  
Logic 1 masks ALERT assertions for incorrect byte count values returned by the Block Read command  
V
TT  
A logic 1 masks ALERT assertions for out−of−limit conditions on V .  
TT  
NOTE: If the mask bits in register 0x83 are set it is also necessary to set the OOL mask bit in register 0x82 to ensure the SMBALERT  
output is not asserted.  
Table 100. VTT LOW LIMIT REGISTER  
Register Address  
R/W  
Description  
Low Limit  
Power−On Default  
0x84  
R/W  
V
0x00  
TT  
Table 101. REGISTER 0x85 − GPIO Config2 (Power−On Default = 0x80)  
Bit  
<4:0>  
<5>  
Name  
Reserved  
GPIO3  
R/W  
Description  
R/W  
If GPIO3 is set to input, this bit reflects the state of the pin. If GPIO3 is configured as an  
output, writing to this register asserts the output high or low depending on the polarity.  
<6>  
<7>  
GPIO3 POL  
GPIO3 DIR  
R/W  
R/W  
GPIO3 polarity bit. Set to 0 for active low. Set to1 for active high.  
GPIO3 direction bit. Set to 1 for GPIO3 to act as an input, set to 0 for GPIO3 to act as an  
output, OOL must also be masked.  
Table 102. VTT HIGH LIMIT REGISTER  
Register Address  
R/W  
Description  
High Limit  
Power−On Default  
0x86  
R/W  
V
0xFF  
TT  
www.onsemi.com  
65  
NCT7491  
Table 103. REGISTER 0x87 − Configuration 9 (Power−On Default = 0x00)  
Bit  
Name  
PWM1OFF  
PWM2OFF  
PWM3OFF  
Reserved  
D0V  
R/W  
R/W  
R/W  
R/W  
R
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
1= Disables PWM1  
1= Disables PWM2  
1 = Disables PWM3  
R/W  
R/W  
R/W  
R/W  
1 = DIMM0 is populated, must be set to enable DIMM0 temperature to be written to CPU  
1 = DIMM1 is populated, must be set to enable DIMM1 temperature to be written to CPU  
1 = DIMM2 is populated, must be set to enable DIMM2 temperature to be written to CPU  
1 = DIMM3 is populated, must be set to enable DIMM3 temperature to be written to CPU  
D1V  
D2V  
D3V  
Table 104. REGISTER 0x88 − PECI Configuration Register 2 (Power−On Default = 0x00)  
Bit  
<2:0>  
<3>  
Name  
RES  
R/W  
R
Description  
RESERVED  
DOM3  
R/W  
CPU Domain Count information. Set to 0 indicates that CPU 4 associated with the PECI3 reading has  
a single domain (Default). Set to 1 indicates that the system CPU4 contains two domains.  
<4>  
<5>  
DOM2  
DOM1  
#CPU  
R/W  
R/W  
R/W  
CPU Domain Count information. Set to 0 indicates that CPU 3 associated with the PECI2 reading has  
a single domain (Default). Set to 1 indicates that the system CPU3 contains two domains.  
CPU Domain Count information. Set to 0 indicates that CPU 2 associated with the PECI1 reading has  
a single domain (Default). Set to 1 indicates that the system CPU2 contains two domains.  
<7:6>  
CPU Count. These bits indicate the number of CPU’s in the system. That will provide PECI thermal  
information to the NCT7491.  
00 = 1 CPU  
01 = 2 CPUs  
10 = 3 CPUs  
11 = 4 CPUs  
Table 105. REGISTER 0x89 − Interrupt Status 7 (Power−On Default = 0x00)  
Bit  
Name  
OVT0  
R/W  
R
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
1 = PECI0 Tcontrol exceeded  
1 = PECI1 Tcontrol exceeded  
1 = PECI2 Tcontrol exceeded  
1 = PECI3 Tcontrol exceeded  
1 = Remote1 THERM exceeded  
1 = Local THERM exceeded  
1 = Remote2 THERM exceeded  
OVT1  
R
OVT2  
R
OVT3  
R
OVT_R1  
OVT_LOC  
OVT_R2  
OOL11  
R
R
R
R
1 indicates an out of limit condition in register 0xBB  
Table 106. REGISTER 0x8A − PWM1 Source Control 1 (Power−On Default = 0x08)  
Bit  
Name  
LOC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables Local temperature to control PWM1 in automatic fan control loop  
Logic 1 enables Remote1 temperature to control PWM1 in automatic fan control loop  
Logic 1 enables Remote2 temperature to control PWM1 in automatic fan control loop  
Logic 1 enables PECI0 temperature to control PWM1 in automatic fan control loop  
Logic 1 enables PECI1 temperature to control PWM1 in automatic fan control loop  
Logic 1 enables PECI2 temperature to control PWM1 in automatic fan control loop  
Logic 1 enables PECI3 temperature to control PWM1 in automatic fan control loop  
REM1  
REM2  
PEC0  
PEC1  
PEC2  
PEC3  
Reserved  
www.onsemi.com  
66  
NCT7491  
Table 107. REGISTER 0x8B − PWM1 Source Control 2 (Power−On Default = 0x00)  
Bit  
Name  
SMB0  
SMB1  
SMB2  
SMB3  
SMB4  
SMB5  
SMB6  
SMB7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables SMBus Slave Device 0 to control PWM1 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 1 to control PWM1 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 2 to control PWM1 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 3 to control PWM1 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 4 to control PWM1 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 5 to control PWM1 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 6 to control PWM1 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 7 to control PWM1 in automatic fan control loop  
Table 108. REGISTER 0x8C − PWM1 Source Control 3 (Power−On Default = 0x00)  
Bit  
Name  
PUSH0  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables Externally written temperature 0 to control PWM1 in automatic fan control loop  
Logic 1 enables Externally written temperature 1 to control PWM1 in automatic fan control loop  
Logic 1 enables Externally written temperature 2 to control PWM1 in automatic fan control loop  
Logic 1 enables Externally written temperature 3 to control PWM1 in automatic fan control loop  
PUSH1  
PUSH2  
PUSH3  
Reserved  
Reserved  
Reserved  
Reserved  
Table 109. REGISTER 0x8D − PWM2 Source Control 1 (Power−On Default = 0x00)  
Bit  
Name  
LOC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables Local temperature to control PWM2 in automatic fan control loop  
Logic 1 enables Remote1 temperature to control PWM2 in automatic fan control loop  
Logic 1 enables Remote2 temperature to control PWM2 in automatic fan control loop  
Logic 1 enables PECI0 temperature to control PWM2 in automatic fan control loop  
Logic 1 enables PECI1 temperature to control PWM2 in automatic fan control loop  
Logic 1 enables PECI2 temperature to control PWM2 in automatic fan control loop  
Logic 1 enables PECI3 temperature to control PWM2 in automatic fan control loop  
REM1  
REM2  
PEC0  
PEC1  
PEC2  
PEC3  
Reserved  
Table 110. REGISTER 0x8E − PWM2 Source Control 2 (Power−On Default = 0x00)  
Bit  
Name  
SMB0  
SMB1  
SMB2  
SMB3  
SMB4  
SMB5  
SMB6  
SMB7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables SMBus Slave Device 0 to control PWM2 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 1 to control PWM2 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 2 to control PWM2 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 3 to control PWM2 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 4 to control PWM2 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 5 to control PWM2 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 6 to control PWM2 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 7 to control PWM2 in automatic fan control loop  
www.onsemi.com  
67  
NCT7491  
Table 111. REGISTER 0x8F − PWM2 Source Control 3 (Power−On Default = 0x00)  
Bit  
Name  
PUSH0  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables Externally written temperature 0 to control PWM2 in automatic fan control loop  
Logic 1 enables Externally written temperature 1 to control PWM2 in automatic fan control loop  
Logic 1 enables Externally written temperature 2 to control PWM2 in automatic fan control loop  
Logic 1 enables Externally written temperature 3 to control PWM2 in automatic fan control loop  
PUSH1  
PUSH2  
PUSH3  
Reserved  
Reserved  
Reserved  
Reserved  
Table 112. REGISTER 0x90 − PWM3 Source Control 1 (Power−On Default = 0x00)  
Bit  
Name  
LOC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables Local temperature to control PWM3 in automatic fan control loop  
Logic 1 enables Remote1 temperature to control PWM3 in automatic fan control loop  
Logic 1 enables Remote2 temperature to control PWM3 in automatic fan control loop  
Logic 1 enables PECI0 temperature to control PWM3 in automatic fan control loop  
Logic 1 enables PECI1 temperature to control PWM3 in automatic fan control loop  
Logic 1 enables PECI2 temperature to control PWM3 in automatic fan control loop  
Logic 1 enables PECI3 temperature to control PWM3 in automatic fan control loop  
REM1  
REM2  
PEC0  
PEC1  
PEC2  
PEC3  
Reserved  
Table 113. REGISTER 0x91 − PWM3 Source Control 2 (Power−On Default = 0x00)  
Bit  
Name  
SMB0  
SMB1  
SMB2  
SMB3  
SMB4  
SMB5  
SMB6  
SMB7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables SMBus Slave Device 0 to control PWM3 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 1 to control PWM3 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 2 to control PWM3 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 3 to control PWM3 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 4 to control PWM3 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 5 to control PWM3 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 6 to control PWM3 in automatic fan control loop  
Logic 1 enables SMBus Slave Device 7 to control PWM3 in automatic fan control loop  
Table 114. REGISTER 0x92 − PWM3 Source Control 3 (Power−On Default = 0x00)  
Bit  
Name  
PUSH0  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables Externally written temperature 0 to control PWM3 in automatic fan control loop  
Logic 1 enables Externally written temperature 1 to control PWM3 in automatic fan control loop  
Logic 1 enables Externally written temperature 2 to control PWM3 in automatic fan control loop  
Logic 1 enables Externally written temperature 3 to control PWM3 in automatic fan control loop  
PUSH1  
PUSH2  
PUSH3  
Reserved  
Reserved  
Reserved  
Reserved  
www.onsemi.com  
68  
NCT7491  
Table 115. DEVICE ID REGISTER  
Register Address  
R/W  
Read  
Description  
Device Revision  
Power−On Default  
0x93  
Table 116. PECI OFFSET REGISTERS  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Power−On Default  
0x94  
0x95  
0x96  
0x97  
PECI0 Offset  
PECI1 Offset  
PECI2 Offset  
PECI3 Offset  
0x00  
0x00  
0x00  
0x00  
Table 117. SMBus MASTER ADDRESS TABLE  
Register Address  
0x98  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Device 0 (PCH) SMBus Address  
Default  
0x00  
0x40  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x99  
Device 0 (PCH) Block Read command code  
Device 1 SMBus Address  
0x9A  
0x9B  
Device 1 Temperature Address Pointer  
Device 2 SMBus Address  
0x9C  
0x9D  
Device 2 Temperature Address Pointer  
Device 3 SMBus Address  
0x9E  
0x9F  
Device 3 Temperature Address Pointer  
Device 4 SMBus Address  
0xA0  
0xA1  
Device 4 Temperature Address Pointer  
Device 5 SMBus Address  
0xA2  
0xA3  
Device 5 Temperature Address Pointer  
Device 6 SMBus Address  
0xA4  
0xA5  
Device 6 Temperature Address Pointer  
Device 7 SMBus Address  
0xA6  
0xA7  
Device 7 Temperature Address Pointer  
Table 118. SMBus MASTER TEMPERATURE VALUES  
Register Address  
0xA8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
SMBus Device 0 (PCH) Temperature  
Default  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0xA9  
SMBus Device 1 (DIMM0) Temperature  
SMBus Device 2 (DIMM1) Temperature  
SMBus Device 3 (DIMM2) Temperature  
SMBus Device 4 (DIMM3) Temperature  
SMBus Device 5 Temperature  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
SMBus Device 6 Temperature  
0xAF  
SMBus Device 7 Temperature  
Table 119. Register 0xB0 − SMBus Master Configuration 1 (Power−On Default = 0xFF)  
Bit  
<0>  
<1>  
Name  
RS0  
R/W  
R/W  
R/W  
Description  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 0  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 1  
RS1  
www.onsemi.com  
69  
 
NCT7491  
Table 119. Register 0xB0 − SMBus Master Configuration 1 (Power−On Default = 0xFF)  
Bit  
Name  
RS2  
RS3  
RS4  
RS5  
RS6  
RS7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 2  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 3  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 4  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 5  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 6  
Logic 1 enables the Repeated Start protocol for SMBus Slave Device 7  
Table 120. REGISTER 0xB1 − SMBus Master Configuration 2 (Power−On Default = 0x00)  
Bit  
Name  
PEC0  
PEC1  
PEC2  
PEC3  
PEC4  
PEC5  
PEC6  
PEC7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Logic 1 enables PEC byte support for SMBus Slave Device 0  
Logic 1 enables PEC byte support for SMBus Slave Device 1  
Logic 1 enables PEC byte support for SMBus Slave Device 2  
Logic 1 enables PEC byte support for SMBus Slave Device 3  
Logic 1 enables PEC byte support for SMBus Slave Device 4  
Logic 1 enables PEC byte support for SMBus Slave Device 5  
Logic 1 enables PEC byte support for SMBus Slave Device 6  
Logic 1 enables PEC byte support for SMBus Slave Device 7  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Table 121. REGISTER 0xB2 − SMBus Master Configuration 3 (Power−On Default = 0x03)  
Bit  
Name  
R/W  
Description  
<1:0>  
TMFT0  
R/W  
SMBus Device 0 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Block reads enabled  
<3:2>  
<5:4>  
<7:6>  
TMFT1  
TMFT2  
TMFT3  
R/W  
R/W  
R/W  
SMBus Device 1 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Block reads enabled  
SMBus Device 2 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Block reads enabled  
SMBus Device 3 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Block reads enabled  
www.onsemi.com  
70  
NCT7491  
Table 122. REGISTER 0xB3 − SMBus Master Configuration 4 (Power−On Default = 0x00)  
Bit  
Name  
R/W  
Description  
<1:0>  
TMFT4  
R/W  
SMBus Device 4 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Reserved  
<3:2>  
<5:4>  
<7:6>  
TMFT5  
TMFT6  
TMFT7  
R/W  
R/W  
R/W  
SMBus Device 5 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Literal Format  
SMBus Device 6 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Literal Format  
SMBus Device 7 temperature format:  
00 = 8−bit 2’s Complement  
01 = JEDEC SPD format  
10 = 8−bit straight binary  
11 = Literal Format  
Table 123. REGISTER 0xB5 − SMBus Master Configuration 5 (Power−On Default = 0x08)  
Bit  
Name  
R/W  
Description  
<0>  
SMBEN  
R/W  
0 = SMBus Master disabled  
1 = SMBus Master enabled  
<4:1>  
<5>  
SHYS  
R1DIMM  
R2DIMM  
PCHDIMM  
R/W  
R/W  
R/W  
R/W  
SMBus Device temperature hysteresis  
1 = Over−write DIMM0/DIMM1 value registers with Remote1 value  
1 = Over−write DIMM2/DIMM3 value registers with Remote2 value  
<6>  
<7>  
1 = Read DIMM temperatures from PCH. This setting overrides bits 5 and 6 of this register.  
0 = Read DIMM temperatures from SMBus digital sensors  
Table 124. REGISTER 0xB6 − SMBus Master Status 1 (Power−On Default = 0x00)  
Bit  
Name  
NACK0  
NACK1  
NACK2  
NACK3  
NACK4  
NACK5  
NACK6  
NACK7  
R/W  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Description  
Logic 1 indicates a No Acknowledge from SMBus Device 0  
Logic 1 indicates a No Acknowledge from SMBus Device 1  
Logic 1 indicates a No Acknowledge from SMBus Device 2  
Logic 1 indicates a No Acknowledge from SMBus Device 3  
Logic 1 indicates a No Acknowledge from SMBus Device 4  
Logic 1 indicates a No Acknowledge from SMBus Device 5  
Logic 1 indicates a No Acknowledge from SMBus Device 6  
Logic 1 indicates a No Acknowledge from SMBus Device 7  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Table 125. REGISTER 0xB7 − SMBus Master Status 2 (Power−On Default = 0x00)  
Bit  
Name  
PEC0  
PEC1  
PEC2  
PEC3  
R/W  
Read  
Read  
Read  
Read  
Description  
Logic 1 indicates an SMBus Device 0 PEC error  
<0>  
<1>  
<2>  
<3>  
Logic 1 indicates an SMBus Device 1 PEC error  
Logic 1 indicates an SMBus Device 2 PEC error  
Logic 1 indicates an SMBus Device 3 PEC error  
www.onsemi.com  
71  
 
NCT7491  
Table 125. REGISTER 0xB7 − SMBus Master Status 2 (Power−On Default = 0x00)  
Bit  
Name  
PEC4  
PEC5  
PEC6  
PEC7  
R/W  
Read  
Read  
Read  
Read  
Description  
Logic 1 indicates an SMBus Device 4 PEC error  
<4>  
<5>  
<6>  
<7>  
Logic 1 indicates an SMBus Device 5 PEC error  
Logic 1 indicates an SMBus Device 6 PEC error  
Logic 1 indicates an SMBus Device 7 PEC error  
Table 126. REGISTER 0xB8 − SMBus Master Status 3 (Power−On Default = 0x00)  
Bit  
Name  
TO0  
TO1  
TO2  
TO3  
TO4  
TO5  
TO6  
TO7  
R/W  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Description  
Logic 1 indicates an SMBus Device 0 timeout error  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 indicates an SMBus Device 1 timeout error  
Logic 1 indicates an SMBus Device 2 timeout error  
Logic 1 indicates an SMBus Device 3 timeout error  
Logic 1 indicates an SMBus Device 4 timeout error  
Logic 1 indicates an SMBus Device 5 timeout error  
Logic 1 indicates an SMBus Device 6 timeout error  
Logic 1 indicates an SMBus Device 7 timeout error  
Table 127. REGISTER 0xB9 − SMBus Master Status 4 (Power−On Default = 0x00)  
Bit  
Name  
HILO0  
HILO1  
HILO2  
HILO3  
HILO4  
HILO5  
HILO6  
HILO7  
R/W  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 indicates that the SMBus Device 0 reading is out of limits  
Logic 1 indicates that the SMBus Device 1 reading is out of limits  
Logic 1 indicates that the SMBus Device 2 reading is out of limits  
Logic 1 indicates that the SMBus Device 3 reading is out of limits  
Logic 1 indicates that the SMBus Device 4 reading is out of limits  
Logic 1 indicates that the SMBus Device 5 reading is out of limits  
Logic 1 indicates that the SMBus Device 6 reading is out of limits  
Logic 1 indicates that the SMBus Device 7 reading is out of limits  
Table 128. REGISTER 0Xba − SMBus Master Status 5 (Power−On Default = 0x00)  
Bit  
Name  
TIV0  
R/W  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Description  
Logic 1 indicates that the PCH returned a reserved temperature code  
Logic 1 indicates that the PCH returned a reserved temperature code  
Logic 1 indicates that the PCH returned a reserved temperature code  
Logic 1 indicates that the PCH returned a reserved temperature code  
Logic 1 indicates that the PCH returned a reserved temperature code  
Reserved  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
TIV1  
TIV2  
TIV3  
TIV4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 129. REGISTER 0Xbb − SMBus Master Status 6 (Power−On Default = 0x00)  
Bit  
<0>  
<1>  
<2>  
Name  
TH0  
R/W  
Read  
Read  
Read  
Description  
Logic 1 indicates that the SMBus Device 0 reading is above the programmed THERM Limit  
Logic 1 indicates that the SMBus Device 1 reading is above the programmed THERM Limit  
Logic 1 indicates that the SMBus Device 2 reading is above the programmed THERM Limit  
TH1  
TH2  
www.onsemi.com  
72  
 
NCT7491  
Table 129. REGISTER 0Xbb − SMBus Master Status 6 (Power−On Default = 0x00)  
Bit  
Name  
TH3  
TH4  
TH5  
TH6  
TH7  
R/W  
Read  
Read  
Read  
Read  
Read  
Description  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 indicates that the SMBus Device 3 reading is above the programmed THERM Limit  
Logic 1 indicates that the SMBus Device 4 reading is above the programmed THERM Limit  
Logic 1 indicates that the SMBus Device 5 reading is above the programmed THERM Limit  
Logic 1 indicates that the SMBus Device 6 reading is above the programmed THERM Limit  
Logic 1 indicates that the SMBus Device 7 reading is above the programmed THERM Limit  
Table 130. REGISTER 0xBC − SMBus Master Mask 1 (Power−On Default = 0x00)  
Bit  
Name  
NACK0  
NACK1  
NACK2  
NACK3  
NACK4  
NACK5  
NACK6  
NACK7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 masks a No Acknowledge assertion for SMBus Device 0  
Logic 1 masks a No Acknowledge assertion for SMBus Device 1  
Logic 1 masks a No Acknowledge assertion for SMBus Device 2  
Logic 1 masks a No Acknowledge assertion for SMBus Device 3  
Logic 1 masks a No Acknowledge assertion for SMBus Device 4  
Logic 1 masks a No Acknowledge assertion for SMBus Device 5  
Logic 1 masks a No Acknowledge assertion for SMBus Device 6  
Logic 1 masks a No Acknowledge assertion for SMBus Device 7  
Table 131. REGISTER 0xBD − SMBus Master Mask 2 (Power−On Default = 0x00)  
Bit  
Name  
PEC0  
PEC1  
PEC2  
PEC3  
PEC4  
PEC5  
PEC6  
PEC7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Logic 1 masks a PEC error assertion for SMBus Device 0  
Logic 1 masks a PEC error assertion for SMBus Device 1  
Logic 1 masks a PEC error assertion for SMBus Device 2  
Logic 1 masks a PEC error assertion for SMBus Device 3  
Logic 1 masks a PEC error assertion for SMBus Device 4  
Logic 1 masks a PEC error assertion for SMBus Device 5  
Logic 1 masks a PEC error assertion for SMBus Device 6  
Logic 1 masks a PEC error assertion for SMBus Device 7  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Table 132. REGISTER 0Xbe − SMBus Master Mask 3 (Power−On Default = 0x00)  
Bit  
Name  
TO0  
TO1  
TO2  
TO3  
TO4  
TO5  
TO6  
TO7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Logic 1 masks a timeout error assertion for SMBus Device 0  
Logic 1 masks a timeout error assertion for SMBus Device 1  
Logic 1 masks a timeout error assertion for SMBus Device 2  
Logic 1 masks a timeout error assertion for SMBus Device 3  
Logic 1 masks a timeout error assertion for SMBus Device 4  
Logic 1 masks a timeout error assertion for SMBus Device 5  
Logic 1 masks a timeout error assertion for SMBus Device 6  
Logic 1 masks a timeout error assertion for SMBus Device 7  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Table 133. REGISTER 0Xbf − SMBus Master Mask 4 (Power−On Default = 0x00)  
Bit  
<0>  
<1>  
Name  
HILO0  
HILO1  
R/W  
R/W  
R/W  
Description  
Logic 1 masks limit assertions for SMBus Device 0  
Logic 1 masks limit assertions for SMBus Device 1  
www.onsemi.com  
73  
 
NCT7491  
Table 133. REGISTER 0Xbf − SMBus Master Mask 4 (Power−On Default = 0x00)  
Bit  
Name  
HILO2  
HILO3  
HILO4  
HILO5  
HILO6  
HILO7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Logic 1 masks limit assertions for SMBus Device 2  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Logic 1 masks limit assertions for SMBus Device 3  
Logic 1 masks limit assertions for SMBus Device 4  
Logic 1 masks limit assertions for SMBus Device 5  
Logic 1 masks limit assertions for SMBus Device 6  
Logic 1 masks limit assertions for SMBus Device 7  
Table 134. REGISTER 0xC0 − SMBus Master Mask 5 (Power−On Default = 0x00)  
Bit  
Name  
TIV0  
TIV1  
TIV2  
TIV3  
TIV4  
TIV5  
TIV6  
TIV7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Logic 1 masks data invalid assertion for SMBus Device 0  
Logic 1 masks data invalid assertion for SMBus Device 1  
Logic 1 masks data invalid assertion for SMBus Device 2  
Logic 1 masks data invalid assertion for SMBus Device 3  
Logic 1 masks data invalid assertion for SMBus Device 4  
Logic 1 masks data invalid assertion for SMBus Device 5  
Logic 1 masks data invalid assertion for SMBus Device 6  
Logic 1 masks data invalid assertion for SMBus Device 7  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
Table 135. SMBus MASTER LIMIT REGISTERS  
Register Address  
R/W  
Description  
Power−On Default  
0xC1  
R/W  
SMBus Device High Limit.  
0x7F  
Programmed as an unsigned 8−bit value  
0xC2  
R/W  
SMBus Device Low Limit.  
0x81  
Programmed as an 8−bit 2’s complement value.  
Table 136. SMBus MASTER THERM LIMIT REGISTERS  
Register Address  
R/W  
Description  
Power−On Default  
0xC3  
R/W  
SMBus Device THERM Limit.  
Programmed as an unsigned 8−bit value  
0x64  
Table 137. SMBus DEVICE TMIN REGISTER  
Register Address  
R/W  
Description  
Power−On Default  
0xC6  
R/W  
SMBus Device Tmin value. This sets the the temperature at which fans  
controlled by any SMBus slave device will turn on.  
0x5A  
Programmed as an unsigned 8−bit value in the range 0°C to 175°C.  
www.onsemi.com  
74  
NCT7491  
Table 138. REGISTER 0xC7 − SMBus Master Trange/Interval (Power−On Default = 0x0C)  
Bit  
Name  
R/W  
Description  
<3:0>  
RNG  
R/W  
These bits determine the PWM duty cycle vs. the temperature range for automatic fan control.  
0000 = 2°C  
0001 = 2.5°C  
0010 = 3.33°C  
0011 = 4°C  
0100 = 5°C  
0101 = 6.67°C  
0110 = 8°C  
0111 = 10°C  
1000 = 13.33°C  
1001 = 16°C  
1010 = 20°C  
1011 = 26.67°C  
1100 = 32°C (default)  
1101 = 40°C  
1110 = 53.33°C  
1111 = 80°C  
<5:4>  
<7:6>  
Reserved  
SMBINT  
R/W  
Sets the SMBus Master loop time  
00 = 250 ms  
01 = 500 ms  
10 = 750 ms  
11 = 1 sec  
Table 139. PUSH TEMPERATURE REGISTERS  
Register Address  
R/W  
Description  
Power−On Default  
0xC8  
R/W  
Push0. This register is programmable by an external master to allow tem-  
peratures gathered externally to be used by the NCT7491 fan control loop  
0x00  
0xC9  
0xCA  
0xCB  
R/W  
R/W  
Push1. This register is programmable by an external master to allow tem-  
peratures gathered externally to be used by the NCT7491 fan control loop  
0x00  
0x00  
0x00  
Push2. This register is programmable by an external master to allow tem-  
peratures gathered externally to be used by the NCT7491 fan control loop  
Push3. This register is programmable by an external master to allow tem-  
peratures gathered externally to be used by the NCT7491 fan control loop  
Table 140. PUSH TMIN REGISTER  
Register Address  
R/W  
Description  
Power−On Default  
0xCC  
R/W  
Push Device Tmin value. This sets the the temperature at which fans con-  
trolled by any SMBus slave device will turn on. This value applies to all 4  
Push temperature registers.  
0x5A  
This value should be programmed in the range 0°C to 127°C  
www.onsemi.com  
75  
NCT7491  
Table 141. REGISTER 0xCD − Push Trange (Power−On Default = 0x0C)  
Bit  
Name  
R/W  
Description  
<3:0>  
RNG  
R/W  
These bits determine the PWM duty cycle vs. the temperature range for automatic fan control.  
0000 = 2°C  
0001 = 2.5°C  
0010 = 3.33°C  
0011 = 4°C  
0100 = 5°C  
0101 = 6.67°C  
0110 = 8°C  
0111 = 10°C  
1000 = 13.33°C  
1001 = 16°C  
1010 = 20°C  
1011 = 26.67°C  
1100 = 32°C (default)  
1101 = 40°C  
1110 = 53.33°C  
1111 = 80°C  
<7:4>  
Reserved  
Table 142. PUSH TEMPERATURE LIMIT REGISTERS  
Register Address  
R/W  
R/W  
R/W  
R/W  
Description  
Push High Limit  
Push Low Limit  
Push THERM Limit  
Power−On Default  
0xCE  
0xCF  
0xD0  
0x7F  
0x81  
0x64  
Table 143. GENERIC PECI INTERFACE BLOCK  
Register Address  
R/W  
Description  
Default  
0xD1  
R/W  
Generic PECI CPU Address. This sets the target processor address for the  
PECI command  
0x00  
0xD2  
R/W  
Write Length. This sets the number of byte transferred to the target device  
when the command is executed  
0x00  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read Length. This specifies the number of bytes to be returned by the target.  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
st  
WRDAT0; The 1 byte to be transferred (Command Code)  
nd  
WRDAT1; 2 byte to be transferred  
rd  
WRDAT2; 3 byte to be transferred  
th  
WRDAT3; 4 byte to be transferred  
th  
WRDAT4; 5 byte to be transferred  
WRDAT5; 6th byte to be transferred  
WRDAT6; 7th byte to be transferred  
WRDAT7; 8th byte to be transferred  
WRDAT8; 9th byte to be transferred  
WRDAT9; 10th byte to be transferred  
WRDAT10; 11th byte to be transferred  
WRDAT11; 12th byte to be transferred  
WRDAT12; 13th byte to be transferred  
st  
RDDAT0; The 1 byte returned  
nd  
RDDAT1; The 2 byte returned  
rd  
RDDAT2; The 3 byte returned  
th  
RDDAT3; The 4 byte returned  
th  
RDDAT4; The 5 byte returned  
www.onsemi.com  
76  
 
NCT7491  
Table 143. GENERIC PECI INTERFACE BLOCK  
Register Address  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Default  
0x00  
th  
0xE6  
0xE7  
0xE8  
0xE9  
RDDAT5; The 6 byte returned  
th  
RDDAT6; The 7 byte returned  
0x00  
th  
RDDAT6; The 8 byte returned  
0x00  
th  
RDDAT6; The 9 byte returned  
0x00  
Table 144. REGISTER 0xEA − PECI Configuration 5 (Power−On Default = 0x00)  
Bit  
<0>  
<1>  
Name  
Reserved  
AW  
R/W  
Description  
R/W  
Logic 1 indicates that the command is an Assured Write command. The AW byte is automat-  
ically calculated and appended by the NCT7491. Even though the user does not program the  
AW value the Write Length register for an Assured Write command should include the AW  
byte (for example, if 5 bytes are to be written the Write length register should be set to 6 as  
the AW byte will be added to the end of the write sequence)  
<2>  
PEX  
R/W  
Logic 1 will cause the programmed PECI command sequence to be executed. This bit will  
automatically clear when the command has completed.  
<7:3>  
Reserved  
Table 145. REGISTER 0xEB − Push Hysteresis (Power−On Default = 0x04)  
Bit  
Name  
R/W  
Description  
<3:0>  
<7:4>  
Push Hyst  
Reserved  
R/W  
Sets the hysteresis value associated with the Push temperature registers  
Table 146. REGISTER 0xFF − Page Select  
Bit  
<0>  
Name  
RGMP  
R/W  
R/W  
R
Description  
1 = Selects register map page 1  
<7:1>  
Reserved  
Table 147. FAN1 LOOK UP TABLE  
Register Address  
0x100  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Default  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
Sets the temperature for the 1st LUT point for Fan1  
Sets the PWM output for the 1st LUT point for Fan1  
Sets the temperature for the 2nd LUT point for Fan1  
Sets the PWM output for the 2nd LUT point for Fan1  
Sets the temperature for the 3rd LUT point for Fan1  
Sets the PWM output for the 3rd LUT point for Fan1  
Sets the temperature for the 4th LUT point for Fan1  
Sets the PWM output for the 4th LUT point for Fan1  
Sets the temperature for the 5th LUT point for Fan1  
Sets the PWM output for the 5th LUT point for Fan1  
Sets the temperature for the 6th LUT point for Fan1  
Sets the PWM output for the 6th LUT point for Fan1  
Sets the temperature for the 7th LUT point for Fan1  
Sets the PWM output for the 7th LUT point for Fan1  
Sets the temperature for the 8th LUT point for Fan1  
Sets the PWM output for the 8th LUT point for Fan1  
0x101  
0x102  
0x103  
0x104  
0x105  
0x106  
0x107  
0x108  
0x109  
0x10A  
0x10B  
0x10C  
0x10D  
0x10E  
0x10F  
www.onsemi.com  
77  
NCT7491  
Table 148. FAN2 LOOK UP TABLE  
Register Address  
0x110  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Default  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Sets the temperature for the 1st LUT point for Fan2  
Sets the PWM output for the 1st LUT point for Fan2  
Sets the temperature for the 2nd LUT point for Fan2  
Sets the PWM output for the 2nd LUT point for Fan2  
Sets the temperature for the 3rd LUT point for Fan2  
Sets the PWM output for the 3rd LUT point for Fan2  
Sets the temperature for the 4th LUT point for Fan2  
Sets the PWM output for the 4th LUT point for Fan2  
Sets the temperature for the 5th LUT point for Fan2  
Sets the PWM output for the 5th LUT point for Fan2  
Sets the temperature for the 6th LUT point for Fan2  
Sets the PWM output for the 6th LUT point for Fan2  
Sets the temperature for the 7th LUT point for Fan2  
Sets the PWM output for the 7th LUT point for Fan2  
Sets the temperature for the 8th LUT point for Fan2  
Sets the PWM output for the 8th LUT point for Fan2  
0x111  
0x112  
0x113  
0x114  
0x115  
0x116  
0x117  
0x118  
0x119  
0x11A  
0x11B  
0x11C  
0x11D  
0x11E  
0x11F  
Table 149. FAN3 LOOK UP TABLE  
Register Address  
0x120  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Default  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Sets the temperature for the 1st LUT point for Fan3  
Sets the PWM output for the 1st LUT point for Fan3  
Sets the temperature for the 2nd LUT point for Fan3  
Sets the PWM output for the 2nd LUT point for Fan3  
Sets the temperature for the 3rd LUT point for Fan3  
Sets the PWM output for the 3rd LUT point for Fan3  
Sets the temperature for the 4th LUT point for Fan3  
Sets the PWM output for the 4th LUT point for Fan3  
Sets the temperature for the 5th LUT point for Fan3  
Sets the PWM output for the 5th LUT point for Fan3  
Sets the temperature for the 6th LUT point for Fan3  
Sets the PWM output for the 6th LUT point for Fan3  
Sets the temperature for the 7th LUT point for Fan3  
Sets the PWM output for the 7th LUT point for Fan3  
Sets the temperature for the 8th LUT point for Fan3  
Sets the PWM output for the 8th LUT point for Fan3  
0x121  
0x122  
0x123  
0x124  
0x125  
0x126  
0x127  
0x128  
0x129  
0x12A  
0x12B  
0x12C  
0x12D  
0x12E  
0x12F  
Table 150. REGISTER 0x1FF − Page Select Clear  
Bit  
<0>  
Name  
RGMP  
R/W  
R/W  
R
Description  
0 = Selects register map page 0  
<7:1>  
Reserved  
www.onsemi.com  
78  
NCT7491  
ORDERING INFORMATION  
Model  
Termperature Range  
Package Type  
Shipping  
NCT7491RQR2G  
−40°C to +125°C  
QSOP24  
(Pb−Free)  
4000 / Tape & Reel  
2500 / Tape & Reel  
NCT7491MNTXG  
–40°C to +125°C  
QFN24  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
PACKAGE DIMENSIONS  
QSOP24 NB  
CASE 492B  
ISSUE A  
2X  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION.  
4. DIMENSION D DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION E1 DOES NOT  
INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT  
EXCEED 0.15 PER SIDE. D AND E1 ARE  
DETERMINED AT DATUM H.  
0.20 C  
D
D
D
GAUGE  
PLANE  
A
C
24  
13  
L2  
E
E1  
C
L
DETAIL A  
2X  
5. DATUMS A AND B ARE DETERMINED AT DATUM H.  
2X 12 TIPS  
0.20 C  
D
MILLIMETERS  
1
12  
DIM  
A
MIN  
1.35  
0.10  
0.20  
0.19  
MAX  
1.75  
0.25  
0.30  
0.25  
0.25 C  
D
24X b  
A1  
b
e
M
0.25  
C A-B D  
B
h x 45  
_
C
D
8.65 BSC  
A
H
0.10  
0.10  
C
C
E
6.00 BSC  
3.90 BSC  
0.635 BSC  
E1  
e
h
0.22  
0.40  
0.50  
L
1.27  
A1  
L2  
M
0.25 BSC  
SEATING  
PLANE  
24X  
M
C
0
8
DETAIL A  
_
_
SOLDERING FOOTPRINT  
24X  
0.42  
24X  
1.12  
24  
13  
6.40  
1
12  
0.635  
PITCH  
DIMENSIONS: MILLIMETERS  
www.onsemi.com  
79  
NCT7491  
PACKAGE DIMENSIONS  
QFN24, 4x4, 0.5P  
CASE 485L  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM  
FROM THE TERMINAL TIP.  
L
L
D
A
B
PIN 1  
REFEENCE  
L1  
DETAIL A  
ALTERNATE  
CONSTRUCTIONS  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
E
2X  
MILLIMETERS  
0.15  
C
DIM MIN  
MAX  
1.00  
0.05  
A3  
A
A1  
A3  
b
0.80  
0.00  
EXPOSED Cu  
MOLD CMPD  
2X  
0.15  
C
TOP VIEW  
0.20 REF  
0.20  
0.30  
2.90  
D
4.00 BSC  
DETAIL B  
D2  
E
2.70  
2.70  
A1  
0.10  
0.08  
C
C
4.00 BSC  
DETAIL B  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
E2  
e
2.90  
A
0.50 BSC  
L
0.30  
0.05  
0.50  
0.15  
A3  
L1  
SEATING  
PLANE  
C
NOTE 4  
A1  
SIDE VIEW  
RECOMMENDED  
SOLDERING FOOTPRINT  
D2  
DETAIL A  
24X L  
4.30  
7
24X  
0.55  
2.90  
13  
E2  
1
1
24  
19  
24X b  
2.90  
4.30  
e
e/2  
0.10 C A B  
NOTE 3  
0.05 C  
BOTTOM VIEW  
24X  
0.32  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCT7491/D  

相关型号:

NCT7509W

Nuvoton Thermal Sensor IC with Fan Control
NUVOTON

NCT7509Y

Nuvoton Thermal Sensor IC with Fan Control
NUVOTON

NCT75DMR2G

Industry Standard Digital Temperature Sensor with 2‐wire Interface
ONSEMI

NCT75DR2G

Industry Standard Digital Temperature Sensor with 2‐wire Interface
ONSEMI

NCT75MNR2G

Industry Standard Digital Temperature Sensor with 2‐wire Interface
ONSEMI

NCT7802Y

Hardware Monitoring IC NCT7802Y with PECI 3.0 interface
NUVOTEM TALEM

NCT80

Hardware Monitor with I2C Serial Interface
ONSEMI

NCT80DBR2G

Hardware Monitor with I2C Serial Interface
ONSEMI

NCT_07

Suitable for automobile, automation system,electronicequipment
DBLECTRO

NCU15WB473D60RC

NTC Thermistors
MURATA

NCU15WB473D6SRC

NTC Thermistors
MURATA

NCU15WB473E60RC

NTC Thermistors
MURATA