NCP1400A [ONSEMI]

100 mA, Fixed Frequency PWM Step−Up Micropower Switching Regulator; 百毫安,固定频率PWM升压型微功率开关稳压器
NCP1400A
型号: NCP1400A
厂家: ONSEMI    ONSEMI
描述:

100 mA, Fixed Frequency PWM Step−Up Micropower Switching Regulator
百毫安,固定频率PWM升压型微功率开关稳压器

稳压器 开关
文件: 总16页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1400A  
100 mA, Fixed Frequency  
PWM Step−Up Micropower  
Switching Regulator  
The NCP1400A series are micropower step−up DC to DC  
converters that are specifically designed for powering portable  
equipment from one or two cell battery packs. These devices are  
designed to startup with a cell voltage of 0.8 V and operate down to  
less than 0.2 V. With only four external components, this series allows  
a simple means to implement highly efficient converters that are  
capable of up to 100 mA of output current.  
http://onsemi.com  
5
1
Each device consists of an on−chip fixed frequency oscillator, pulse  
width modulation controller, phase compensated error amplifier that  
ensures converter stability with discontinuous mode operation,  
soft−start, voltage reference, driver, and power MOSFET switch with  
current limit protection. Additionally, a chip enable feature is provided  
to power down the converter for extended battery life.  
The NCP1400A device series are available in the Thin SOT23−5  
package with seven standard regulated output voltages. Additional  
voltages that range from 1.8 V to 4.9 V in 100 mV steps can be  
manufactured.  
THIN SOT23−5  
SN SUFFIX  
CASE 483  
PIN CONNECTIONS AND  
MARKING DIAGRAM  
1
2
3
5
CE  
OUT  
NC  
LX  
Features  
GND  
4
Extremely Low Startup Voltage of 0.8 V  
Operation Down to Less than 0.2 V  
Only Four External Components for Simple Highly Efficient  
Converters  
(Top View)  
xxx = Marking  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
Up to 100 mA Output Current Capability  
Fixed Frequency Pulse Width Modulation Operation  
Phase Compensated Error Amplifier for Stable Converter Operation  
Chip Enable Power Down Capability for Extended Battery Life  
Pb−Free Packages are Available  
= Pb−Free Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 2 of this data sheet.  
Typical Applications  
Cellular Telephones  
Pagers  
Personal Digital Assistants  
Electronic Games  
Digital Cameras  
V
V
OUT  
IN  
CE  
1
LX  
5
Camcorders  
Handheld Instruments  
White LED Torch Light  
OUT  
2
NC  
3
GND  
4
Figure 1. Typical Step−Up Converter  
Application  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
March, 2006 − Rev. 11  
NCP1400A/D  
NCP1400A  
ORDERING INFORMATION  
Output  
Voltage  
Switching  
Frequency  
Device  
Marking  
Package  
Shipping  
NCP1400ASN19T1  
1.9 V  
1.9 V  
2.2 V  
2.2 V  
2.5 V  
2.5 V  
2.7 V  
2.7 V  
3.0 V  
3.0 V  
3.3 V  
3.3 V  
3.8 V  
3.8 V  
4.5 V  
4.5 V  
5.0 V  
5.0 V  
DAI  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
NCP1400ASN19T1G  
NCP1400ASN22T1  
NCP1400ASN22T1G  
NCP1400ASN25T1  
NCP1400ASN25T1G  
NCP1400ASN27T1  
NCP1400ASN27T1G  
NCP1400ASN30T1  
NCP1400ASN30T1G  
NCP1400ASN33T1  
NCP1400ASN33T1G  
NCP1400ASN38T1  
NCP1400ASN38T1G  
NCP1400ASN45T1  
NCP1400ASN45T1G  
NCP1400ASN50T1  
NCP1400ASN50T1G  
DAI  
DCN  
DCN  
DAV  
DAV  
DAA  
DAA  
DAB  
DAB  
DAJ  
DAJ  
DBK  
DBK  
DBL  
DBL  
DAD  
DAD  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
Thin SOT23−5  
3000 / Tape & Reel  
(7 Inch Reel)  
180 KHz  
Thin SOT23−5  
(Pb−Free)  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
Thin SOT23−5  
Thin SOT23−5  
(Pb−Free)  
NOTE: The ordering information lists seven standard output voltage device options. Additional devices with output voltage ranging from  
1.8 V to 5.0 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
2
NCP1400A  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply Voltage (Pin 2)  
V
−0.3 to 6.0  
V
OUT  
Input/Output Pins  
LX (Pin 5)  
LX Peak Sink Current  
V
I
−0.3 to 6.0  
400  
V
mA  
LX  
LX  
CE (Pin 1)  
Input Voltage Range  
Input Current Range  
V
I
−0.3 to 6.0  
−150 to 150  
V
mA  
CE  
CE  
Thermal Resistance Junction to Air  
Operating Ambient Temperature Range (Note 2)  
Operating Junction Temperature Range  
Storage Temperature Range  
R
250  
°C/W  
°C  
q
JA  
T
−40 to +85  
−40 to +125  
−55 to +150  
A
T
°C  
J
T
°C  
stg  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) $2.0 kV per JEDEC standard: JESD22−A114.  
Machine Model (MM) $200 V per JEDEC standard: JESD22−A115.  
2. The maximum package power dissipation limit must not be exceeded.  
T
* T  
J(max)  
A
P
D
+
R
qJA  
3. Latchup Current Maximum Rating: $150 mA per JEDEC standard: JESD78.  
4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A.  
ELECTRICAL CHARACTERISTICS (For all values T = 25°C, unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Frequency (V  
= V  
x 0.96, Note 5)  
f
144  
180  
0.11  
75  
216  
kHz  
%/°C  
%
OUT  
SET  
OSC  
Frequency Temperature Coefficient (T = −40°C to 85°C)  
Df  
A
Maximum PWM Duty Cycle (V  
= V  
x 0.96)  
D
MAX  
68  
82  
0.95  
OUT  
SET  
Minimum Startup Voltage (I = 0 mA)  
V
0.8  
−1.6  
V
O
start  
Minimum Startup Voltage Temperature Coefficient (T = −40°C to 85°C)  
DV  
mV/°C  
V
A
start  
hold  
SS  
Minimum Operation Hold Voltage (I = 0 mA)  
V
t
0.3  
0.5  
O
Soft−Start Time (V  
u 0.8 V)  
2.0  
ms  
OUT  
LX (PIN 5)  
LX Pin On−State Sink Current (V = 0.4 V)  
I
mA  
LX  
LX  
Device Suffix:  
19T1  
22T1  
25T1  
27T1  
30T1  
33T1  
38T1  
45T1  
80  
80  
80  
100  
100  
100  
100  
100  
100  
90  
90  
120  
125  
130  
135  
145  
155  
160  
50T1  
Voltage Limit (V  
= V = V  
x 0.96, V “L’’ Side)  
V
LXLIM  
0.65  
0.8  
0.5  
1.0  
1.0  
V
OUT  
CE  
SET  
LX  
Off−State Leakage Current (V = 5.0 V, T = −40°C to 85°C)  
I
LKG  
mA  
LX  
A
5. V  
means setting of output voltage.  
SET  
6. CE pin is integrated with an internal 150 nA pullup current source.  
http://onsemi.com  
3
 
NCP1400A  
ELECTRICAL CHARACTERISTICS (continued) (For all values T = 25°C, unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
CE (PIN 1)  
CE Input Voltage (V  
= V  
x 0.96)  
SET  
V
OUT  
High State, Device Enabled  
Low State, Device Disabled  
V
V
0.9  
0.3  
CE(high)  
CE(low)  
CE Input Current (Note 6)  
mA  
High State, Device Enabled (V  
Low State, Device Disabled (V  
= V = 5.0 V)  
I
I
−0.5  
−0.5  
0
0.15  
0.5  
0.5  
OUT  
OUT  
CE  
CE(high)  
= 5.0 V, V = 0 V)  
CE  
CE(low)  
TOTAL DEVICE  
Output Voltage (V = 0.7 x V  
, I = 10 mA)  
V
OUT  
V
IN  
OUT  
O
Device Suffix:  
19T1  
22T1  
25T1  
27T1  
30T1  
33T1  
38T1  
45T1  
1.853  
2.145  
2.438  
2.633  
2.925  
3.218  
3.705  
4.3875  
4.875  
1.9  
2.2  
2.5  
2.7  
3.0  
3.3  
3.8  
4.5  
5.0  
1.948  
2.255  
2.563  
2.768  
3.075  
3.383  
3.895  
4.6125  
5.125  
50T1  
Output Voltage Temperature Coefficient (T = −40°C to +85°C)  
DV  
ppm/°C  
A
OUT  
Device Suffix:  
19T1  
22T1  
25T1  
27T1  
30T1  
33T1  
38T1  
45T1  
100  
100  
100  
100  
100  
100  
150  
150  
150  
50T1  
Operating Current 2 (V  
Off−State Current (V  
= V = V  
+0.5 V, Note 5)  
I
I
I
7.0  
0.6  
15  
mA  
mA  
mA  
OUT  
CE  
SET  
DD2  
= 5.0 V, V = 0 V, T = −40°C to +85°C, Note 6)  
1.5  
OUT  
CE  
A
OFF  
DD1  
Operating Current 1 (V  
= V = V  
x 0.96, f  
= 180 kHz)  
OSC  
OUT  
CE  
SET  
Device Suffix:  
19T1  
22T1  
25T1  
27T1  
30T1  
33T1  
38T1  
45T1  
23  
27  
32  
32  
37  
37  
44  
53  
70  
50  
60  
60  
60  
60  
60  
65  
75  
100  
50T1  
5. V  
means setting of output voltage.  
SET  
6. CE pin is integrated with an internal 150 nA pullup current source.  
http://onsemi.com  
4
 
NCP1400A  
2.1  
3.4  
3.2  
3.0  
2.8  
2.0  
1.9  
1.8  
V
= 2.0 V  
IN  
V
= 1.5 V  
IN  
V
= 0.9 V  
IN  
V = 1.2 V  
IN  
V
= 1.2 V  
IN  
V = 1.5 V  
IN  
V
= 0.9 V  
IN  
NCP1400ASN30T1  
NCP1400ASN19T1  
L = 22 mH  
T = 25°C  
A
L = 22 mH  
T = 25°C  
A
2.6  
2.4  
1.7  
1.6  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 2. NCP1400ASN19T1 Output Voltage  
vs. Output Current  
Figure 3. NCP1400ASN30T1 Output Voltage  
vs. Output Current  
100  
6.0  
80  
60  
40  
5.5  
5.0  
4.5  
V
= 1.5 V  
IN  
V
= 3.0 V  
IN  
V
= 1.2 V  
IN  
V
= 0.9 V  
IN  
V
= 2.0 V  
IN  
V
= 1.5 V  
IN  
V = 0.9 V  
IN  
NCP1400ASN50T1  
NCP1400ASN19T1  
L = 22 mH  
T = 25°C  
A
L = 22 mH  
T = 25°C  
A
4.0  
3.5  
20  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 4. NCP1400ASN50T1 Output Voltage  
vs. Output Current  
Figure 5. NCP1400ASN19T1 Efficiency vs.  
Output Current  
100  
80  
100  
V
V
= 2.5 V  
= 2.0 V  
V
V
= 3.0 V  
IN  
= 2.0 V  
IN  
IN  
80  
60  
40  
V
= 1.5 V  
IN  
V
= 0.9 V  
IN  
IN  
V
= 0.9 V  
IN  
60  
40  
V
= 1.2 V  
IN  
V
= 1.5 V  
IN  
NCP1400ASN50T1  
NCP1400ASN30T1  
L = 22 mH  
T = 25°C  
A
L = 22 mH  
T = 25°C  
A
20  
0
20  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 6. NCP1400ASN30T1 Efficiency vs.  
Output Current  
Figure 7. NCP1400ASN50T1 Efficiency vs.  
Output Current  
http://onsemi.com  
5
NCP1400A  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
NCP1400ASNXXT1  
L = 10 mH  
T = 25°C  
A
80  
60  
40  
20  
0
NCP1400ASN30T1  
= 3.0 V x 0.96  
V
OUT  
Open−loop Test  
1.5  
2.0  
2.5  
V
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
−50  
−25  
0
25  
50  
75  
100  
, OUTPUT VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
A
OUT  
Figure 8. NCP1400ASNXXT1 Operating  
Current (IDD1) vs. Output Voltage  
Figure 9. NCP1400ASN30T1 Current  
Consumption vs. Temperature  
100  
1.0  
80  
60  
40  
20  
0
0.8  
0.6  
0.4  
0.2  
0
NCP1400ASN50T1  
V
= 5.0 V x 0.96  
OUT  
Open−loop Test  
NCP1400ASN19T1  
V
= 1.9 V x 0.96  
OUT  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 10. NCP1400ASN50T1 Current  
Consumption vs. Temperature  
Figure 11. NCP1400ASN19T1 VLX Voltage Limit  
vs. Temperature  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
NCP1400ASN50T1  
NCP1400ASN30T1  
V
= 5.0 V x 0.96  
V
= 3.0 V x 0.96  
OUT  
OUT  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 12. NCP1400ASN30T1 VLX Voltage Limit  
vs. Temperature  
Figure 13. NCP1400ASN50T1 VLX Voltage Limit  
vs. Temperature  
http://onsemi.com  
6
NCP1400A  
3.2  
5.1  
3.1  
3.0  
2.9  
2.8  
2.7  
5.0  
4.9  
4.8  
4.7  
4.6  
NCP1400ASN30T1  
L = 10 mH  
NCP1400ASN50T1  
L = 10 mH  
I
V
= 4.0 mA  
= 1.2 V  
I
V
= 4.0 mA  
= 1.2 V  
O
O
IN  
IN  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 14. NCP1400ASN30T1 Output Voltage  
vs. Temperature  
Figure 15. NCP1400ASN50T1 Output Voltage  
vs. Temperature  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
NCP1400ASN30T1  
NCP1400ASN50T1  
V
= 3.0 V x 0.96  
V
= 5.0 V x 0.96  
OUT  
OUT  
Open−loop Test  
Open−loop Test  
0
−50  
0
−50  
−25  
0
25  
50  
75  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 16. NCP1400ASN30T1 Oscillator  
Frequency vs. Temperature  
Figure 17. NCP1400ASN50T1 Oscillator  
Frequency vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
NCP1400ASN50T1  
NCP1400ASN30T1  
V
= 5.0 V x 0.96  
V
= 3.0 V x 0.96  
OUT  
OUT  
Open−loop Test  
−25  
T , AMBIENT TEMPERATURE (°C)  
Open−loop Test  
−25  
T , AMBIENT TEMPERATURE (°C)  
−50  
0
25  
50  
75  
−50  
0
25  
50  
75  
100  
A
A
Figure 18. NCP1400ASN30T1 Maximum Duty  
Cycle vs. Temperature  
Figure 19. NCP1400ASN50T1 Maximum Duty  
Cycle vs. Temperature  
http://onsemi.com  
7
 
NCP1400A  
1.0  
0.8  
0.6  
0.4  
1.0  
0.8  
0.6  
0.4  
V
start  
V
V
start  
NCP1400ASN50T1  
L = 22 mH  
NCP1400ASN30T1  
L = 22 mH  
C
OUT  
= 10 mF  
C
OUT  
= 10 mF  
I
= 0 mA  
O
I
= 0 mA  
O
hold  
0.2  
0.0  
0.2  
0.0  
V
hold  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 20. NCP1400ASN30T1 Startup/Hold  
Voltage vs. Temperature  
Figure 21. NCP1400ASN50T1 Startup/Hold  
Voltage vs. Temperature  
260  
200  
160  
120  
80  
220  
180  
140  
100  
NCP1400ASN30T1  
NCP1400ASN50T1  
V
= 0.4 V  
V
= 0.4 V  
LX  
LX  
40  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 22. NCP1400ASN30T1 LX Pin On−State  
Current vs. Temperature  
Figure 23. NCP1400ASN50T1 LX Pin On−State  
Current vs. Temperature  
180  
160  
140  
120  
100  
5.0  
4.0  
3.0  
2.0  
NCP1400ASNXXT1  
V
= 0.4 V  
LX  
T = 25°C  
A
NCP1400ASNXXT1  
V
= 0.4 V  
LX  
1.0  
0
80  
60  
T = 25°C  
A
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
, OUTPUT VOLTAGE (V)  
OUT  
V , OUTPUT VOLTAGE (V)  
OUT  
Figure 24. NCP1400ASNXXT1 LX Pin On−State  
Current vs. Output Voltage  
Figure 25. NCP1400ASNXXT1 LX Switch  
On−Resistance vs. Output Voltage  
http://onsemi.com  
8
NCP1400A  
1.6  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
start  
hold  
V
V
start  
hold  
NCP1400ASN19T1  
L = 22 mH  
NCP1400ASN30T1  
L = 22 mH  
C
OUT  
= 68 mF  
C
OUT  
= 68 mF  
T = 25°C  
A
T = 25°C  
A
0
5.0  
10  
15  
20  
25  
30  
0
5.0  
10  
15  
20  
25  
30  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 26. NCP1400ASN19T1 Operation  
Startup/Hold Voltage vs. Output Current  
Figure 27. NCP1400ASN30T1 Operation  
Startup/Hold Voltage vs. Output Current  
1.6  
80.0  
NCP1400ASN19T1  
L = 22 mH  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
C
OUT  
= 68 mF  
start  
60.0  
40.0  
20.0  
T = 25°C  
A
V
hold  
V
= 1.2 V  
IN  
V
= 1.5 V  
IN  
NCP1400ASN50T1  
L = 22 mH  
V
= 0.9 V  
IN  
C
OUT  
= 68 mF  
T = 25°C  
A
0
0
5.0  
10  
15  
20  
25  
30  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 28. NCP1400ASN50T1 Operation  
Startup/Hold Voltage vs. Output Current  
Figure 29. NCP1400ASN19T1 Ripple Voltage  
vs. Output Current  
80  
80  
NCP1400ASN50T1  
L = 22 mH  
V
= 2.0 V  
IN  
V
= 1.5 V  
IN  
C
= 68 mF  
OUT  
V
= 2.0 V  
IN  
60  
40  
20  
0
60  
40  
20  
0
T = 25°C  
A
V
= 0.9 V  
IN  
V
= 1.5 V  
IN  
V
= 3.0 V  
IN  
V
= 1.5 V  
IN  
NCP1400ASN30T1  
L = 22 mH  
V
= 0.9 V  
IN  
C
OUT  
= 68 mF  
T = 25°C  
A
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 30. NCP1400ASN30T1 Ripple Voltage  
vs. Output Current  
Figure 31. NCP1400ASN50T1 Ripple Voltage  
vs. Output Current  
http://onsemi.com  
9
NCP1400A  
2 ms/div  
= 3.0 V, V = 1.2 V, I = 10 mA., L = 22 mH, C  
2 ms/div  
= 3.0 V, V = 1.2 V, I = 25 mA., L = 22 mH, C  
V
OUT  
= 68 mF  
V
OUT  
= 68 mF  
OUT  
IN  
O
OUT  
IN  
O
1. V , 2.0 V/div  
1. V , 2.0 V/div  
LX  
LX  
2. V  
, 20 mV/div, AC coupled  
OUT  
2. V  
, 20 mV/div, AC coupled  
OUT  
3. I , 100 mA/div  
3. I , 100 mA/div  
L
L
Figure 32. Operating Waveforms (Medium Load)  
Figure 33. Operating Waveforms (Heavy Load)  
V
IN  
= 1.2 V, L = 22 mH  
V
IN  
= 1.2 V, L = 22 mH  
1. V  
= 1.9 V (AC coupled), 50 mV/div  
1. V  
= 1.9 V (AC coupled), 50 mV/div  
OUT  
OUT  
2. I = 3.0 mA to 30 mA  
2. I = 30 mA to 3.0 mA  
O
O
Figure 34. NCP1400ASN19T1  
Load Transient Response  
Figure 35. NCP1400ASN19T1  
Load Transient Response  
V
IN  
= 1.5 V, L = 22 mH  
V
IN  
= 1.5 V, L = 22 mH  
1. V  
= 3.0 V (AC coupled), 50 mV/div  
1. V  
= 3.0 V (AC coupled), 50 mV/div  
OUT  
OUT  
2. I = 3.0 mA to 30 mA  
2. I = 30 mA to 3.0 mA  
O
O
Figure 36. NCP1400ASN30T1  
Load Transient Response  
Figure 37. NCP1400ASN30T1  
Load Transient Response  
http://onsemi.com  
10  
NCP1400A  
V
IN  
= 1.5 V, L = 22 mH  
V
IN  
= 1.5 V, L = 22 mH  
1. V  
= 5.0 V (AC coupled), 50 mV/div  
1. V  
= 5.0 V (AC coupled), 50 mV/div  
OUT  
OUT  
2. I = 3.0 mA to 30 mA  
2. I = 30 mA to 3.0 mA  
O
O
Figure 38. NCP1400ASN50T1  
Load Transient Response  
Figure 39. NCP1400ASN50T1  
Load Transient Response  
OUT  
2
LX  
5
V
LX  
LIMITER  
ERROR  
AMP  
+
DRIVER  
POWER  
SWITCH  
NC  
3
PHASE  
PWM  
COMPENSATION  
CONTROLLER  
VOLTAGE  
REFERENCE  
SOFT−START  
180 kHz  
OSCILLATOR  
GND  
4
1
CE  
Figure 40. Representative Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin #  
Symbol  
Pin Description  
1
CE  
Chip Enable Pin  
(1) The chip is enabled if a voltage equal to or greater than 0.9 V is applied.  
(2) The chip is disabled if a voltage less than 0.3 V is applied.  
(3) The chip is enabled if this pin is left floating.  
2
3
4
5
OUT  
NC  
Output voltage monitor pin and also the power supply pin for the device.  
No internal connection to this pin.  
GND  
LX  
Ground pin.  
External inductor connection pin to power switch drain.  
http://onsemi.com  
11  
NCP1400A  
DETAILED OPERATING DESCRIPTION  
Compensation  
Operation  
The NCP1400A series are monolithic power switching  
regulators optimized for applications where power drain  
must be minimized. These devices operate as fixed  
frequency, voltage mode boost regulator and is designed to  
operate in the discontinuous conduction mode. Potential  
applications include low powered consumer products and  
battery powered portable products.  
The NCP1400A series are low noise fixed frequency  
voltage−mode PWM DC−DC converters, and consist of  
soft−start circuit, feedback resistor, reference voltage,  
oscillator, loop compensation network, PWM control  
circuit, current limit circuit and power switch. Due to the  
on−chip feedback resistor and loop compensation network,  
the system designer can get the regulated output voltage  
from 1.8 V to 5.0 V with a small number of external  
components. The quiescent current is typically 32 mA  
The device is designed to operate in discontinuous  
conduction mode. An internal compensation circuit was  
designed to guarantee stability over the full input/output  
voltage and full output load range. Stability cannot be  
guaranteed in continuous conduction mode.  
Current Limit  
The NCP1400A series utilizes cycle−by−cycle current  
limiting as a means of protecting the output switch  
MOSFET from overstress and preventing the small value  
inductor from saturation. Current limiting is implemented  
by monitoring the output MOSFET current build−up during  
conduction, and upon sensing an overcurrent conduction  
immediately turning off the switch for the duration of the  
oscillator cycle.  
The voltage across the output MOSFET is monitored and  
compared against a reference by the VLX limiter. When the  
threshold is reached, a signal is sent to the PWM controller  
block to terminate the output switch conduction. The current  
limit threshold is typically set at 350 mA.  
(V  
= 2.7 V), and can be further reduced to about 1.5 mA  
OUT  
when the chip is disabled (V t 0.3 V).  
CE  
Soft−Start  
There is a soft−start circuit in NCP1400A. When power is  
applied to the device, the soft−start circuit pumps up the  
output voltage to approximately 1.5 V at a fixed duty cycle,  
the level at which the converter can operate normally. What  
is more, the startup capability with heavy loads is also  
improved.  
Enable/Disable Operation  
The NCP1400A series offer IC shutdown mode by chip  
enable pin (CE pin) to reduce current consumption. An  
internal 150 nA pull−up current source tied the CE pin to  
OUT pin by default, i.e., user can float the pin CE for  
permanent “On’’. When voltage at pin CE is equal or greater  
than 0.9 V, the chip will be enabled, which means the  
regulator is in normal operation. When voltage at pin CE is  
less than 0.3 V, the chip is disabled, which means IC is  
shutdown.  
Important: DO NOT apply a voltage between 0.3 V to  
0.9 V to pin CE as this voltage will place the IC into an  
undefined state and the IC may drain excessive current  
from the supply.  
Oscillator  
The oscillator frequency is internally set to 180 kHz at an  
accuracy of "20% and with low temperature coefficient of  
0.11%/°C. Figures 16 and 17 illustrate oscillator frequency  
versus temperature.  
Regulated Converter Voltage (VOUT  
)
The V  
is set by an internal feedback resistor network.  
OUT  
This is trimmed to a selected voltage from 1.8 V to 5.0 V  
range in 100 mV steps with an accuracy of "2.5%.  
Note: When the duty cycle is less than about 12%, the  
regulator will skip switching cycles to maintain high  
efficiency at light loads. The regulated output will be raised  
by 3 to 4% under this condition.  
http://onsemi.com  
12  
NCP1400A  
APPLICATION CIRCUIT INFORMATION  
L1  
D1  
V
V
OUT  
IN  
22 mH  
CE  
1
LX  
5
C1  
10 mF  
C2  
68 mF  
OUT  
2
NC  
3
GND  
4
Figure 41. Typical Step−Up Converter Application  
Step−up Converter Design Equations  
Diode  
General step−up DC−DC converter designed to operate in  
discontinuous conduction mode can be defined by:  
The diode is the largest source of loss in DC−DC  
converters. The most importance parameters which affect  
their efficiency are the forward voltage drop, V , and the  
F
reverse recovery time, trr. The forward voltage drop creates  
a loss just by having a voltage across the device while a  
current flowing through it. The reverse recovery time  
generates a loss when the diode is reverse biased, and the  
current appears to actually flow backwards through the  
diode due to the minority carriers being swept from the P−N  
Calculation  
Equation  
ton  
T
D
I
Vinton  
L
PK  
O
(Vin)2(ton)2f  
2L(Vout ) VF * Vin)  
I
junction.  
A
Schottky diode with the following  
characteristics is recommended:  
D
− Duty cycle  
Small forward voltage, V t 0.3 V  
F
I
I
− Peak inductor current  
− Desired dc output current  
PK  
O
Small reverse leakage current  
V
V
V
− Nominal operating dc input voltage  
− Desired dc output voltage  
− Diode forward voltage  
Fast reverse recovery time/switching speed  
Rated current larger than peak inductor current,  
IN  
OUT  
F
I
u I  
rated  
PK  
Assume saturation voltage of the internal FET switch is negligible.  
Reverse voltage larger than output voltage,  
u V  
V
reverse  
OUT  
External Component Selection  
Input Capacitor  
Inductor  
The input capacitor can stabilize the input voltage and  
minimize peak current ripple from the source. The value of  
the capacitor depends on the impedance of the input source  
used. Small Equivalent Series Resistance (ESR) Tantalum  
or ceramic capacitor with value of 10 mF should be suitable.  
Inductance values between 18 mH and 27 mH are the best  
suitable values for NCP1400A. In general, smaller  
inductance values can provide larger peak inductor current  
and output current capability, and lower conversion  
efficiency, and vice versa. Select an inductor with smallest  
possible DCR, usually less than 1.0 W, to minimize loss. It  
is necessary to choose an inductor with saturation current  
greater than the peak current which the inductor will  
encounter in the application. The inductor selected should be  
able to handle the worst case peak inductor current without  
saturation.  
Output Capacitor  
The output capacitor is used for sustaining the output  
voltage when the internal MOSFET is switched on and  
smoothing the ripple voltage. Low ESR capacitor should be  
used to reduce output ripple voltage. In general, a 47 mF to  
68 mF low ESR (0.15 W to 0.30 W) Tantalum capacitor  
should be appropriate.  
http://onsemi.com  
13  
NCP1400A  
An evaluation board of NCP1400A has been made in the  
small size of 23 mm x 20 mm and is shown in Figures 42  
and 43. Please contact your ON Semiconductor  
representative for availability. The evaluation board  
schematic diagram, the artwork and the silkscreen of the  
surface mount PCB are shown below:  
20 mm  
1
23 mm  
Figure 42. NCP1400A PWM Step−up DC−DC Converter Evaluation Board Silkscreen  
20 mm  
23 mm  
Figure 43. NCP1400A PWM Step−up DC−DC Converter Evaluation Board Artwork (Component Side)  
http://onsemi.com  
14  
 
NCP1400A  
Components Supplier  
Parts  
Supplier  
Part Number  
CR54−220MC  
MBR0520LT1  
Description  
Inductor 22 mH/1.11 A  
Schottky Power Rectifier  
Phone  
Inductor, L1  
Sumida Electric Co. Ltd.  
ON Semiconductor Corp.  
KEMET Electronics Corp.  
(852) 2880−6688  
(852) 2689−0088  
(852) 2305−1168  
Schottky Diode, D1  
Output Capacitor, C2  
T494D686K010AS  
Low ESR Tantalum Capacitor  
68 mF/10 V  
Input Capacitor, C1  
KEMET Electronics Corp.  
T491C106K016AS  
Low Profile Tantalum Capacitor  
(852) 2305−1168  
10 mF/16 V  
PCB Layout Hints  
Grounding  
efficiency (short and thick traces for connecting the inductor  
L can also reduce stray inductance), e.g. short and thick  
traces listed below are used in the evaluation board:  
1. Trace from TP1 to L1  
One point grounding should be used for the output power  
return ground, the input power return ground, and the device  
switch ground to reduce noise as shown in Figure 44, e.g.:  
C2 GND, C1 GND, and U1 GND are connected at one point  
in the evaluation board. The input ground and output ground  
traces must be thick enough for current to flow through and  
for reducing ground bounce.  
2. Trace from L1 to Lx pin of U1  
3. Trace from L1 to anode pin of D1  
4. Trace from cathode pin of D1 to TP2  
Output Capacitor  
Power Signal Traces  
Low resistance conducting paths should be used for the  
power carrying traces to reduce power loss so as to improve  
The output capacitor should be placed close to the output  
terminals to obtain better smoothing effect on the output  
ripple.  
D1  
MBR0520LT1  
L1  
TP2  
TP1  
22 mH  
V
V
IN  
OUT  
C2  
68 mF/10 V  
C1  
10 mF/16 V  
On  
Off  
CE  
1
LX  
5
JP1  
Enable  
TP3  
TP4  
OUT  
2
NCP1400A  
GND  
GND  
U1  
NC  
3
GND  
4
Figure 44. NCP1400A Evaluation Board Schematic Diagram  
http://onsemi.com  
15  
 
NCP1400A  
PACKAGE DIMENSIONS  
THIN SOT23−5  
SN SUFFIX  
CASE 483−02  
ISSUE C  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B
C
S
1
2
L
G
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
J
0.05 (0.002)  
H
M
K
0.013 0.100 0.0005 0.0040  
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP1400A/D  

相关型号:

NCP1400A-D

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400A/D

Micropower Fixed Frequency PWM Step-Up DC-DC Converter
ETC

NCP1400ASN19T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN19T1G

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN22T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN22T1G

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN25T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN25T1G

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN27T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN27T1G

100 mA, Fixed Frequency PWM Step−Up Micropower Switching Regulator
ONSEMI

NCP1400ASN30T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN30T1G

100 mA, Fixed Frequency PWM Step−Up Micropower Switching Regulator
ONSEMI