NCP1400A/D [ETC]

Micropower Fixed Frequency PWM Step-Up DC-DC Converter ; 微固定频率PWM降压型DC- DC转换器
NCP1400A/D
型号: NCP1400A/D
厂家: ETC    ETC
描述:

Micropower Fixed Frequency PWM Step-Up DC-DC Converter
微固定频率PWM降压型DC- DC转换器

转换器
文件: 总16页 (文件大小:136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1400A  
Micropower Fixed  
Frequency PWM Step-Up  
DC-DC Converter  
The NCP1400A series are micropower step–up DC to DC  
converters that are specifically designed for powering portable  
equipment from one or two cell battery packs. These devices are  
designed to start–up with a cell voltage of 0.8 V and operate down to  
less than 0.2 V. With only four external components, this series allows  
a simple means to implement highly efficient converters that are  
capable of up to 100 mA of output current.  
http://onsemi.com  
5
1
Each device consists of an on–chip fixed frequency oscillator, pulse  
width modulation controller, phase compensated error amplifier that  
ensures converter stability with discontinuous mode operation,  
soft–start, voltage reference, driver, and power MOSFET switch with  
current limit protection. Additionally, a chip enable feature is provided  
to power down the converter for extended battery life.  
The NCP1400A device series are available in the Thin SOT–23–5  
package with six standard regulated output voltages. Additional  
voltages that range from 1.8 V to 4.9 V in 100 mV steps can be  
manufactured.  
THIN SOT–23–5  
SN SUFFIX  
CASE 483  
PIN CONNECTIONS AND  
MARKING DIAGRAM  
1
2
3
5
CE  
OUT  
NC  
LX  
Features  
Extremely Low Start–Up Voltage of 0.8 V  
Operation Down to Less than 0.2 V  
GND  
4
Only Four External Components for Simple Highly Efficient  
Converters  
xxx = Marking  
Y
= Year  
W
= Work Week  
Up to 100 mA Output Current Capability  
Fixed Frequency Pulse Width Modulation Operation  
(Top View)  
Phase Compensated Error Amplifier for Stable Converter Operation  
Chip Enable Power Down Capability for Extended Battery Life  
Typical Applications  
Cellular Telephones  
Pagers  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 2 of this data sheet.  
Personal Digital Assistants  
Electronic Games  
Digital Cameras  
Camcorders  
Handheld Instruments  
V
in  
V
out  
CE  
1
LX  
5
OUT  
2
NC  
3
GND  
4
Figure 1. Typical Step–Up Converter Application  
1
Semiconductor Components Industries, LLC, 2001  
Publication Order Number:  
June, 2001 – Rev. 3  
NCP1400A/D  
NCP1400A  
ORDERING INFORMATION  
Switching  
Output  
Voltage  
Frequency  
Device  
Marking  
Package  
Shipping  
NCP1400ASN19T1  
NCP1400ASN25T1  
NCP1400ASN27T1  
NCP1400ASN30T1  
NCP1400ASN33T1  
NCP1400ASN50T1  
1.9 V  
2.5 V  
2.7 V  
3.0 V  
3.3 V  
5.0 V  
DAI  
DAV  
DAA  
DAB  
DAJ  
3000 Units  
on 7 Inch Reel  
180 KHz  
Thin SOT–23–5  
DAD  
NOTE: The ordering information lists six standard output voltage device options. Additional devices with output voltage ranging from 1.8 V  
to 5.0 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply Voltage (Pin 2)  
V
OUT  
–0.3 to 6.0  
V
Input/Output Pins  
LX (Pin 5)  
LX Peak Sink Current  
V
I
–0.3 to 6.0  
400  
V
mA  
LX  
LX  
CE (Pin 1)  
Input Voltage Range  
Input Current Range  
V
I
–0.3 to 6.0  
–150 to 150  
V
mA  
CE  
CE  
Thermal Resistance Junction to Air  
Operating Ambient Temperature Range (Note 2.)  
Operating Junction Temperature Range  
Storage Temperature Range  
R
250  
°C/W  
°C  
θ
JA  
T
–40 to +85  
–40 to +125  
–55 to +150  
A
T
°C  
J
T
°C  
stg  
NOTES:  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) $2.0 kV per JEDEC standard: JESD22–A114.  
Machine Model (MM) $200 V per JEDEC standard: JESD22–A115.  
2. The maximum package power dissipation limit must not be exceeded.  
T
J(max)  
+
* T  
A
P
D
R
qJA  
3. Latch–up Current Maximum Rating: $150 mA per JEDEC standard: JESD78.  
4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J–STD–020A.  
http://onsemi.com  
2
NCP1400A  
ELECTRICAL CHARACTERISTICS (For all values T = 25°C, unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Frequency (V  
= V  
x 0.96, Note 5.)  
f
144  
180  
0.11  
75  
216  
kHz  
%/°C  
%
OUT  
SET  
OSC  
Frequency Temperature Coefficient (T = –40°C to 85°C)  
Df  
A
Maximum PWM Duty Cycle (V  
= V  
x 0.96)  
D
MAX  
68  
82  
0.95  
OUT  
SET  
Minimum Start–up Voltage (I = 0 mA)  
V
0.8  
–1.6  
V
O
start  
Minimum Start–up Voltage Temperature Coefficient (T = –40°C to 85°C)  
DV  
mV/°C  
V
A
start  
Minimum Operation Hold Voltage (I = 0 mA)  
V
0.3  
0.5  
O
hold  
Soft–Start Time (V  
u 0.8 V)  
t
SS  
2.0  
ms  
OUT  
LX (PIN 5)  
LX Pin On–State Sink Current (V = 0.4 V)  
I
LX  
mA  
LX  
Device Suffix:  
19T1  
25T1  
27T1  
30T1  
80  
80  
100  
100  
100  
100  
90  
120  
125  
130  
135  
160  
33T1  
50T1  
Voltage Limit (V  
= V = V  
x 0.96, V “L’’ Side)  
V
LXLIM  
0.65  
0.8  
0.5  
1.0  
1.0  
V
OUT  
CE  
SET  
LX  
Off–State Leakage Current (V = 5.0 V, T = –40°C to 85°C)  
I
LKG  
µA  
LX  
A
CE (PIN 1)  
CE Input Voltage (V  
= V  
x 0.96)  
V
OUT  
SET  
High State, Device Enabled  
Low State, Device Disabled  
V
V
0.9  
0.3  
CE(high)  
CE(low)  
CE Input Current (Note 6.)  
µA  
High State, Device Enabled (V  
Low State, Device Disabled (V  
= V = 5.0 V)  
I
I
–0.5  
–0.5  
0
0.15  
0.5  
0.5  
OUT  
OUT  
CE  
CE(high)  
= 5.0 V, V = 0 V)  
CE  
CE(low)  
TOTAL DEVICE  
Output Voltage (V u 0.8 V, I = 4.0 mA)  
V
OUT  
V
in  
O
Device Suffix:  
19T1  
25T1  
27T1  
30T1  
1.853  
2.438  
2.633  
2.925  
3.218  
4.875  
1.9  
2.5  
2.7  
3.0  
3.3  
5.0  
1.948  
2.563  
2.768  
3.075  
3.383  
5.125  
33T1  
50T1  
Output Voltage Temperature Coefficient (T = –40°C to +85°C)  
DV  
ppm/°C  
A
OUT  
Device Suffix:  
19T1  
25T1  
27T1  
30T1  
100  
100  
100  
100  
100  
150  
33T1  
50T1  
Operating Current 2 (V  
= V = V  
+0.5 V, Note 5.)  
I
I
I
7.0  
0.6  
15  
µA  
µA  
µA  
OUT  
CE  
SET  
DD2  
Off–State Current (V  
= 5.0 V, V = 0 V, T = –40°C to +85°C, Note 6.)  
1.5  
OUT  
CE  
A
OFF  
DD1  
Operating Current 1 (V  
= V = V  
x 0.96, f  
= 180 kHz)  
OSC  
OUT  
CE  
SET  
Device Suffix:  
19T1  
25T1  
27T1  
30T1  
23  
32  
32  
37  
37  
70  
50  
60  
60  
60  
60  
33T1  
50T1  
100  
5. V  
means setting of output voltage.  
SET  
6. CE pin is integrated with an internal 10 Mpull–up resistor.  
http://onsemi.com  
3
NCP1400A  
2.1  
3.4  
3.2  
3.0  
2.8  
2.0  
1.9  
1.8  
V = 2.0 V  
in  
V = 1.5 V  
in  
V = 0.9 V  
in  
V = 1.2 V  
in  
V = 1.2 V  
in  
V = 1.5 V  
in  
V = 0.9 V  
in  
NCP1400ASN30T1  
NCP1400ASN19T1  
L = 22 µH  
T = 25°C  
A
L = 22 µH  
T = 25°C  
A
2.6  
2.4  
1.7  
1.6  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 2. NCP1400ASN19T1 Output Voltage  
vs. Output Current  
Figure 3. NCP1400ASN30T1 Output Voltage  
vs. Output Current  
100  
6.0  
80  
60  
40  
5.5  
5.0  
4.5  
V = 1.5 V  
in  
V = 3.0 V  
in  
V = 1.2 V  
in  
V = 0.9 V  
in  
V = 2.0 V  
in  
V = 1.5 V  
in  
V = 0.9 V  
in  
NCP1400ASN50T1  
NCP1400ASN19T1  
L = 22 µH  
T = 25°C  
A
L = 22 µH  
T = 25°C  
A
4.0  
3.5  
20  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 4. NCP1400ASN50T1 Output Voltage  
vs. Output Current  
Figure 5. NCP1400ASN19T1 Efficiency vs.  
Output Current  
100  
80  
100  
V = 2.5 V  
V = 3.0 V  
in  
in  
80  
60  
40  
V = 1.5 V  
in  
V = 0.9 V  
in  
V = 2.0 V  
in  
V = 0.9 V  
in  
V = 2.0 V  
in  
60  
40  
V = 1.2 V  
in  
V = 1.5 V  
in  
NCP1400ASN50T1  
NCP1400ASN30T1  
L = 22 µH  
T = 25°C  
A
L = 22 µH  
T = 25°C  
A
20  
0
20  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 6. NCP1400ASN30T1 Efficiency vs.  
Output Current  
Figure 7. NCP1400ASN50T1 Efficiency vs.  
Output Current  
http://onsemi.com  
4
NCP1400A  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
NCP1400ASNXXT1  
L = 10 µH  
T = 25°C  
A
80  
60  
40  
20  
0
NCP1400ASN30T1  
= 3.0 V x 0.96  
V
OUT  
Open–loop Test  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
–50  
–25  
0
25  
50  
75  
100  
V , OUTPUT VOLTAGE (V)  
OUT  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. NCP1400ASNXXT1 Operating  
Current (IDD1) vs. Output Voltage  
Figure 9. NCP1400ASN30T1 Current  
Consumption vs. Temperature  
100  
1.0  
80  
60  
40  
20  
0
0.8  
0.6  
0.4  
0.2  
0
NCP1400ASN50T1  
V
OUT  
= 5.0 V x 0.96  
Open–loop Test  
NCP1400ASN19T1  
V
OUT  
= 1.9 V x 0.96  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 10. NCP1400ASN50T1 Current  
Consumption vs. Temperature  
Figure 11. NCP1400ASN19T1 VLX Voltage Limit  
vs. Temperature  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
NCP1400ASN50T1  
NCP1400ASN30T1  
V
OUT  
= 5.0 V x 0.96  
V
OUT  
= 3.0 V x 0.96  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 12. NCP1400ASN30T1 VLX Voltage Limit  
vs. Temperature  
Figure 13. NCP1400ASN50T1 VLX Voltage Limit  
vs. Temperature  
http://onsemi.com  
5
NCP1400A  
3.2  
5.1  
5.0  
4.9  
3.1  
3.0  
2.9  
2.8  
2.7  
4.8  
4.7  
4.6  
NCP1400ASN30T1  
L = 10 µH  
NCP1400ASN50T1  
L = 10 µH  
I
V
= 4.0 mA  
= 1.2 V  
I
V
= 4.0 mA  
= 1.2 V  
O
O
in  
in  
–50  
–25  
0
25  
50  
75  
100  
100  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 14. NCP1400ASN30T1 Output Voltage  
vs. Temperature  
Figure 15. NCP1400ASN50T1 Output Voltage  
vs. Temperature  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
NCP1400ASN30T1  
= 3.0 V x 0.96  
Open–loop Test  
NCP1400ASN50T1  
V
V
= 5.0 V x 0.96  
OUT  
OUT  
Open–loop Test  
0
0
–50  
–25  
0
25  
50  
75  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 16. NCP1400ASN30T1 Oscillator  
Frequency vs. Temperature  
Figure 17. NCP1400ASN50T1 Oscillator  
Frequency vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
NCP1400ASN50T1  
NCP1400ASN30T1  
V
= 5.0 V x 0.96  
V
= 3.0 V x 0.96  
OUT  
OUT  
Open–loop Test  
–25  
T , AMBIENT TEMPERATURE (°C)  
Open–loop Test  
–25  
T , AMBIENT TEMPERATURE (°C)  
–50  
0
25  
50  
75  
–50  
0
25  
50  
75  
100  
A
A
Figure 18. NCP1400ASN30T1 Maximum Duty  
Cycle vs. Temperature  
Figure 19. NCP1400ASN50T1 Maximum Duty  
Cycle vs. Temperature  
http://onsemi.com  
6
NCP1400A  
1.0  
1.0  
V
start  
V
V
start  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
NCP1400ASN50T1  
L = 22 µH  
NCP1400ASN30T1  
L = 22 µH  
C
= 10 µF  
OUT  
C
= 10 µF  
OUT  
I
O
= 0 mA  
I
O
= 0 mA  
hold  
V
hold  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 20. NCP1400ASN30T1 Startup/Hold  
Voltage vs. Temperature  
Figure 21. NCP1400ASN50T1 Startup/Hold  
Voltage vs. Temperature  
260  
200  
160  
120  
80  
220  
180  
140  
100  
NCP1400ASN30T1  
NCP1400ASN50T1  
V
LX  
= 0.4 V  
V
LX  
= 0.4 V  
40  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 22. NCP1400ASN30T1 LX Pin On–State  
Current vs. Temperature  
Figure 23. NCP1400ASN50T1 LX Pin On–State  
Current vs. Temperature  
180  
160  
140  
120  
100  
5.0  
4.0  
3.0  
2.0  
NCP1400ASNXXT1  
V
LX  
= 0.4 V  
T = 25°C  
A
NCP1400ASNXXT1  
V
= 0.4 V  
LX  
1.0  
0
80  
60  
T = 25°C  
A
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V , OUTPUT VOLTAGE (V)  
OUT  
V , OUTPUT VOLTAGE (V)  
OUT  
Figure 24. NCP1400ASNXXT1 LX Pin On–State  
Current vs. Output Voltage  
Figure 25. NCP1400ASNXXT1 LX Switch  
On–Resistance vs. Output Voltage  
http://onsemi.com  
7
NCP1400A  
1.6  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
start  
V
V
start  
hold  
hold  
NCP1400ASN19T1  
L = 22 µH  
NCP1400ASN30T1  
L = 22 µH  
C
= 68 µF  
C
= 68 µF  
OUT  
OUT  
T = 25°C  
A
T = 25°C  
A
0
5.0  
10  
15  
20  
25  
30  
0
5.0  
10  
15  
20  
25  
30  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 26. NCP1400ASN19T1 Operation  
Startup/Hold Voltage vs. Output Current  
Figure 27. NCP1400ASN30T1 Operation  
Startup/Hold Voltage vs. Output Current  
1.6  
80.0  
NCP1400ASN19T1  
L = 22 µH  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
C
= 68 µF  
OUT  
start  
hold  
60.0  
40.0  
20.0  
0
T = 25°C  
A
V
V = 1.2 V  
in  
V = 1.5 V  
in  
NCP1400ASN50T1  
L = 22 µH  
V = 0.9 V  
in  
C
= 68 µF  
OUT  
T = 25°C  
A
0
5.0  
10  
15  
20  
25  
30  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 28. NCP1400ASN50T1 Operation  
Startup/Hold Voltage vs. Output Current  
Figure 29. NCP1400ASN19T1 Ripple Voltage  
vs. Output Current  
80  
80  
NCP1400ASN50T1  
L = 22 µH  
V = 2.0 V  
in  
V = 1.5 V  
C
= 68 µF  
in  
OUT  
V = 2.0 V  
60  
40  
20  
0
in  
60  
40  
20  
0
T = 25°C  
A
V = 0.9 V  
in  
V = 1.5 V  
in  
V = 3.0 V  
in  
V = 1.5 V  
in  
NCP1400ASN30T1  
L = 22 µH  
V = 0.9 V  
in  
C
= 68 µF  
OUT  
T = 25°C  
A
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 30. NCP1400ASN30T1 Ripple Voltage  
vs. Output Current  
Figure 31. NCP1400ASN50T1 Ripple Voltage  
vs. Output Current  
http://onsemi.com  
8
NCP1400A  
2 ms/div  
= 3.0 V, V = 1.2 V, I = 10 mA., L = 22 mH, C  
2 ms/div  
= 3.0 V, V = 1.2 V, I = 25 mA., L = 22 mH, C  
V
OUT  
= 68 mF  
V
OUT  
= 68 mF  
OUT  
in  
O
OUT  
in  
O
1. V , 2.0 V/div  
1. V , 2.0 V/div  
LX  
LX  
2. V , 20 mV/div, AC coupled  
OUT  
2. V , 20 mV/div, AC coupled  
OUT  
3. I , 100 mA/div  
3. I , 100 mA/div  
L
L
Figure 32. Operating Waveforms (Medium Load)  
Figure 33. Operating Waveforms (Heavy Load)  
V
in  
= 1.2 V, L = 22 mH  
V = 1.2 V, L = 22 mH  
in  
1. V  
= 1.9 V (AC coupled), 50 mV/div  
1. V  
= 1.9 V (AC coupled), 50 mV/div  
OUT  
OUT  
2. I = 3.0 mA to 30 mA  
2. I = 30 mA to 3.0 mA  
O
O
Figure 34. NCP1400ASN19T1  
Load Transient Response  
Figure 35. NCP1400ASN19T1  
Load Transient Response  
V
in  
= 1.5 V, L = 22 mH  
V = 1.5 V, L = 22 mH  
in  
1. V  
= 3.0 V (AC coupled), 50 mV/div  
1. V  
= 3.0 V (AC coupled), 50 mV/div  
OUT  
OUT  
2. I = 3.0 mA to 30 mA  
2. I = 30 mA to 3.0 mA  
O
O
Figure 36. NCP1400ASN30T1  
Load Transient Response  
Figure 37. NCP1400ASN30T1  
Load Transient Response  
http://onsemi.com  
9
NCP1400A  
V
in  
= 1.5 V, L = 22 mH  
V = 1.5 V, L = 22 mH  
in  
1. V  
= 5.0 V (AC coupled), 50 mV/div  
1. V  
= 5.0 V (AC coupled), 50 mV/div  
OUT  
OUT  
2. I = 3.0 mA to 30 mA  
2. I = 30 mA to 3.0 mA  
O
O
Figure 38. NCP1400ASN50T1  
Load Transient Response  
Figure 39. NCP1400ASN50T1  
Load Transient Response  
OUT  
2
LX  
5
V
LX  
LIMITER  
ERROR  
AMP  
+
-
DRIVER  
POWER  
SWITCH  
NC  
3
PHASE  
PWM  
COMPENSATION  
CONTROLLER  
VOLTAGE  
REFERENCE  
SOFT–START  
180 kHz  
OSCILLATOR  
GND  
4
1
CE  
Figure 40. Representative Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin #  
Symbol  
Pin Description  
1
CE  
Chip Enable Pin  
(1) The chip is enabled if a voltage equal to or greater than 0.9 V is applied.  
(2) The chip is disabled if a voltage less than 0.3 V is applied.  
(3) The chip is enabled if this pin is left floating.  
2
3
4
5
OUT  
NC  
Output voltage monitor pin and also the power supply pin for the device.  
No internal connection to this pin.  
GND  
LX  
Ground pin.  
External inductor connection pin to power switch drain.  
http://onsemi.com  
10  
NCP1400A  
DETAILED OPERATING DESCRIPTION  
Compensation  
Operation  
The NCP1400A series are monolithic power switching  
regulators optimized for applications where power drain  
must be minimized. These devices operate as fixed  
frequency, voltage mode boost regulator and is designed to  
operate in the discontinuous conduction mode. Potential  
applications include low powered consumer products and  
battery powered portable products.  
The NCP1400A series are low noise fixed frequency  
voltage–mode PWM DC–DC converters, and consist of  
soft–start circuit, feedback resistor, reference voltage,  
oscillator, loop compensation network, PWM control  
circuit, current limit circuit and power switch. Due to the  
on–chip feedback resistor and loop compensation network,  
the system designer can get the regulated output voltage  
from 1.8 V to 5.0 V with a small number of external  
components. The quiescent current is typically 32 µA  
The device is designed to operate in discontinuous  
conduction mode. An internal compensation circuit was  
designed to guarantee stability over the full input/output  
voltage and full output load range. Stability cannot be  
guaranteed in continuous conduction mode.  
Current Limit  
The NCP1400A series utilizes cycle–by–cycle current  
limiting as a means of protecting the output switch  
MOSFET from overstress and preventing the small value  
inductor from saturation. Current limiting is implemented  
by monitoring the output MOSFET current build–up during  
conduction, and upon sensing an overcurrent conduction  
immediately turning off the switch for the duration of the  
oscillator cycle.  
The voltage across the output MOSFET is monitored and  
compared against a reference by the VLX limiter. When the  
threshold is reached, a signal is sent to the PWM controller  
block to terminate the output switch conduction. The current  
limit threshold is typically set at 350 mA.  
(V  
= 2.7 V), and can be further reduced to about 1.5 µA  
OUT  
when the chip is disabled (V t 0.3 V).  
CE  
Soft Start  
There is a soft start circuit in NCP1400A. When power is  
applied to the device, the soft start circuit pumps up the  
output voltage to approximately 1.5 V at a fixed duty cycle,  
the level at which the converter can operate normally. What  
is more, the start–up capability with heavy loads is also  
improved.  
Enable/Disable Operation  
The NCP1400A series offer IC shutdown mode by chip  
enable pin (CE pin) to reduce current consumption. An  
internal pull–up resistor tied the CE pin to OUT pin by  
default, i.e., user can float the pin CE for permanent “On’’.  
When voltage at pin CE is equal or greater than 0.9 V, the  
chip will be enabled, which means the regulator is in normal  
operation. When voltage at pin CE is less than 0.3 V, the chip  
is disabled, which means IC is shutdown.  
Important: DO NOT apply a voltage between 0.3 V to  
0.9 V to pin CE as this voltage will place the IC into an  
undefined state and the IC may drain excessive current  
from the supply.  
Oscillator  
The oscillator frequency is internally set to 180 kHz at an  
accuracy of "20% and with low temperature coefficient of  
0.11%/°C. Figures 16 and 17 illustrate oscillator frequency  
versus temperature.  
Regulated Converter Voltage (VOUT  
)
The V  
is set by an internal feedback resistor network.  
OUT  
This is trimmed to a selected voltage from 1.8 V to 5.0 V  
range in 100 mV steps with an accuracy of "2.5%.  
http://onsemi.com  
11  
NCP1400A  
APPLICATION CIRCUIT INFORMATION  
L1  
D1  
V
V
out  
in  
22 µH  
CE  
1
LX  
5
C1  
10 µF  
C2  
68 µF  
OUT  
2
NC  
3
GND  
4
Figure 41. Typical Step–Up Converter Application  
Step–up Converter Design Equations  
Diode  
General step–up DC–DC converter designed to operate in  
discontinuous conduction mode can be defined by:  
The diode is the largest source of loss in DC–DC  
converters. The most importance parameters which affect  
their efficiency are the forward voltage drop, V , and the  
F
reverse recovery time, trr. The forward voltage drop creates  
a loss just by having a voltage across the device while a  
current flowing through it. The reverse recovery time  
generates a loss when the diode is reverse biased, and the  
current appears to actually flow backwards through the  
diode due to the minority carriers being swept from the P–N  
junction. A schottky diode with the following characteristics  
is recommended:  
Calculation  
Equation  
ton  
T
D
I
PK  
Vinton  
L
(Vin)2(ton)2f  
2L(Vout ) VF * Vin)  
I
O
NOTES:  
Small forward voltage, V t 0.3 V  
F
D
– Duty cycle  
– Peak inductor current  
– Desired dc output current  
– Nominal operating dc input voltage  
– Desired dc output voltage  
– Diode forward voltage  
Small reverse leakage current  
Fast reverse recovery time/switching speed  
Rated current larger than peak inductor current,  
I
PK  
I
O
V
in  
V
out  
I
u I  
rated PK  
V
F
Reverse voltage larger than output voltage,  
u V  
Assume saturation voltage of the internal FET switch is negligible.  
V
reverse  
out  
External Component Selection  
Input Capacitor  
The input capacitor can stabilize the input voltage and  
minimize peak current ripple from the source. The value of  
the capacitor depends on the impedance of the input source  
used. Small ESR (Equivalent Series Resistance) Tantalum  
or ceramic capacitor with value of 10 µF should be suitable.  
Inductor  
Inductance values between 18 µH and 27 µH are the best  
suitable values for NCP1400A. In general, smaller  
inductance values can provide larger peak inductor current  
and output current capability, and lower conversion  
efficiency, and vice versa. Select an inductor with smallest  
possible DCR, usually less than 1.0 , to minimize loss. It  
is necessary to choose an inductor with saturation current  
greater than the peak current which the inductor will  
encounter in the application.  
Output Capacitor  
The output capacitor is used for sustaining the output  
voltage when the internal MOSFET is switched on and  
smoothing the ripple voltage. Low ESR capacitor should be  
used to reduce output ripple voltage. In general, a 47 µF to  
68 µF low ESR (0.15 to 0.30 Ω) Tantalum capacitor  
should be appropriate.  
http://onsemi.com  
12  
NCP1400A  
An evaluation board of NCP1400A has been made in the  
small size of 23 mm x 20 mm and is shown in Figures 42 and  
43. Please contact your ON Semiconductor representative  
for availability. The evaluation board schematic diagram,  
the artwork and the silkscreen of the surface mount PCB are  
shown below:  
20 mm  
1
23 mm  
Figure 42. NCP1400A PWM Step–up DC–DC Converter Evaluation Board Silkscreen  
20 mm  
23 mm  
Figure 43. NCP1400A PWM Step–up DC–DC Converter Evaluation Board Artwork (Component Side)  
http://onsemi.com  
13  
NCP1400A  
Components Supplier  
Parts  
Supplier  
Part Number  
CD54–220MC  
MBR0520LT1  
Description  
Inductor 22 µH/1.11 A  
Schottky Power Rectifier  
Phone  
Inductor, L1  
Sumida Electric Co. Ltd.  
ON Semiconductor Corp.  
KEMET Electronics Corp.  
(852) 2880–6688  
(852) 2689–0088  
(852) 2305–1168  
Schottky Diode, D1  
Output Capacitor, C2  
T494D686K010AS  
Low ESR Tantalum Capacitor  
68 µF/10 V  
Input Capacitor, C1  
KEMET Electronics Corp.  
T491C106K016AS  
Low Profile Tantalum Capacitor  
(852) 2305–1168  
10 µF/16 V  
PCB Layout Hints  
Grounding  
efficiency (short and thick traces for connecting the inductor  
L can also reduce stray inductance), e.g.: short and thick  
traces listed below are used in the evaluation board:  
1. Trace from TP1 to L1  
One point grounding should be used for the output power  
return ground, the input power return ground, and the device  
switch ground to reduce noise as shown in Figure 44, e.g.:  
C2 GND, C1 GND, and U1 GND are connected at one point  
in the evaluation board. The input ground and output ground  
traces must be thick enough for current to flow through and  
for reducing ground bounce.  
2. Trace from L1 to Lx pin of U1  
3. Trace from L1 to anode pin of D1  
4. Trace from cathode pin of D1 to TP2  
Output Capacitor  
Power Signal Traces  
Low resistance conducting paths should be used for the  
power carrying traces to reduce power loss so as to improve  
The output capacitor should be placed close to the output  
terminals to obtain better smoothing effect on the output  
ripple.  
D1  
MBR0520LT1  
L1  
TP2  
TP1  
22 µH  
V
OUT  
V
in  
C2  
68 µF/10 V  
C1  
10 µF/16 V  
On  
Off  
CE  
1
LX  
5
JP1  
Enable  
TP3  
TP4  
OUT  
2
NCP1400A  
GND  
GND  
U1  
NC  
3
Gnd  
4
Figure 44. NCP1400A Evaluation Board Schematic Diagram  
http://onsemi.com  
14  
NCP1400A  
PACKAGE DIMENSIONS  
THIN SOT–23–5  
SN SUFFIX  
CASE 483–01  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
D
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
5
4
3
B
C
S
1
2
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
L
G
A
B
C
D
G
H
J
2.90  
1.30  
0.90  
0.25  
0.85  
0.013  
0.10  
0.20  
1.25  
0
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
0.100 0.0005 0.0040  
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
A
J
0.05 (0.002)  
K
L
H
M
K
M
S
10  
0
3.00 0.0985 0.1181  
10  
_
_
_
_
2.50  
http://onsemi.com  
15  
NCP1400A  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
NCP1400A/D  

相关型号:

NCP1400ASN19T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN19T1G

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN22T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN22T1G

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN25T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN25T1G

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN27T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN27T1G

100 mA, Fixed Frequency PWM Step−Up Micropower Switching Regulator
ONSEMI

NCP1400ASN30T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN30T1G

100 mA, Fixed Frequency PWM Step−Up Micropower Switching Regulator
ONSEMI

NCP1400ASN33T1

100mA, Fixed Frequency PWM Step-Up Micropower Switching Regulator
ONSEMI

NCP1400ASN33T1G

100 mA, Fixed Frequency PWM Step−Up Micropower Switching Regulator
ONSEMI