NB4N855SMR4 [ONSEMI]

3.3 V, 1.5 Gb/s Dual AnyLevelTM to LVDS Receiver/Driver/Buffer/ Translator; 3.3 V , 1.5 Gb / s的双AnyLevelTM到LVDS接收器/驱动器/缓冲器/翻译
NB4N855SMR4
型号: NB4N855SMR4
厂家: ONSEMI    ONSEMI
描述:

3.3 V, 1.5 Gb/s Dual AnyLevelTM to LVDS Receiver/Driver/Buffer/ Translator
3.3 V , 1.5 Gb / s的双AnyLevelTM到LVDS接收器/驱动器/缓冲器/翻译

驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总10页 (文件大小:134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB4N855S  
3.3 V, 1.5 Gb/s Dual  
AnyLevelto LVDS  
Receiver/Driver/Buffer/  
Translator  
Description  
http://onsemi.com  
NB4N855S is a clock or data Receiver/Driver/Buffer/Translator  
TM  
MARKING  
DIAGRAM*  
capable of translating AnyLevel  
input signal (LVPECL, CML,  
HSTL, LVDS, or LVTTL/LVCMOS) to LVDS. Depending on the  
distance, noise immunity of the system design, and transmission line  
media, this device will receive, drive or translate data or clock signals  
up to 1.5 Gb/s or 1.0 GHz, respectively. This device is pin−for−pin  
plug in compatible to the SY55855V in a 3.3 V applications.  
10  
1
855S  
AYW  
Micro 10  
M SUFFIX  
CASE 846B  
The NB4N855S has a wide input common mode range of  
1
GND + 50 mV to V − 50 mV. This feature is ideal for translating  
differential or single−ended data or clock signals to 350 mV typical  
LVDS output levels.  
The device is offered in a small 10 lead MSOP package. NB4N855S  
is targeted for data, wireless and telecom applications as well as high  
speed logic interface where jitter and package size are main  
requirements.  
CC  
A
Y
W
= Assembly Location  
= Year  
= Work Week  
*For additional marking information, refer to  
Application Note AND8002/D.  
Application notes, models, and support documentation are available  
at www.onsemi.com.  
D0  
D0  
Q0  
Q0  
Features  
Guaranteed Input Clock Frequency up to 1.0 GHz  
Guaranteed Input Data Rate up to 1.5 Gb/s  
490 ps Maximum Propagation Delay  
1.0 ps Maximum RMS Jitter  
D1  
D1  
Q1  
Q1  
180 ps Maximum Rise/Fall Times  
Single Power Supply; V = 3.3 V 10%  
CC  
Temperature Compensated TIA/EIA−644 Compliant LVDS Outputs  
GND + 50 mV to V − 50 mV V  
Range  
Functional Block Diagram  
CC  
CMR  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 8 of this data sheet.  
Device DDJ = 7 ps  
TIME (133 ps/div)  
Figure 1. Typical Output Waveform at 1.5 Gb/s with K28.5  
(VINPP = 100 mV, Input Signal DDJ = 24 ps)  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
June, 2005 − Rev. 0  
NB4N855S/D  
NB4N855S  
D0  
D0  
V
CC  
1
2
10  
9
Q0  
Q0  
D1  
8
3
D1  
4
5
7
6
Q1  
Q1  
GND  
Figure 2. Pin Configuration and Block Diagram  
(Top View)  
Table 1. PIN DESCRIPTION  
Pin  
Name  
I/O  
Description  
1
D0  
LVPECL, CML, LVCMOS,  
LVTTL, LVDS  
Noninverted Differential Clock/Data D0 Input.  
2
3
4
D0  
D1  
D1  
LVPECL, CML, LVCMOS,  
LVTTL, LVDS  
Inverted Differential Clock/Data D0 Input.  
LVPEL, CML, LVDS LVCMOS, Noninverted Differential Clock/Data D1 Input.  
LVTTL  
LVPECL, CML, LVDS  
LVCMOS LVTTL  
Inverted Differential Clock/Data D1 Input.  
5
6
GND  
Q1  
Ground. 0 V.  
LVDS Output  
Inverted Q1 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
7
8
Q1  
Q0  
Q0  
LVDS Output  
LVDS Output  
LVDS Output  
Noninverted Q1 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
Inverted Q0 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
9
Noninverted Q0 output. Typically loaded with 100 W receiver termination  
resistor across differential pair.  
10  
V
Positive Supply Voltage.  
CC  
http://onsemi.com  
2
NB4N855S  
Table 2. ATTRIBUTES  
Characteristics  
Value  
Level 1  
Moisture Sensitivity (Note 1)  
Flammability Rating  
ESD Protection  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 200 V  
> 1 kV  
Transistor Count  
281  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Positive Input  
Condition 1  
GND = 0 V  
Condition 2  
Rating  
3.8  
Unit  
V
V
V
CC  
I
GND = 0 V  
V = V  
3.8  
V
I
CC  
I
Input Current Through R (50 W Resistor)  
Static  
Surge  
35  
70  
mA  
mA  
IN  
T
I
Output Short Circuit Current  
Line−to−Line (Q to Q)  
Line−to−End (Q or Q to GND)  
mA  
OSC  
Q or Q to GND  
Q to Q  
Continuous  
Continuous  
12  
24  
T
Operating Temperature Range  
Micro 10  
−40 to +85  
°C  
°C  
A
T
stg  
Storage Temperature Range  
−65 to +150  
Thermal Resistance (Junction−to−Ambient) (Note 2)  
0 lfpm  
500 lfpm  
Micro 10  
Micro 10  
177  
132  
°C/W  
°C/W  
q
JA  
Thermal Resistance (Junction−to−Case)  
1S2P (Note 4)  
40  
°C/W  
°C  
Micro 10  
q
JC  
T
sol  
Wave Solder  
Pb <3 Sec @ 248°C  
Pb−Free <3 Sec @ 260°C  
265  
265  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
2. JEDEC standard multilayer board − 1S2P (1 signal, 2 power).  
http://onsemi.com  
3
 
NB4N855S  
Table 4. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS V = 3.0 V to 3.6 V, GND = 0 V, T = −40°C to +85°C  
CC  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
I
Power Supply Current (Note 3)  
40  
53  
mA  
CC  
DIFFERENTIAL INPUTS DRIVEN SINGLE−ENDED (Figures 10 and 12)  
V
V
V
Input Threshold Reference Voltage Range (Note 4)  
Single−ended Input HIGH Voltage  
GND +100  
V
− 100  
CC  
mV  
mV  
mV  
th  
IH  
IL  
V
+ 100  
V
CC  
th  
Single−ended Input LOW Voltage  
GND  
V
− 100  
th  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11 and 13)  
V
V
V
V
Differential Input HIGH Voltage  
100  
V
mV  
mV  
mV  
mV  
IHD  
ILD  
CMR  
ID  
CC  
Differential Input LOW Voltage  
GND  
V
− 100  
CC  
Input Common Mode Range (Differential Configuration)  
GND + 50  
100  
V
− 50  
CC  
Differential Input Voltage (V  
− V )  
ILD  
V
IHD  
CC  
LVDS OUTPUTS (Note 5)  
Differential Output Voltage  
V
250  
0
450  
mV  
mV  
mV  
mV  
mV  
mV  
OD  
DV  
Change in Magnitude of V  
Offset Voltage (Figure 9)  
for Complimentary Output States (Note 6)  
OD  
1.0  
25  
1375  
25  
OD  
V
1125  
0
OS  
DV  
Change in Magnitude of V for Complimentary Output States (Note 6)  
1.0  
OS  
OS  
V
V
Output HIGH Voltage (Note 7)  
Output LOW Voltage (Note 8)  
1425  
1075  
1600  
OH  
OL  
900  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
3. Dx/Dx at the DC level within V  
and output pins loaded with R = 100 W across differential.  
CMR  
L
4. V is applied to the complementary input when operating in single−ended mode.  
th  
5. LVDS outputs require 100 W receiver termination resistor between differential pair. See Figure 8.  
6. Parameter guaranteed by design verification not tested in production.  
7. V max = V max + ½ V max.  
OH  
OS  
OD  
8. V max = V min − ½ V max.  
OL  
OS  
OD  
http://onsemi.com  
4
 
NB4N855S  
Table 5. AC CHARACTERISTICS V = 3.0 V to 3.6 V, GND = 0 V; (Note 9)  
CC  
−40°C  
25°C  
85°C  
Min Typ Max Min Typ Max Min Typ Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude (@ V  
(Figure 3)  
)f 1.0 GHz 230 350  
INPPMIN in  
230 350  
200 300  
230 350  
200 300  
mV  
OUTPP  
f = 1.5 GHz 200 300  
in  
f
Maximum Operating Data Rate  
1.5  
2.5  
1.5  
2.5  
1.5  
2.5  
Gb/s  
ps  
DATA  
t
t
,
Differential Input to Differential Output  
Propagation Delay  
330 410  
490  
330 410  
490  
330 410  
490  
PLH  
PHL  
t
Duty Cycle Skew (Note 10)  
Within −Device Skew (Note 11)  
Device to Device Skew (Note 12)  
8
10  
20  
45  
35  
100  
8
10  
20  
45  
35  
100  
8
10  
20  
45  
35  
100  
ps  
SKEW  
t
RMS Random Clock Jitter (Note 13)  
f
f
= 1.0 GHz  
= 1.5 GHz  
0.5  
0.5  
6
7
10  
20  
1
1
15  
20  
25  
40  
0.5  
0.5  
6
7
10  
20  
1
1
15  
20  
25  
40  
0.5  
0.5  
6
7
10  
20  
1
1
15  
20  
25  
40  
JITTER  
in  
in  
ps  
Deterministic Jitter (Note 14)  
f
f
f
= 622 Mb/s  
= 1.5 Gb/s  
= 2.488 Gb/s  
DATA  
DATA  
DATA  
Crosstalk Induced Jitter (Note 15)  
V
Input Voltage Swing/Sensitivity  
(Differential Configuration) (Note 16)  
100  
V
GND  
100  
V
GND  
100  
V
GND  
mV  
ps  
INPP  
CC  
CC  
CC  
t
t
Output Rise/Fall Times @ 250 MHz  
(20% − 80%)  
Q, Q  
50  
110  
180  
50  
110  
180  
50  
110  
180  
r
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
9. Measured by forcing V  
with 50% duty cycle clock source and V − 1400 mV offset. All loading with an external R = 100 W across  
INPPMIN  
C
C
L
“D” and “D” of the receiver. Input edge rates 150 ps (20%−80%).  
10.See Figure 7 differential measurement of t = |t − t | for a nominal 50% differential clock input waveform @ 250 MHz.  
skew  
PLH  
PHL  
11. The worst case condition between Q0/Q0 and Q1/Q1 from either D0/D0 or D1/D1, when both outputs have the same transition.  
12.Skew is measured between outputs under identical transition @ 250 MHz.  
13.RMS jitter with 50% Duty Cycle clock signal.  
23  
14.Deterministic jitter with input NRZ data at PRBS 2 −1 and K28.5.  
15.Crosstalk Induced Jitter is the additive Deterministic jitter to channel one with channel two active both running at 622 Gb/s PRBS 2 −1 as  
an asynchronous signals.  
23  
16.Input voltage swing is a single−ended measurement operating in differential mode.  
400  
350  
300  
−40°C  
250  
85°C  
200  
25°C  
150  
100  
50  
0
0
0.5  
1
1.5  
2
2.5  
3
INPUT CLOCK FREQUENCY (GHz)  
Figure 3. Output Voltage Amplitude (VOUTPP) versus  
Input Clock Frequency (fin) and Temperature (@ VCC = 3.3 V)  
http://onsemi.com  
5
 
NB4N855S  
Device DDJ = 6 ps  
Device DDJ = 6 ps  
TIME (322 ps/div)  
TIME (322 ps/div)  
Figure 4. Typical Output Waveform at 1.5 Gb/s with 223−1  
(VINPP = 100 mV (left) & VINPP = 400 mV (right), Input Signal DDJ = 24 ps)  
Device DDJ = 10 ps  
Device DDJ = 10 ps  
TIME (80 ps/div)  
TIME (80 ps/div)  
Figure 5. Typical Output Waveform at 2.488 Gb/s with 223−1  
(VINPP = 100 mV (left) & VINPP = 400 mV (right), Input Signal DDJ = 30 ps)  
R
C
R
C
1.25 kW  
1.25 kW  
Dx  
1.25 kW  
1.25 kW  
I
D
x
Figure 6. Input Structure  
http://onsemi.com  
6
NB4N855S  
D
V
V
= V (D) − V (D)  
IH IL  
INPP  
D
Q
= V (Q) − V (Q)  
OUTPP  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 7. AC Reference Measurement  
Z = 50 W  
Q
Q
D
D
o
LVDS  
Driver  
Device  
LVDS  
Receiver  
Device  
100 W  
Z = 50 W  
o
Figure 8. Typical LVDS Termination for Output Driver and Device Evaluation  
Q
Q
V
V
N
N
OH  
OL  
V
V
OS  
OD  
Figure 9. LVDS Output  
D
D
D
D
V
V
IH  
V
IL  
th  
V
th  
Figure 10. Differential Input Driven  
Single−Ended  
Figure 11. Differential Inputs Driven  
Differentially  
V
CC  
V
V
V
IH(MAX)  
IL  
V
CC  
V
V
IHmax  
ILmax  
V
thmax  
D
D
IH  
V
V
= V  
− V  
IHD ILD  
CMR  
INPP  
V
th  
V
IL  
V
V
IHmin  
ILmin  
V
V
V
IH  
thmin  
GND  
IL(MIN)  
V
EE  
Figure 13. VCMR Diagram  
Figure 12. Vth Diagram  
http://onsemi.com  
7
NB4N855S  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB4N855SMR4  
Micro 10  
1000 / Tape & Reel  
1000 / Tape & Reel  
NB4N855SMR4G  
Micro 10  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
8
NB4N855S  
PACKAGE DIMENSIONS  
Micro10  
CASE 846B−03  
ISSUE D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION “A” DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE  
BURRS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
4. DIMENSION “B” DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846B−01 OBSOLETE. NEW STANDARD  
846B−02  
−B−  
K
G
PIN 1 ID  
D 8 PL  
M
S
S
A
0.08 (0.003)  
T
B
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
3.10  
3.10  
1.10  
0.30  
MIN  
MAX  
0.122  
0.122  
0.043  
0.012  
A
B
C
D
G
H
J
2.90  
2.90  
0.95  
0.20  
0.114  
0.114  
0.037  
0.008  
0.50 BSC  
0.020 BSC  
C
0.038 (0.0015)  
0.05  
0.10  
4.75  
0.40  
0.15  
0.21  
5.05  
0.70  
0.002  
0.004  
0.187  
0.016  
0.006  
0.008  
0.199  
0.028  
−T−  
SEATING  
PLANE  
L
K
L
H
J
SOLDERING FOOTPRINT*  
1.04  
0.041  
0.32  
0.0126  
10X  
10X  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.50  
mm  
inches  
ǒ
Ǔ
8X0.0196  
SCALE 8:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
9
NB4N855S  
AnyLevel is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NB4N855S/D  

相关型号:

NB4N855SMR4G

3.3 V, 1.5 Gb/s Dual AnyLevelTM to LVDS Receiver/Driver/Buffer/ Translator
ONSEMI

NB4N855S_06

3.3 V, 1.5 Gb/s Dual AnyLevel TM to LVDS Receiver/Driver/Buffer/ Translator
ONSEMI

NB50E1-9.999MHZ

Parallel - Fundamental Quartz Crystal, 9.999MHz Nom, SMD, 4 PIN
CALIBER

NB50F1-3.500MHZ

Parallel - Fundamental Quartz Crystal, 3.5MHz Nom, SMD, 4 PIN
CALIBER

NB50F1-9.999MHZ

Parallel - Fundamental Quartz Crystal, 9.999MHz Nom, SMD, 4 PIN
CALIBER

NB50SM/2-B-D

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, PACKAGE-11
COOPER

NB50SM/24-C-D

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, PACKAGE-11
COOPER

NB50SM/28-B-D

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, PACKAGE-11
COOPER

NB50SM/28-B-I

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, PACKAGE-11
COOPER

NB50SM/5-B-D

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, PACKAGE-11
COOPER

NB50SM/5.2-A-D

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, PACKAGE-11
COOPER

NB50TI/5/12-A

Analog Circuit,
COOPER