MC74LVX8051DT [ONSEMI]

Analog Multiplexer/Demultiplexer; 模拟复用器/解复用器
MC74LVX8051DT
型号: MC74LVX8051DT
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer/Demultiplexer
模拟复用器/解复用器

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总12页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High–Performance Silicon–Gate CMOS  
The MC74LVX8051 utilizes silicon–gate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low OFF  
leakage currents. This analog multiplexer/demultiplexer controls  
analog voltages that may vary across the complete power supply range  
http://onsemi.com  
(from V  
to GND).  
CC  
The LVX8051 is similar in pinout to the high–speed HC4051A and  
the metal–gate MC14051B. The Channel–Select inputs determine  
which one of the Analog Inputs/Outputs is to be connected, by means  
of an analog switch, to the Common Output/Input. When the Enable  
pin is HIGH, all analog switches are turned off.  
16–LEAD SOIC  
D SUFFIX  
CASE 751B  
16–LEAD TSSOP  
DT SUFFIX  
CASE 948F  
The Channel–Select and Enable inputs are compatible with standard  
CMOS outputs; with pull–up resistors they are compatible with  
LSTTL outputs.  
PIN CONNECTION AND  
MARKING DIAGRAM (Top View)  
V
X2  
15  
X1  
14  
X0  
13  
X3  
12  
A
B
C
9
CC  
This device has been designed so that the ON resistance (R ) is  
on  
16  
11  
10  
more linear over input voltage than R of metal–gate CMOS analog  
on  
switches.  
Fast Switching and Propagation Speeds  
Low Crosstalk Between Switches  
1
2
3
4
5
6
7
8
Diode Protection on All Inputs/Outputs  
X4  
X6  
X
X7  
X5 Enable NC GND  
Analog Power Supply Range (V  
– GND) = 2.0 to 6.0 V  
CC  
For detailed package marking information, see the Marking  
Diagram section on page 11 of this data sheet.  
Digital (Control) Power Supply Range (V  
CC  
– GND) = 2.0 to 6.0 V  
Improved Linearity and Lower ON Resistance Than Metal–Gate  
Counterparts  
Low Noise  
ORDERING INFORMATION  
In Compliance With the Requirements of JEDEC Standard No. 7A  
Chip Complexity: LVX8051 — 184 FETs or 46 Equivalent Gates  
Device  
Package  
SOIC  
Shipping  
48 Units/Rail  
96 Units/Rail  
MC74LVX8051D  
MC74LVX8051DT  
LOGIC DIAGRAM  
MC74LVX8051  
TSSOP  
Single–Pole, 8–Position Plus Common Off  
13  
X0  
14  
X1  
15  
FUNCTION TABLE – MC74LVX8051  
3
X2  
X3  
X4  
X5  
X6  
X7  
A
COMMON  
OUTPUT/  
INPUT  
X
ANALOG  
INPUTS/  
12  
1
MULTIPLEXER/  
DEMULTIPLEXER  
Control Inputs  
OUTPUTS  
Select  
5
Enable  
C
B
A
ON Channels  
2
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
NONE  
4
11  
10  
9
CHANNEL  
SELECT  
INPUTS  
L
B
H
H
H
H
X
C
L
6
ENABLE  
H
H
X
PIN 16 = V  
CC  
PIN 8 = GND  
X = Don’t Care  
Semiconductor Components Industries, LLC, 1999  
1
Publication Order Number:  
October, 1999 – Rev. 1.0  
MC74LVX8051/D  
MC74LVX8051  
MAXIMUM RATINGS*  
Symbol  
Parameter  
(Referenced to GND)  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
CC  
Positive DC Supply Voltage  
– 0.5 to + 7.0  
V
IS  
Analog Input Voltage  
– 0.5 to V  
+ 0.5  
V
CC  
V
Digital Input Voltage (Referenced to GND)  
DC Current, Into or Out of Any Pin  
– 0.5 to V  
+ 0.5  
V
in  
CC  
I
± 20  
mA  
mW  
cuit. For proper operation, V and  
in  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
V
should be constrained to the  
out  
range GND (V or V  
)
V
CC  
.
in out  
Unused inputs must always be  
tied to an appropriate logic voltage  
T
Storage Temperature Range  
– 65 to + 150  
260  
C
C
stg  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
L
level (e.g., either GND or V  
).  
CC  
Unused outputs must be left open.  
*Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — SOIC Package: – 7 mW/ C from 65 to 125 C  
TSSOP Package: – 6.1 mW/ C from 65 to 125 C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Positive DC Supply Voltage  
Analog Input Voltage  
Min  
2.0  
Max  
Unit  
V
V
CC  
(Referenced to GND)  
6.0  
V
IS  
0.0  
V
V
V
CC  
V
in  
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature Range, All Package Types  
GND  
V
CC  
V
IO  
*
1.2  
V
T
A
– 55  
+ 85  
C
t , t  
r f  
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
ns/V  
V
CC  
V
CC  
= 3.3 V ± 0.3 V  
= 5.0 V ± 0.5 V  
0
0
100  
20  
*For voltage drops across switch greater than 1.2 V (switch on), excessive V  
be drawn; i.e., the current out of the switch may contain both V  
CC  
current may  
and switch input  
CC  
components. The reliability of the device will be unaffected unless the Maximum Ratings are  
exceeded.  
http://onsemi.com  
2
MC74LVX8051  
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
V
Symbol  
Parameter  
Condition  
= Per Spec  
Unit  
–55 to 25°C 85°C 125°C  
V
IH  
Minimum High–Level Input  
Voltage, Channel–Select or  
Enable Inputs  
R
R
2.0  
3.0  
4.5  
5.5  
1.50  
2.10  
3.15  
3.85  
1.50  
2.10  
3.15  
3.85  
1.50  
2.10  
3.15  
3.85  
V
on  
on  
V
IL  
Maximum Low–Level Input  
Voltage, Channel–Select or  
Enable Inputs  
= Per Spec  
2.0  
3.0  
4.5  
5.5  
0.5  
0.9  
1.35  
1.65  
0.5  
0.9  
1.35  
1.65  
0.5  
0.9  
1.35  
1.65  
V
I
Maximum Input Leakage Current,  
Channel–Select or Enable Inputs  
V
= V  
or GND  
CC  
5.5  
± 0.1  
± 1.0  
± 1.0  
µA  
µA  
in  
in  
I
Maximum Quiescent Supply  
Current (per Package)  
Channel Select, Enable and  
5.5  
4.0  
40  
160  
CC  
V
V
= V  
CC  
= 0 V  
or GND;  
IS  
IO  
DC ELECTRICAL CHARACTERISTICS Analog Section  
Guaranteed Limit  
85 C  
V
CC  
V
– 55 to  
25 C  
Symbol  
Parameter  
Test Conditions  
Unit  
125 C  
R
Maximum “ON” Resistance  
V
V
|I |  
S
= V or V  
IL  
3.0  
4.5  
5.5  
30  
25  
20  
35  
28  
25  
40  
35  
30  
on  
in  
IS  
IH  
= V  
to GND  
CC  
10.0 mA (Figures 1, 2)  
V
V
|I |  
S
= V or V  
IL  
3.0  
4.5  
5.5  
30  
25  
20  
35  
28  
25  
40  
35  
30  
in  
IS  
IH  
= V  
or GND (Endpoints)  
CC  
10.0 mA (Figures 1, 2)  
R  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
|I |  
S
= V or V  
IH  
3.0  
4.5  
5.5  
15  
8.0  
8.0  
20  
12  
12  
25  
15  
15  
on  
in  
IS  
IL  
= 1/2 (V  
– GND)  
CC  
10.0 mA  
I
Maximum Off–Channel Leakage  
Current, Any One Channel  
V
V
= V or V  
IL IH  
;
5.5  
5.5  
5.5  
0.1  
0.2  
0.2  
0.5  
2.0  
2.0  
1.0  
4.0  
4.0  
µA  
off  
in  
= V  
or GND;  
IO  
CC  
Switch Off (Figure 3)  
Maximum Off–Channel  
Leakage Current,  
Common Channel  
V
V
= V or V ;  
IL  
in  
IO  
IH  
or GND;  
CC  
= V  
Switch Off (Figure 4)  
I
on  
Maximum On–Channel  
Leakage Current,  
Channel–to–Channel  
V
in  
= V or V ;  
IL IH  
µA  
Switch–to–Switch =  
V or GND; (Figure 5)  
CC  
http://onsemi.com  
3
MC74LVX8051  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
V
CC  
V
Symbol  
Parameter  
Unit  
–55 to 25°C  
85°C  
125°C  
t
t
t
,
Maximum Propagation Delay, Channel–Select to Analog Output  
(Figure 9)  
2.0  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figure 10)  
2.0  
3.0  
4.5  
5.5  
4.0  
3.0  
1.0  
1.0  
6.0  
5.0  
2.0  
2.0  
8.0  
6.0  
2.0  
2.0  
ns  
ns  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
PLZ  
t
PHZ  
t
t
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
3.0  
4.5  
5.5  
20  
12  
8.0  
8.0  
25  
14  
10  
10  
30  
15  
12  
12  
PZL  
PZH  
C
Maximum Input Capacitance, Channel–Select or Enable Inputs  
10  
35  
10  
35  
10  
35  
pF  
pF  
in  
C
Maximum Capacitance  
(All Switches Off)  
Analog I/O  
Common O/I  
Feedthrough  
I/O  
130  
1.0  
130  
1.0  
130  
1.0  
C
pF  
PD  
Typical @ 25°C, V  
= 5.0 V  
CC  
Power Dissipation Capacitance (Figure 13)*  
45  
2
* Used to determine the no–load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
http://onsemi.com  
4
MC74LVX8051  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Limit*  
V
CC  
V
Symbol  
Parameter  
Condition  
= 1MHz Sine Wave; Adjust f Voltage to Obtain  
Unit  
25°C  
BW  
Maximum On–Channel Bandwidth  
or Minimum Frequency Response  
(Figure 6)  
f
MHz  
in  
in  
0dBm at V ; Increase f Frequency Until dB  
OS  
in  
3.0  
4.5  
5.5  
80  
80  
80  
Meter Reads –3dB;  
R
= 50, C = 10pF  
L
L
Off–Channel Feedthrough Isolation  
(Figure 7)  
f
= Sine Wave; Adjust f Voltage to Obtain 0dBm  
in  
3.0  
4.5  
5.5  
–50  
–50  
–50  
dB  
in  
at V  
IS  
f
in  
= 10kHz, R = 600, C = 50pF  
L L  
3.0  
4.5  
5.5  
–37  
–37  
–37  
f
in  
= 1.0MHz, R = 50, C = 10pF  
L L  
Feedthrough Noise.  
Channel–Select Input to Common  
I/O (Figure 8)  
V
1MHz Square Wave (t = t = 6ns); Adjust R  
3.0  
4.5  
5.5  
25  
105  
135  
mV  
PP  
in  
r
f
L
at Setup so that I = 0A;  
S
Enable = GND  
R = 600, C = 50pF  
L L  
3.0  
4.5  
5.5  
35  
145  
190  
R
= 10k, C = 10pF  
L
L
THD  
Total Harmonic Distortion  
(Figure 14)  
f
= 1kHz, R = 10k, C = 50pF  
%
in  
THD = THD  
L
L
– THD  
measured  
source  
V
IS  
V
IS  
V
IS  
= 2.0V  
= 4.0V  
= 5.0V  
sine wave  
sine wave  
sine wave  
3.0  
4.5  
5.5  
0.10  
0.08  
0.05  
PP  
PP  
PP  
*Limits not tested. Determined by design and verified by qualification.  
25  
20  
15  
10  
5
125°C  
85°C  
25°C  
55°C  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 1a. Typical On Resistance, V  
= 3.0 V  
CC  
http://onsemi.com  
5
MC74LVX8051  
20  
18  
18  
125°C  
85°C  
16  
14  
12  
10  
8
125°C  
85°C  
16  
14  
12  
10  
8
25°C  
25°C  
55°C  
55°C  
6
6
4
4
2
0
2
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 1b. Typical On Resistance, V  
= 4.5 V  
Figure 1c. Typical On Resistance, V  
= 5.5 V  
CC  
CC  
PLOTTER  
PROGRAMMABLE  
POWER  
MINI COMPUTER  
DC ANALYZER  
SUPPLY  
+
V
CC  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
GND  
GND  
Figure 2. On Resistance Test Set–Up  
http://onsemi.com  
6
MC74LVX8051  
V
CC  
V
CC  
V
V
CC  
CC  
16  
16  
GND  
GND  
ANALOG I/O  
OFF  
OFF  
OFF  
OFF  
A
V
V
CC  
V
CC  
COMMON O/I  
NC  
COMMON O/I  
V
6
8
6
8
IH  
IH  
Figure 3. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set–Up  
Figure 4. Maximum Off Channel Leakage Current,  
Common Channel, Test Set–Up  
V
CC  
16  
V
OS  
V
CC  
V
CC  
16  
0.1µF  
A
dB  
METER  
f
in  
ON  
ON  
N/C  
R
L
GND  
C *  
L
COMMON O/I  
OFF  
V
CC  
ANALOG I/O  
V
IL  
6
8
6
8
*Includes all probe and jig capacitance  
Figure 5. Maximum On Channel Leakage Current,  
Channel to Channel, Test Set–Up  
Figure 6. Maximum On Channel Bandwidth,  
Test Set–Up  
V
CC  
16  
V
CC  
16  
V
IS  
V
OS  
0.1µF  
dB  
METER  
R
L
f
in  
OFF  
ON/OFF  
OFF/ON  
COMMON O/I  
TEST  
ANALOG I/O  
R
L
R
L
C *  
L
POINT  
R
L
C *  
L
R
L
6
8
6
8
V
CC  
V 1 MHz  
in  
11  
t = t = 3 ns  
r
f
V
CC  
GND  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
V
IL  
or V  
IH  
Figure 7. Off Channel Feedthrough Isolation,  
Test Set–Up  
Figure 8. Feedthrough Noise, Channel Select to  
Common Out, Test Set–Up  
http://onsemi.com  
7
MC74LVX8051  
V
CC  
16  
V
CC  
V
CC  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
CHANNEL  
SELECT  
TEST  
POINT  
50%  
ANALOG I/O  
GND  
L
t
t
PHL  
PLH  
6
8
ANALOG  
OUT  
50%  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 9a. Propagation Delays, Channel Select  
to Analog Out  
Figure 9b. Propagation Delay, Test Set–Up Channel  
Select to Analog Out  
V
CC  
16  
COMMON O/I  
C *  
ANALOG I/O  
TEST  
POINT  
V
CC  
ON  
ANALOG  
IN  
50%  
L
GND  
t
t
PHL  
PLH  
6
8
ANALOG  
OUT  
50%  
*Includes all probe and jig capacitance  
Figure 10a. Propagation Delays, Analog In  
to Analog Out  
Figure 10b. Propagation Delay, Test Set–Up  
Analog In to Analog Out  
t
t
POSITION 1 WHEN TESTING t  
POSITION 2 WHEN TESTING t  
AND t  
AND t  
f
r
PHZ  
PLZ  
PZH  
PZL  
1
2
V
CC  
90%  
50%  
10%  
ENABLE  
V
CC  
16  
GND  
1kΩ  
V
CC  
t
t
PZL PLZ  
HIGH  
IMPEDANCE  
1
2
ANALOG I/O  
ENABLE  
TEST  
POINT  
ON/OFF  
ANALOG  
OUT  
50%  
C *  
L
10%  
V
OL  
t
t
PZH PHZ  
6
8
V
OH  
90%  
ANALOG  
OUT  
50%  
HIGH  
IMPEDANCE  
Figure 11a. Propagation Delays, Enable to  
Analog Out  
Figure 11b. Propagation Delay, Test Set–Up  
Enable to Analog Out  
http://onsemi.com  
8
MC74LVX8051  
V
CC  
V
IS  
A
V
CC  
16  
16  
R
L
V
OS  
ON/OFF  
OFF/ON  
COMMON O/I  
f
in  
ON  
NC  
ANALOG I/O  
0.1µF  
OFF  
R
L
R
L
C *  
L
C *  
L
V
CC  
R
L
6
8
6
8
11  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 12. Crosstalk Between Any Two  
Switches, Test Set–Up  
Figure 13. Power Dissipation Capacitance,  
Test Set–Up  
0
10  
20  
30  
40  
V
IS  
FUNDAMENTAL FREQUENCY  
V
CC  
16  
V
OS  
0.1µF  
TO  
f
in  
DISTORTION  
METER  
ON  
R
L
C *  
L
50  
60  
70  
80  
90  
100  
DEVICE  
SOURCE  
6
8
*Includes all probe and jig capacitance  
1.0  
2.0  
3.125  
FREQUENCY (kHz)  
Figure 14a. Total Harmonic Distortion, Test Set–Up  
Figure 14b. Plot, Harmonic Distortion  
APPLICATIONS INFORMATION  
The Channel Select and Enable control pins should be at connected). However, tying unused analog inputs and  
V
CC  
or GND logic levels. V being recognized as a logic outputs to V or GND through a low value resistor helps  
CC CC  
high and GND being recognized as a logic low. In this  
example:  
minimize crosstalk and feedthrough noise that may be  
picked up by an unused switch.  
Although used here, balanced supplies are not a  
requirement. The only constraints on the power supplies are  
that:  
V
= +5V = logic high  
CC  
GND = 0V = logic low  
The maximum analog voltage swing is determined by the  
supply voltage V . The positive peak analog voltage  
should not exceed V . Similarly, the negative peak analog  
CC  
voltage should not go below GND. In this example, the  
V
CC  
– GND = 2 to 6 volts  
CC  
When voltage transients above V  
and/or below GND  
CC  
are anticipated on the analog channels, external Germanium  
difference between V  
and GND is five volts. Therefore,  
or Schottky diodes (D ) are recommended as shown in  
CC  
x
using the configuration of Figure 15, a maximum analog  
signal of five volts peak–to–peak can be controlled. Unused  
analog inputs/outputs may be left floating (i.e., not  
Figure 16. These diodes should be able to absorb the  
maximum anticipated current surges during clipping.  
http://onsemi.com  
9
MC74LVX8051  
V
V
CC  
CC  
+5V  
V
CC  
16  
ON/OFF  
D
D
x
16  
x
+5V  
0V  
+5V  
0V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
D
D
x
x
GND  
GND  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 5V  
DIGITAL SIGNALS  
6
8
11  
10  
9
8
Figure 15. Application Example  
Figure 16. External Germanium or  
Schottky Clipping Diodes  
+5V  
16  
+5V  
16  
+5V  
+5V  
+5V  
+5V  
ANALOG  
SIGNAL  
ANALOG  
ANALOG  
SIGNAL  
ANALOG  
ON/OFF  
ON/OFF  
SIGNAL  
SIGNAL  
GND  
GND  
GND  
GND  
+5V  
*
R
R
R
+5V  
6
8
11  
10  
9
6
8
11  
10  
9
LSTTL/NMOS  
CIRCUITRY  
LSTTL/NMOS  
CIRCUITRY  
* 2K R 10K  
VHCT1GT50  
BUFFERS  
a. Using Pull–Up Resistors  
b. Using HCT Interface  
Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs  
11  
10  
9
13  
X0  
LEVEL  
SHIFTER  
A
B
C
14  
X1  
15  
X2  
LEVEL  
SHIFTER  
12  
X3  
1
LEVEL  
SHIFTER  
X4  
5
X5  
6
2
LEVEL  
SHIFTER  
ENABLE  
X6  
4
X7  
3
X
Figure 18. Function Diagram, LVX8051  
http://onsemi.com  
10  
MC74LVX8051  
MARKING DIAGRAMS  
(Top View)  
16 15 14 13 12 11 10  
9
8
16  
15  
14  
13  
12  
11  
6
10  
9
8
LVX  
LVX8051  
8051  
AWLYWW*  
ALYW*  
1
2
3
4
5
7
1
2
3
4
5
6
7
16–LEAD SOIC  
D SUFFIX  
16–LEAD TSSOP  
DT SUFFIX  
CASE 751B  
CASE 948F  
*See Applications Note #AND8004/D for date code and traceability information.  
PACKAGE DIMENSIONS  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751B–05  
ISSUE J  
–A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
1
9
8
–B  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
M
0.25 (0.010)  
B
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
MIN MAX  
DIM MIN  
MAX  
A
B
C
D
F
G
J
K
M
P
9.80 10.00  
0.386 0.393  
0.150 0.157  
0.054 0.068  
0.014 0.019  
0.016 0.049  
0.050 BSC  
F
K
R X 45°  
3.80  
1.35  
0.35  
0.40  
4.00  
1.75  
0.49  
1.25  
C
1.27 BSC  
–T  
0.19  
0.10  
0°  
0.25  
0.25  
7°  
0.008 0.009  
0.004 0.009  
J
SEATING  
M
PLANE  
D 16 PL  
0°  
7°  
5.80  
0.25  
6.20  
0.50  
0.229 0.244  
0.010 0.019  
M
S
S
0.25 (0.010)  
T
B
A
R
http://onsemi.com  
11  
MC74LVX8051  
PACKAGE DIMENSIONS  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T U  
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
S
0.15 (0.006) T U  
K
Y14.5M, 1982.  
K1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR  
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER  
SIDE.  
16  
9
2X L/2  
J1  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
B
–U–  
SECTION N–N  
L
0.25 (0.010) PER SIDE.  
J
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE DETERMINED AT  
DATUM PLANE W.  
S
0.15 (0.006) T U  
A
M
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
–V–  
N
A
B
C
D
F
G
H
J
J1  
K
K1  
L
4.90  
4.30  
–––  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
F
1.20  
––– 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
0.026 BSC  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
DETAIL E  
0.65 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
–W–  
C
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
M
0
8
0
8
DETAIL E  
H
SEATING  
PLANE  
–T–  
D
G
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
USA/EUROPE Literature Fulfillment:  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Email: ONlit–asia@hibbertco.com  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5487–8345  
Fax Response Line*: 303–675–2167  
800–344–3810 Toll Free USA/Canada  
*To receive a Fax of our publications  
Email: r14153@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local Sales Representative.  
N. America Technical Support: 800–282–9855 Toll Free USA/Canada  
MC74LVX8051/D  

相关型号:

MC74LVX8051DTG

Analog Multiplexer/ Demultiplexer
ONSEMI

MC74LVX8051DTR2

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051DTR2G

暂无描述
ONSEMI

MC74LVX8051M

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051MEL

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051MELG

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051MG

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051_05

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051_14

Analog Multiplexer/ Demultiplexer
ONSEMI

MC74LVX8053

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8053D

Analog Multiplexer/Demultiplexer
ONSEMI

MC74LVX8053D

TRIPLE 2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, SOIC-16
ROCHESTER