MC74LVX8051DTR2 [ONSEMI]

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS; 模拟多路复用器/多路解复用器高性能硅栅CMOS
MC74LVX8051DTR2
型号: MC74LVX8051DTR2
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
模拟多路复用器/多路解复用器高性能硅栅CMOS

解复用器 栅
文件: 总12页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74LVX8051  
Analog Multiplexer /  
Demultiplexer  
High−Performance Silicon−Gate CMOS  
The MC74LVX8051 utilizes silicon−gate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low OFF  
leakage currents. This analog multiplexer/demultiplexer controls  
analog voltages that may vary across the complete power supply range  
http://onsemi.com  
MARKING  
DIAGRAMS  
(from V to GND).  
CC  
The LVX8051 is similar in pinout to the high−speed HC4051A and  
the metal−gate MC14051B. The Channel−Select inputs determine  
which one of the Analog Inputs/Outputs is to be connected, by means  
of an analog switch, to the Common Output/Input. When the Enable  
pin is HIGH, all analog switches are turned off.  
The Channel−Select and Enable inputs are compatible with standard  
CMOS outputs; with pull−up resistors they are compatible with  
LSTTL outputs.  
16  
SOIC−16  
D SUFFIX  
CASE 751B  
LVX8051  
AWLYWW  
1
16  
LVX  
8051  
ALYW  
TSSOP−16  
DT SUFFIX  
CASE 948F  
This device has been designed so that the ON resistance (R ) is  
on  
more linear over input voltage than R of metal−gate CMOS analog  
on  
switches.  
1
Features  
Fast Switching and Propagation Speeds  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
16  
1
SOEIAJ−16  
M SUFFIX  
CASE 966  
LVX8051  
ALYW  
Analog Power Supply Range (V − GND) = 2.5 to 6.0 V  
CC  
Digital (Control) Power Supply Range (V − GND) = 2.5 to 6.0 V  
CC  
Improved Linearity and Lower ON Resistance Than Metal−Gate  
A
=
=
=
=
Assembly Location  
Wafer Lot  
Year  
Counterparts  
WL or L  
Y
WW or W  
Low Noise  
Work Week  
In Compliance With the Requirements of JEDEC Standard No. 7A  
Chip Complexity: LVX8051 − 184 FETs or 46 Equivalent Gates  
Pb−Free Packages are Available*  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
April, 2005 − Rev. 4  
MC74LVX8051/D  
MC74LVX8051  
V
X2  
15  
X1  
14  
X0  
13  
X3  
12  
A
B
C
9
CC  
16  
11  
10  
13  
14  
15  
12  
1
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
A
3
COMMON  
OUTPUT/  
INPUT  
X
1
2
3
4
5
6
7
ANALOG  
INPUTS/  
OUTPUTS  
8
MULTIPLEXER/  
DEMULTIPLEXER  
X4  
X6  
X
X7  
X5 Enable NC GND  
5
PIN CONNECTION AND  
2
MARKING DIAGRAM (Top View)  
4
11  
10  
9
FUNCTION TABLE − MC74LVX8051  
CHANNEL  
SELECT  
INPUTS  
B
Control Inputs  
C
6
Select  
B
ENABLE  
Enable  
C
A
ON Channels  
PIN 16 = V  
CC  
PIN 8 = GND  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
NONE  
LOGIC DIAGRAM  
MC74LVX8051  
Single−Pole, 8−Position Plus Common Off  
L
H
H
H
H
X
L
H
H
X
X = Don’t Care  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC74LVX8051DR2  
MC74LVX8051DR2G  
SOIC−16  
2500 Tape & Reel  
SOIC−16  
(Pb−Free)  
MC74LVX8051DT  
MC74LVX8051DTR2  
MC74LVX8051M  
TSSOP−16*  
TSSOP−16*  
SOEIAJ−16  
96 Units / Rail  
2500 Tape & Reel  
50 Units / Rail  
MC74LVX8051MG  
SOEIAJ−16  
(Pb−Free)  
MC74LVX8051MEL  
MC74LVX8051MELG  
SOEIAJ−16  
2000 Tape & Reel  
SOEIAJ−16  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*This package is inherently Pb−Free.  
http://onsemi.com  
2
MC74LVX8051  
MAXIMUM RATINGS  
Symbol  
Parameter  
(Referenced to GND)  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high−impedance cir-  
V
CC  
Positive DC Supply Voltage  
– 0.5 to + 7.0  
V
IS  
Analog Input Voltage  
− 0.5 to V + 0.5  
V
CC  
V
Digital Input Voltage (Referenced to GND)  
DC Current, Into or Out of Any Pin  
– 0.5 to V + 0.5  
V
in  
CC  
I
± 20  
mA  
mW  
cuit. For proper operation, V and  
in  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
V
out  
should be constrained to the  
range GND v (V or V ) v V  
.
in  
out  
CC  
Unused inputs must always be  
tied to an appropriate logic voltage  
T
stg  
Storage Temperature Range  
– 65 to + 150  
260  
_C  
_C  
T
L
Lead Temperature, 1 mm from Case for 10 Seconds  
level (e.g., either GND or V ).  
CC  
Unused outputs must be left open.  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings  
applied to the device are individual stress limit values (not normal operating conditions) and are not  
valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
†Derating − SOIC Package: – 7 mW/_C from 65_ to 125_C  
TSSOP Package: − 6.1 mW/_C from 65_ to 125_C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage  
Min  
2.5  
Max  
Unit  
V
V
CC  
6.0  
V
IS  
0.0  
V
CC  
V
CC  
V
V
in  
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature Range, All Package Types  
GND  
V
V *  
IO  
1.2  
V
T
A
– 55  
+ 85  
_C  
ns/V  
t , t  
Input Rise/Fall Time  
r
f
(Channel Select or Enable Inputs)  
V
CC  
V
CC  
= 3.3 V ± 0.3 V  
= 5.0 V ± 0.5 V  
0
0
100  
20  
*For voltage drops across switch greater than 1.2 V (switch on), excessive V current may be  
CC  
drawn; i.e., the current out of the switch may contain both V and switch input components. The  
CC  
reliability of the device will be unaffected unless the Maximum Ratings are exceeded.  
http://onsemi.com  
3
MC74LVX8051  
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
−55 to 25°C 85°C 125°C  
V
V
CC  
Symbol  
Parameter  
Condition  
= Per Spec  
Unit  
V
IH  
Minimum High−Level Input Voltage,  
Channel−Select or Enable Inputs  
R
R
2.5  
3.0  
4.5  
5.5  
1.50  
2.10  
3.15  
3.85  
1.50  
2.10  
3.15  
3.85  
1.50  
2.10  
3.15  
3.85  
V
on  
on  
V
IL  
Maximum Low−Level Input Voltage,  
Channel−Select or Enable Inputs  
= Per Spec  
2.5  
3.0  
4.5  
5.5  
0.5  
0.9  
0.5  
0.9  
0.5  
0.9  
V
1.35  
1.65  
1.35  
1.65  
1.35  
1.65  
I
Maximum Input Leakage Current,  
Channel−Select or Enable Inputs  
V
= V or GND  
5.5  
± 0.1  
± 1.0  
± 1.0  
mA  
mA  
in  
in  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
Channel Select, Enable and  
= V or GND; V = 0 V  
5.5  
4.0  
40  
160  
CC  
V
IS  
CC  
IO  
DC ELECTRICAL CHARACTERISTICS Analog Section  
Guaranteed Limit  
– 55 to  
v
v
V
V
CC  
25_C  
40  
30  
25  
85_C  
125_C  
Symbol  
Parameter  
Test Conditions  
= V or V  
Unit  
R
Maximum “ON” Resistance  
V
V
3.0  
4.5  
5.5  
45  
32  
28  
50  
37  
30  
W
on  
in  
IL  
IH  
= V to GND  
IS  
CC  
|I | v 10.0 mA (Figures 1, 2)  
S
V
V
= V or V  
IH  
3.0  
4.5  
5.5  
30  
25  
20  
35  
28  
25  
40  
35  
30  
in  
IL  
= V or GND (Endpoints)  
IS  
CC  
|I | v 10.0 mA (Figures 1, 2)  
S
DR  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
= V or V  
IH  
3.0  
4.5  
5.5  
15  
8.0  
8.0  
20  
12  
12  
25  
15  
15  
W
on  
in  
IL  
= 1/2 (V − GND)  
IS  
CC  
|I | v 10.0 mA  
S
I
off  
Maximum Off−Channel Leakage  
Current, Any One Channel  
V
V
= V or V ;  
IH  
5.5  
5.5  
5.5  
0.1  
0.2  
0.2  
0.5  
2.0  
2.0  
1.0  
4.0  
4.0  
mA  
in  
IL  
= V or GND;  
IO  
CC  
Switch Off (Figure 3)  
Maximum Off−Channel  
Leakage Current,  
Common Channel  
V
V
= V or V ;  
IL IH  
in  
= V or GND;  
IO  
CC  
Switch Off (Figure 4)  
I
on  
Maximum On−Channel  
Leakage Current,  
V
in  
= V or V  
;
IH  
mA  
IL  
Switch−to−Switch =  
Channel−to−Channel  
V
CC  
or GND; (Figure 5)  
http://onsemi.com  
4
MC74LVX8051  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
−55 to 25°C 85°C 125°C  
V
V
CC  
Symbol  
Parameter  
Unit  
t
t
t
t
,
Maximum Propagation Delay, Channel−Select to Analog Output  
(Figure 9)  
2.5  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figure 10)  
2.5  
3.0  
4.5  
5.5  
4.0  
3.0  
1.0  
1.0  
6.0  
5.0  
2.0  
2.0  
8.0  
6.0  
2.0  
2.0  
ns  
ns  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.5  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
PLZ  
t
PHZ  
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.5  
3.0  
4.5  
5.5  
20  
12  
8.0  
8.0  
25  
14  
10  
10  
30  
15  
12  
12  
PZL  
t
PZH  
C
Maximum Input Capacitance, Channel−Select or Enable Inputs  
10  
35  
10  
35  
10  
35  
pF  
pF  
in  
C
Maximum Capacitance  
(All Switches Off)  
Analog I/O  
I/O  
Common O/I  
Feedthrough  
130  
1.0  
130  
1.0  
130  
1.0  
Typical @ 25°C, V = 5.0 V  
CC  
45  
C
Power Dissipation Capacitance (Figure 13)*  
pF  
PD  
2
* Used to determine the no−load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Limit*  
V
CC  
25°C  
V
Symbol  
Parameter  
Condition  
= 1MHz Sine Wave; Adjust f Voltage to Obtain  
Unit  
BW  
Maximum On−Channel Bandwidth or  
Minimum Frequency Response  
(Figure 6)  
f
MHz  
in  
in  
0dBm at V ; Increase f Frequency Until dB  
OS  
in  
80  
80  
80  
3.0  
4.5  
5.5  
Meter Reads −3dB;  
R = 50W, C = 10pF  
L
L
Off−Channel Feedthrough Isolation  
(Figure 7)  
f
= Sine Wave; Adjust f Voltage to Obtain 0dBm  
3.0  
4.5  
5.5  
−50  
−50  
−50  
dB  
in  
in  
at V  
IS  
f
in  
= 10kHz, R = 600W, C = 50pF  
L L  
3.0  
4.5  
5.5  
−37  
−37  
−37  
f
in  
= 1.0MHz, R = 50W, C = 10pF  
L L  
Feedthrough Noise. Channel−Select  
Input to Common I/O (Figure 8)  
V
1MHz Square Wave (t = t = 6ns); Adjust R  
3.0  
4.5  
5.5  
25  
105  
135  
mV  
PP  
in  
r
f
L
at Setup so that I = 0A;  
Enable = GND  
S
R = 600W, C = 50pF  
L L  
3.0  
4.5  
5.5  
35  
145  
190  
R = 10kW, C = 10pF  
L
L
THD  
Total Harmonic Distortion  
(Figure 14)  
f
= 1kHz, R = 10kW, C = 50pF  
%
in  
L
L
THD = THD  
− THD  
measured  
source  
V
= 2.0V sine wave  
3.0  
4.5  
5.5  
0.10  
0.08  
0.05  
IS  
PP  
V
IS  
V
IS  
= 4.0V sine wave  
PP  
= 5.0V sine wave  
PP  
*Limits not tested. Determined by design and verified by qualification.  
http://onsemi.com  
5
MC74LVX8051  
40  
35  
30  
25  
20  
15  
10  
5
125°C  
85°C  
25°C  
−ꢀ55°C  
0
0
1.0  
2.0  
3.0  
4.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 1a. Typical On Resistance, VCC = 3.0 V  
30  
25  
20  
15  
25  
125°C  
85°C  
20  
125°C  
85°C  
25°C  
15  
25°C  
−ꢀ55°C  
−ꢀ55°C  
10  
10  
5
5
0
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 1b. Typical On Resistance, VCC = 4.5 V  
Figure 1c. Typical On Resistance, VCC = 5.5 V  
PLOTTER  
PROGRAMMABLE  
POWER  
SUPPLY  
MINI COMPUTER  
DC ANALYZER  
+
V
CC  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
GND  
GND  
Figure 2. On Resistance Test Set−Up  
http://onsemi.com  
6
MC74LVX8051  
V
CC  
V
CC  
V
V
CC  
CC  
16  
16  
GND  
GND  
ANALOG I/O  
OFF  
OFF  
OFF  
OFF  
A
V
V
CC  
V
CC  
COMMON O/I  
NC  
COMMON O/I  
V
IH  
6
8
6
8
IH  
Figure 3. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set−Up  
Figure 4. Maximum Off Channel Leakage Current,  
Common Channel, Test Set−Up  
V
CC  
V
OS  
V
CC  
V
CC  
16  
16  
0.1mF  
A
dB  
METER  
f
in  
ON  
ON  
N/C  
R
L
GND  
C *  
L
COMMON O/I  
OFF  
V
CC  
ANALOG I/O  
V
IL  
6
8
6
8
*Includes all probe and jig capacitance  
Figure 5. Maximum On Channel Leakage Current,  
Channel to Channel, Test Set−Up  
Figure 6. Maximum On Channel Bandwidth,  
Test Set−Up  
V
CC  
V
CC  
V
IS  
V
OS  
16  
16  
0.1mF  
dB  
METER  
R
L
f
in  
OFF  
ON/OFF  
OFF/ON  
COMMON O/I  
TEST  
POINT  
ANALOG I/O  
R
L
R
L
C *  
L
R
L
C *  
L
R
L
6
8
6
8
V
CC  
V
1 MHz  
11  
in  
t = t = 3 ns  
r
f
V
CC  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
V
IL  
or V  
GND  
IH  
Figure 7. Off Channel Feedthrough Isolation,  
Test Set−Up  
Figure 8. Feedthrough Noise, Channel Select to  
Common Out, Test Set−Up  
http://onsemi.com  
7
MC74LVX8051  
V
CC  
V
CC  
16  
V
CC  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
CHANNEL  
SELECT  
TEST  
POINT  
50%  
ANALOG I/O  
GND  
L
t
t
PHL  
PLH  
6
8
ANALOG  
OUT  
50%  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 9a. Propagation Delays, Channel Select  
to Analog Out  
Figure 9b. Propagation Delay, Test Set−Up Channel  
Select to Analog Out  
V
CC  
16  
COMMON O/I  
C *  
ANALOG I/O  
TEST  
POINT  
V
CC  
ON  
ANALOG  
IN  
50%  
L
GND  
t
t
PHL  
PLH  
6
8
ANALOG  
OUT  
50%  
*Includes all probe and jig capacitance  
Figure 10a. Propagation Delays, Analog In  
to Analog Out  
Figure 10b. Propagation Delay, Test Set−Up  
Analog In to Analog Out  
t
t
POSITION 1 WHEN TESTING t  
AND t  
PZH  
POSITION 2 WHEN TESTING t AND t  
f
r
PHZ  
1
2
PLZ  
PZL  
V
CC  
90%  
50%  
10%  
ENABLE  
V
CC  
GND  
1kW  
V
CC  
16  
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
1
2
ANALOG I/O  
ENABLE  
TEST  
POINT  
ON/OFF  
ANALOG  
OUT  
50%  
C *  
L
10%  
V
OL  
t
t
PHZ  
PZH  
6
8
V
OH  
90%  
ANALOG  
OUT  
50%  
HIGH  
IMPEDANCE  
Figure 11a. Propagation Delays, Enable to  
Analog Out  
Figure 11b. Propagation Delay, Test Set−Up  
Enable to Analog Out  
http://onsemi.com  
8
MC74LVX8051  
V
CC  
V
IS  
A
V
CC  
16  
16  
R
L
V
OS  
ON/OFF  
OFF/ON  
COMMON O/I  
f
in  
ON  
NC  
ANALOG I/O  
0.1mF  
OFF  
R
L
R
L
C *  
L
C *  
L
V
CC  
R
L
6
8
6
8
11  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 12. Crosstalk Between Any Two  
Switches, Test Set−Up  
Figure 13. Power Dissipation Capacitance,  
Test Set−Up  
0
−ꢀ10  
−ꢀ20  
−ꢀ30  
−ꢀ40  
V
IS  
FUNDAMENTAL FREQUENCY  
V
CC  
V
OS  
16  
0.1mF  
TO  
DISTORTION  
METER  
f
in  
ON  
R
L
C *  
L
−ꢀ50  
−ꢀ60  
DEVICE  
SOURCE  
6
8
−ꢀ70  
−ꢀ80  
−ꢀ90  
*Includes all probe and jig capacitance  
100  
1.0  
2.0  
3.125  
FREQUENCY (kHz)  
Figure 14a. Total Harmonic Distortion, Test Set−Up  
Figure 14b. Plot, Harmonic Distortion  
APPLICATIONS INFORMATION  
The Channel Select and Enable control pins should be at connected). However, tying unused analog inputs and  
V
CC  
or GND logic levels. V being recognized as a logic  
outputs to V or GND through a low value resistor helps  
CC  
CC  
high and GND being recognized as a logic low. In this  
example:  
minimize crosstalk and feedthrough noise that may be  
picked up by an unused switch.  
Although used here, balanced supplies are not a  
requirement. The only constraints on the power supplies are  
that:  
V
= +5V = logic high  
CC  
GND = 0V = logic low  
The maximum analog voltage swing is determined by the  
supply voltage V . The positive peak analog voltage  
V
CC  
− GND = 2 to 6 volts  
CC  
should not exceed V . Similarly, the negative peak analog  
When voltage transients above V and/or below GND  
CC  
CC  
voltage should not go below GND. In this example, the  
are anticipated on the analog channels, external Germanium  
difference between V and GND is five volts. Therefore,  
or Schottky diodes (D ) are recommended as shown in  
CC  
x
using the configuration of Figure 15, a maximum analog  
signal of five volts peak−to−peak can be controlled. Unused  
analog inputs/outputs may be left floating (i.e., not  
Figure 16. These diodes should be able to absorb the  
maximum anticipated current surges during clipping.  
http://onsemi.com  
9
MC74LVX8051  
V
CC  
V
CC  
+5V  
V
CC  
D
D
16  
x
16  
ON/OFF  
x
+5V  
0V  
+5V  
0V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
D
x
D
x
GND  
GND  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 5V  
DIGITAL SIGNALS  
6
8
11  
10  
9
8
Figure 15. Application Example  
Figure 16. External Germanium or  
Schottky Clipping Diodes  
+5V  
+5V  
16  
16  
+5V  
+5V  
+5V  
+5V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON/OFF  
ON/OFF  
GND  
GND  
GND  
GND  
+5V  
*
R
R
R
+5V  
6
8
11  
10  
9
6
8
11  
10  
9
LSTTL/NMOS  
CIRCUITRY  
LSTTL/NMOS  
CIRCUITRY  
* 2K R 10K  
VHCT1GT50  
BUFFERS  
a. Using Pull−Up Resistors  
b. Using HCT Interface  
Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs  
11  
10  
9
13  
X0  
LEVEL  
SHIFTER  
A
14  
X1  
15  
X2  
LEVEL  
SHIFTER  
B
12  
X3  
1
LEVEL  
SHIFTER  
C
X4  
5
X5  
6
2
LEVEL  
SHIFTER  
ENABLE  
X6  
4
X7  
3
X
Figure 18. Function Diagram, LVX8051  
http://onsemi.com  
10  
MC74LVX8051  
PACKAGE DIMENSIONS  
SOIC−16  
D SUFFIX  
CASE 751B−05  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
16  
9
8
−B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
G
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
C
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
−T−  
SEATING  
PLANE  
K
M
P
R
J
7
0
_
_
_
_
M
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
D
16 PL  
M
S
S
A
0.25 (0.010)  
T
B
TSSOP−16  
DT SUFFIX  
CASE 948F−01  
ISSUE A  
NOTES:  
16X KREF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
V
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T
U
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
S
0.15 (0.006) T U  
K
K1  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
16  
9
2X L/2  
J1  
B
−U−  
SECTION N−N  
L
J
PIN 1  
IDENT.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
8
1
N
0.25 (0.010)  
S
0.15 (0.006) T U  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
M
−V−  
A
B
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
N
C
1.20  
−−− 0.047  
D
F
0.15 0.002 0.006  
0.75 0.020 0.030  
F
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
DETAIL E  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
−W−  
C
6.40 BSC  
0.252 BSC  
M
0
8
0
8
_
_
_
_
0.10 (0.004)  
DETAIL E  
H
SEATING  
PLANE  
−T−  
D
G
http://onsemi.com  
11  
MC74LVX8051  
SOEIAJ−16  
M SUFFIX  
CASE 966−01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
9
L
E
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS AND ARE MEASURED  
AT THE PARTING LINE. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
Q
1
H
E
M
_
E
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
1
8
L
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
DETAIL P  
Z
D
VIEW P  
e
A
c
MILLIMETERS  
INCHES  
MIN  
−−−  
DIM MIN  
MAX  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
A
−−−  
0.05  
0.35  
0.18  
9.90  
5.10  
2.05  
A
A
1
0.20 0.002  
0.50 0.014  
0.27 0.007  
1
b
0.13 (0.005)  
b
c
0.10 (0.004)  
M
D
E
10.50  
5.45 0.201  
0.390  
e
1.27 BSC  
0.050 BSC  
H
7.40  
0.50  
1.10  
8.20 0.291  
0.85 0.020  
1.50 0.043  
0.323  
0.033  
0.059  
E
L
L
E
M
Q
0
10  
0.90 0.028  
10  
_
0.035  
0.031  
0
_
_
_
0.70  
−−−  
1
Z
0.78  
−−−  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC74LVX8051/D  

相关型号:

MC74LVX8051DTR2G

暂无描述
ONSEMI

MC74LVX8051M

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051MEL

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051MELG

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051MG

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051_05

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8051_14

Analog Multiplexer/ Demultiplexer
ONSEMI

MC74LVX8053

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8053D

Analog Multiplexer/Demultiplexer
ONSEMI

MC74LVX8053D

TRIPLE 2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, SOIC-16
ROCHESTER

MC74LVX8053DR2

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVX8053DR2G

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI