MC34060ADR2 [ONSEMI]

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers; 固定频率,脉宽调制,电压模式单端控制器
MC34060ADR2
型号: MC34060ADR2
厂家: ONSEMI    ONSEMI
描述:

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
固定频率,脉宽调制,电压模式单端控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC34060A, MC33060A  
Fixed Frequency, PWM,  
Voltage Mode Single Ended  
Controllers  
The MC34060A is a low cost fixed frequency, pulse width  
modulation control circuit designed primarily for singleended  
SWITCHMODEt power supply control.  
http://onsemi.com  
The MC34060A is specified over the commercial operating  
temperature range of 0° to +70°C, and the MC33060A is specified  
over an automotive temperature range of 40° to +85°C.  
MARKING  
DIAGRAMS  
14  
1
Features  
SOIC14  
D SUFFIX  
CASE 751A  
MC3x060ADG  
AWLYWW  
Complete Pulse Width Modulation Control Circuitry  
OnChip Oscillator with Master or Slave Operation  
OnChip Error Amplifiers  
14  
1
OnChip 5.0 V Reference, 1.5% Accuracy  
Adjustable DeadTime Control  
Uncommitted Output Transistor Rated to 200 mA Source or Sink  
Undervoltage Lockout  
14  
PDIP14  
P SUFFIX  
CASE 646  
MC3x060AP  
AWLYYWWG  
14  
1
1
PbFree Packages are Available  
x
= 3 or 4  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
Y, YY  
WW  
G
PIN CONNECTIONS  
Noninv  
Input  
Noninv  
Input  
+
Error  
Amp  
+
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Error  
Amp  
1
2
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
Inv  
Input  
Inv  
Input  
V
CC  
Compen/PWM  
Comp Input  
5.0 V  
ref  
V
ref  
0.1V  
Dead−Time  
Control  
N.C.  
C
V
T
CC  
Oscillator  
R
T
C
E
Q1  
Ground  
8
(Top View)  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
October, 2006 Rev. 5  
MC34060A/D  
MC34060A, MC33060A  
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)  
Rating  
Symbol  
Value  
42  
Unit  
V
Power Supply Voltage  
V
CC  
Collector Output Voltage  
V
42  
V
C
Collector Output Current (Note 1)  
Amplifier Input Voltage Range  
I
500  
mA  
V
C
V
P
0.3 to +42  
1000  
in  
D
Power Dissipation @ T 45°C  
mW  
°C  
°C  
°C  
A
Operating Junction Temperature  
Storage Temperature Range  
T
125  
J
T
stg  
55 to +125  
Operating Ambient Temperature Range  
T
A
For MC34060A  
For MC33060A  
0 to +70  
40 to +85  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
THERMAL CHARACTERISTICS  
P Suffix  
Package  
D Suffix  
Package  
Characteristics  
Thermal Resistance, JunctiontoAmbient  
Symbol  
Unit  
°C/W  
°C  
R
q
JA  
80  
45  
120  
45  
Derating Ambient Temperature  
T
A
RECOMMENDED OPERATING CONDITIONS  
Condition/Value  
Symbol  
Min  
7.0  
Typ  
15  
30  
Max  
40  
Unit  
V
Power Supply Voltage  
V
CC  
Collector Output Voltage  
V
40  
V
C
Collector Output Current  
I
200  
mA  
V
C
Amplifier Input Voltage  
V
in  
0.3  
V
2  
CC  
Current Into Feedback Terminal  
Reference Output Current  
Timing Resistor  
I
0.3  
10  
mA  
mA  
kW  
mF  
kHz  
V
fb  
I
ref  
R
T
C
T
1.8  
0.00047  
1.0  
0.3  
47  
0.001  
25  
500  
10  
Timing Capacitor  
Oscillator Frequency  
f
200  
5.3  
osc  
PWM Input Voltage (Pins 3 and 4)  
1. Maximum thermal limits must be observed.  
http://onsemi.com  
2
 
MC34060A, MC33060A  
ELECTRICAL CHARACTERISTICS (V = 15 V, C = 0.01 mF, R = 12 kW, unless otherwise noted. For typical values T = 25°C,  
CC  
T
T
A
for min/max values T is the operating ambient temperature range that applies, unless otherwise noted.)  
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
REFERENCE SECTION  
Reference Voltage (I = 1.0 mA, T 25°C)  
V
ref  
4.925  
4.9  
4.85  
5.0  
5.075  
5.1  
5.1  
V
O
A
T = T  
to T  
to T  
MC34060A  
A
low  
low  
high  
high  
T = T  
A
MC33060A  
Line Regulation (V = 7.0 V to 40 V, I = 10 mA)  
Reg  
2.0  
2.0  
35  
25  
15  
75  
mV  
mV  
mA  
CC  
O
line  
Load Regulation (I = 1.0 mA to 10 mA)  
Reg  
load  
O
Short Circuit Output Current (V = 0 V)  
I
15  
ref  
SC  
OUTPUT SECTION  
Collector OffState Current (V = 40 V, V = 40 V)  
I
I
2.0  
100  
100  
1.5  
mA  
mA  
V
CC  
CE  
C(off)  
Emitter OffState Current (V = 40 V, V = 40 V, V = 0 V)  
)
CC  
CE  
E
E(off  
CollectorEmitter Saturation Voltage (Note 2)  
CommonEmitter  
V
1.1  
sat(C)  
(V = 0 V, I = 200 mA)  
E
C
EmitterFollower  
(V = 15 V, I = 200 mA)  
V
1.5  
2.5  
sat(E)  
C
E
Output Voltage Rise Time (T = 25°C)  
CommonEmitter (See Figure 12)  
EmitterFollower (See Figure 13)  
t
t
ns  
ns  
A
r
r
100  
100  
200  
200  
Output Voltage Fall Time (T = 25°C)  
A
CommonEmitter (See Figure 12)  
EmitterFollower (See Figure 13)  
40  
40  
100  
100  
ERROR AMPLIFIER SECTION  
Input Offset Voltage (V  
= 2.5 V)  
= 2.5 V)  
V
2.0  
5.0  
0.1  
10  
250  
2.0  
mV  
nA  
mA  
V
O[Pin 3]  
C[Pin 3]  
IO  
Input Offset Current (V  
I
IO  
Input Bias Current (V  
= 2.5 V)  
I
O[Pin 3]  
IB  
Input Common Mode Voltage Range  
V
0 to  
ICR  
(V = 40 V)  
CC  
V
2.0  
CC  
Inverting Input Voltage Range  
V
0.3 to  
2.0  
V
dB  
IR(INV)  
V
CC  
OpenLoop Voltage Gain  
A
70  
95  
VOL  
(DV = 3.0 V, V = 0.5 V to 3.5 V, R = 2.0 kW)  
O
O
L
UnityGain Crossover Frequency  
(V = 0.5 V to 3.5 V, R = 2.0 kW)  
f
600  
65  
kHz  
deg.  
dB  
c
O
L
Phase Margin at UnityGain  
(V = 0.5 V to 3.5 V, R = 2.0 kW)  
φ
m
O
L
Common Mode Rejection Ratio  
(V = 40 V, V = 0 V to 38 V))  
CMRR  
PSRR  
65  
90  
CC  
in  
Power Supply Rejection Ratio  
100  
dB  
(DV = 33 V, V = 2.5 V, R = 2.0 kW)  
CC  
O
L
Output Sink Current (V  
= 0.7 V)  
I −  
0.3  
0.7  
mA  
mA  
O[Pin 3]  
O
Output Source Current (V  
= 3.5 V)  
I +  
O
2.0  
4.0  
O[Pin 3]  
2. Low duty cycle techniques are used during test to maintain junction temperature as close to ambient temperatures as possible.  
T
= 40°C for MC33060A  
= 0°C for MC34060A  
T
= +85°C for MC33060A  
= +70°C for MC34060A  
low  
high  
http://onsemi.com  
3
 
MC34060A, MC33060A  
ELECTRICAL CHARACTERISTICS (continued) (V = 15 V, C = 0.01 mF, R = 12 kW, unless otherwise noted.  
CC  
T
T
For typical values T = 25°C, for min/max values T is the operating ambient temperature range that applies, unless otherwise noted.)  
A
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
PWM COMPARATOR SECTION (Test circuit Figure 11)  
Input Threshold Voltage  
(Zero Duty Cycle)  
V
3.5  
0.7  
4.5  
V
TH  
Input Sink Current  
I
0.3  
mA  
I
(V  
= 0.7 V)  
[Pin 3]  
DEADTIME CONTROL SECTION (Test circuit Figure 11)  
Input Bias Current (Pin 4)  
I
1.0  
10  
mA  
IB(DT)  
(V = 0 V to 5.25 V)  
in  
Maximum Output Duty Cycle  
DC  
%
max  
(V = 0 V, C = 0.01 mF, R = 12 kW)  
90  
96  
92  
100  
in  
T
T
(V = 0 V, C = 0.001 mF, R = 47 kW)  
in  
T
T
Input Threshold Voltage (Pin 4)  
(Zero Duty Cycle)  
V
V
TH  
2.8  
3.3  
(Maximum Duty Cycle)  
0
OSCILLATOR SECTION  
Frequency  
f
kHz  
osc  
(C = 0.01 mF, R = 12 kW, T = 25°C)  
9.7  
9.5  
9.0  
10.5  
11.3  
11.5  
11.5  
T
T
A
T = T  
to T  
to T  
MC34060A  
MC33060A  
A
low  
high  
T = T  
A
low  
high  
(C = 0.001 mF, R = 47 kW)  
25  
T
T
Standard Deviation of Frequency*  
(C = 0.001 mF, R = 47 kW)  
σf  
1.5  
%
%
%
osc  
T
T
Frequency Change with Voltage  
(V = 7.0 V to 40 V)  
CC  
Df (DV)  
osc  
0.5  
2.0  
Frequency Change with Temperature  
Df (DT)  
osc  
(DT =T  
(C = 0.01 mF, R = 12 kW)  
T
to T )  
4.0  
A
low  
high  
T
UNDERVOLTAGE LOCKOUT SECTION  
TurnOn Threshold (V increasing, I = 1.0 mA)  
V
th  
4.0  
50  
4.7  
5.5  
V
CC  
ref  
Hysteresis  
V
150  
300  
mV  
H
TOTAL DEVICE  
Standby Supply Current  
(Pin 6 at V , all other inputs and outputs open)  
I
mA  
mA  
CC  
ref  
(V = 15 V)  
5.5  
7.0  
10  
15  
CC  
(V = 40 V)  
CC  
Average Supply Current  
I
7.0  
S
(V  
= 2.0 V, C = 0.001 mF, R = 47 kW). See Figure 11.  
[Pin 4]  
T T  
N
2
Σ (x x)  
n 1  
N1  
n
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula; σ =  
http://onsemi.com  
4
MC34060A, MC33060A  
6
5
Reference  
Regulator  
10  
12  
Oscillator  
V
CC  
R
T
Dead−Time  
Comparator  
Undervoltage  
Lockout  
C
T
+
Ref Out  
+
0.12V  
0.7V  
4
Dead−Time  
Control  
V
TH  
+
9
8
Collector  
Emitter  
PWM.  
Comparator  
Q1  
0.7mA  
+
+
2
1
1
2
3
Feedback/PWM  
Comparator Input  
13  
14  
7
GND  
Error Amp  
1
Error Amp  
2
This device contains 46 active transistors.  
Figure 1. Block Diagram  
Description  
Output pulse width modulation is accomplished by  
comparison of the positive sawtooth waveform across  
The MC34060A is a fixedfrequency pulse width  
modulation control circuit, incorporating the primary  
building blocks required for the control of a switching power  
supply (see Figure 1). An internallinear sawtooth oscillator  
is frequencyprogrammable by two external components,  
capacitor C to either of two control signals. The output is  
T
enabled only during that portion of time when the sawtooth  
voltage is greater than the control signals. Therefore, an  
increase in controlsignal amplitude causes a corresponding  
linear decrease of output pulse width. (Refer to the Timing  
Diagram shown in Figure 2.)  
R
T
and C . The approximate oscillator frequency is  
T
determined by:  
1.2  
RT CT  
fosc  
^
For more information refer to Figure 3.  
Capacitor C  
T
Feedback/P.W.M.  
Comparator  
Dead−Time Control  
Output Q ,  
1
Emitter  
Figure 2. Timing Diagram  
http://onsemi.com  
5
 
MC34060A, MC33060A  
APPLICATIONS INFORMATION  
The control signals are external inputs that can be fed into  
pin varies from 0.5 V to 3.5 V. Both error amplifiers have a  
the deadtime control, the error amplifier inputs, or the  
feedback input. The deadtime control comparator has an  
effective 120 mV input offset which limits the minimum  
output dead time to approximately the first 4% of the  
sawtoothcycle time. This would result in a maximum duty  
cycle of 96%. Additional dead time may be imposed on the  
output by setting the dead timecontrol input to a fixed  
voltage, ranging between 0 V to 3.3 V.  
The pulse width modulator comparator provides a means  
for the error amplifiers to adjust the output pulse width from  
the maximum percent ontime, established by the dead time  
control input, down to zero, as the voltage at the feedback  
common mode input range from 0.3 V to (V 2.0 V), and  
CC  
may be used to sense power supply output voltage and  
current. The erroramplifier outputs are active high and are  
ORed together at the noninverting input of the pulsewidth  
modulator comparator. With this configuration, the  
amplifier that demands minimum output on time, dominates  
control of the loop.  
The MC34060A has an internal 5.0 V reference capable  
of sourcing up to 10 mA of load currents for external bias  
circuits. The reference has an internal accuracy of ±5% with  
a typical thermal drift of less than 50 mV over an operating  
temperature range of 0° to +70°C.  
120  
500 k  
VCC = 15 V  
DVO = 3.0  
V
110  
100  
90  
V
= 15 V  
CC  
0.001 mF  
100 k  
10 k  
0
RL = 2.0 kW  
80  
70  
60  
50  
40  
30  
20  
−20  
−40  
−60  
A
VOL  
q
C
= 0.01 mF  
−80  
T
−100  
−120  
−140  
1.0 mF  
1.0 k  
500  
−160  
−180  
10  
0
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
1.0 k 2.0 k  
5.0 k 10 k 20 k  
50 k 100 k 200 k 500 k 1.0 M  
f, FREQUENCY (Hz)  
R , TIMING RESISTANCE (W)  
T
Figure 3. Oscillator Frequency  
versus Timing Resistance  
Figure 4. Open Loop Voltage Gain and Phase  
versus Frequency  
100  
20  
18  
V
C
= 15 V  
= 0.001  
16  
14  
80  
60  
40  
20  
0
CC  
T
R = 47 k  
T
12  
C
= 0.001 mF  
T
10  
8.0  
6.0  
4.0  
2.0  
0.01 mF  
0
500 1.0 k  
10 k  
, OSCILLATOR FREQUENCY (Hz)  
100 k  
500 k  
0
1.0 2.0  
DEAD−TIME CONTROL VOLTAGE (V)  
3.0  
3.5  
f
osc  
Figure 5. Percent Deadtime versus  
Oscillator Frequency  
Figure 6. Percent Duty Cycle versus  
DeadTime Control Voltage  
http://onsemi.com  
6
MC34060A, MC33060A  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0
100  
200 300  
I , EMITTER CURRENT (mA)  
400  
500  
0
100  
200 300  
I , COLLECTOR CURRENT (mA)  
400  
500  
E
C
Figure 7. EmitterFollower Configuration  
Output Saturation Voltage versus  
Emitter Current  
Figure 8. CommonEmitter Configuration  
Output Saturation Voltage versus  
Collector Current  
10  
6.0  
9.0  
8.0  
7.0  
6.0  
5.5  
5.0  
Turn On  
Turn Off  
5.0  
4.0  
3.0  
2.0  
4.5  
4.0  
1.0  
0
0
5.0  
10  
15  
20  
25  
30  
35  
40  
0
5.0  
10  
15  
20  
25  
30  
35  
40  
I , REFERENCE LOAD CURRENT (mA)  
L
V
, SUPPLY VOLTAGE (V)  
CC  
Figure 9. Standby Supply Current  
versus Supply Voltage  
Figure 10. Undervoltage Lockout Thresholds  
versus Reference Load Current  
http://onsemi.com  
7
MC34060A, MC33060A  
V
= 15V  
CC  
150W  
2W  
V
Dead−  
Time  
CC  
Test  
Inputs  
Error Amplifier  
Under Test  
+
Feedback  
V
in  
R
C
C
E
Output  
T
T
(+)  
(−)  
(+)  
Feedback  
Terminal  
(Pin 3)  
Error  
(−)  
Ref  
Out  
+
50kW  
Gnd  
V
ref  
Other Error  
Amplifier  
Figure 11. Error Amplifier Characteristics  
Figure 12. Deadtime and Feedback Control  
15V  
15V  
C
R
68W  
L
Output  
Transistor  
V
C
C
E
V
C
15pF  
E
Output  
Transistor  
L
E
C
15pF  
L
R
68W  
L
90%  
90%  
90%  
90%  
V
V
C
E
10%  
10%  
10%  
10%  
t
r
t
f
t
r
t
f
Figure 13. CommonEmitter Configuration  
Figure 14. EmitterFollower Configuration  
and Waveform  
and Waveform  
http://onsemi.com  
8
MC34060A, MC33060A  
V
O
To Output  
Voltage of  
System  
V
ref  
R
R
1
1
2
1
2
+
+
R
R
2
1
3
3
V
ref  
Error  
Amp  
Error  
Amp  
2
Positive Output Voltage  
Negative Output Voltage  
To Output  
Voltage of  
System  
R
R
R
R
1
2
1
2
V
= V (1 +  
ref  
)
V
= −V (1 +  
ref  
)
O
O
V
O
Figure 15. Error Amplifier Sensing Techniques  
R
V
ref  
1
4
Q
D
T
Output  
+
R
T
C
T
C
R
S
R
1
2
V
ref  
6
5
4
D
Output  
Q
T
160  
R
47k  
2
0.001  
R
Max % On Time 92 −  
1
2
1 +  
R
Figure 16. Deadtime Control Circuit  
Figure 17. SoftStart Circuit  
V
ref  
6
R
C
T
Master  
5
T
C
T
R
T
V
ref  
6
R
C
T
(Additional  
Circuits)  
Slave  
5
T
Figure 18. Slaving Two or More Control Circuits  
http://onsemi.com  
9
MC34060A, MC33060A  
150mH @ 2.0A  
V
V
in  
= 8.0V to 40V  
out  
Tip 32  
5.0V/1.0A  
47  
4.7k  
10  
75  
V
CC  
0.01  
1
2
+
47k  
1.0M  
9
C
3
Comp  
+
+
MC34060A  
14  
13  
12  
MR850  
50/50  
1000  
6.3V  
+
0.01  
8
7
E
GND  
V
4.7k  
ref  
D
C
R
T
T
T
4
5
6
10/16V  
+
0.001  
4.7k  
150  
4.7k  
47k  
390  
0.1  
Test  
Conditions  
= 8.0 V to 40 V, I = 1.0 A  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
25 mV  
3.0 mV  
0.5%  
0.06%  
O
= 12 V, I = 1.0 mA to 1.0 A  
O
= 12 V, I = 1.0 A  
75 mV pp P.A.R.D.  
O
Short Circuit Current  
Efficiency  
= 12 V, R = 0.1 W  
1.6 A  
73%  
L
= 12 V, I = 1.0 A  
O
Figure 19. StepDown Converter with SoftStart  
and Output Current Limiting  
http://onsemi.com  
10  
MC34060A, MC33060A  
150mH @ 4.0A  
20mH @ 1.0A  
V
in  
= 8.0V to 26V  
MR850  
V
out  
*
28V/  
0.5A  
22k  
10  
V
0.05  
CC  
1
2
+
33k  
2.7M  
9
C
4.7k  
3
Comp  
+
+
+
+
*
MC34060A  
14  
50/35V  
470/  
35V  
470/  
35V  
300  
0.1  
13  
12  
8
7
3.9k  
E
Tip 111  
V
ref  
GND  
D
C
R
T
T
T
6
4
5
4.7k  
0.001  
470  
47k  
390  
Test  
Conditions  
= 8.0 V to 26 V, I = 0.5 A  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
40 mV 0.14%  
5.0 mV 0.18%  
O
= 12 V, I = 1.0 mA to 0.5 A  
O
= 12 V, I = 0.5 A  
24 mV pp P.A.R.D.  
O
= 12 V, I = 0.5 A  
75%  
O
*Optional circuit to minimize output ripple  
Figure 20. StepUp Converter  
http://onsemi.com  
11  
MC34060A, MC33060A  
V
in  
= 8.0V to 40V  
MR851  
V
out  
Tip 32C  
20mH *  
@ 1.0A  
−15V/  
0.25A  
47  
30k  
10  
75  
V
CC  
0.01  
1
2
+
47k  
1.0M  
9
C
E
7.5k  
3
+
Comp  
50/50V  
*
150mH  
@ 2.0A  
14  
13  
12  
MC34060A  
330/  
16V  
330/  
16V  
+
+
+
0.01  
8
7
V
GND  
ref  
10k  
D
C
R
T
T
T
4
5
6
10/16V  
0.001  
47k  
4.7k  
47k  
3.3k  
820  
1.0  
Test  
Conditions  
= 8.0 V to 40 V, I = 250 mA  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
52 mV  
47 mV  
0.35%  
0.32%  
O
= 12 V, I = 1.0 to 250 mA  
O
= 12 V, I = 250 mA  
10 mV pp P.A.R.D.  
330 mA  
O
Short Circuit Current  
Efficiency  
= 12 V, R = 0.1 W  
L
= 12 V, I = 250 mA  
86%  
O
*Optional circuit to minimize output ripple  
Figure 21. StepUp/Down Voltage Inverting Converter  
with SoftStart and Current Limiting  
http://onsemi.com  
12  
MC34060A, MC33060A  
http://onsemi.com  
13  
MC34060A, MC33060A  
ORDERING INFORMATION  
Operating  
Temperature Range  
Shipping  
Device  
MC34060AD  
Package  
SOIC14  
55 Units / Rail  
2500 / Tape & Reel  
25 Units / Rail  
MC34060ADG  
SOIC14  
(PbFree)  
MC34060ADR2  
SOIC14  
T = 0° to +70°C  
A
MC34060ADR2G  
SOIC14  
(PbFree)  
MC34060AP  
PDIP14  
MC34060APG  
PDIP14  
(PbFree)  
MC33060AD  
SOIC14  
55 Units / Rail  
MC33060ADG  
SOIC14  
(PbFree)  
MC33060ADR2  
SOIC14  
T = 40° to +85°C  
A
2500 / Tape & Reel  
25 Units / Rail  
MC33060ADR2G  
SOIC14  
(PbFree)  
MC33060AP  
PDIP14  
MC33060APG  
PDIP14  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
14  
MC34060A, MC33060A  
PACKAGE DIMENSIONS  
SOIC14  
CASE 751A03  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
A−  
14  
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
B−  
P 7 PL  
M
M
B
0.25 (0.010)  
7
1
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
F
R X 45  
_
C
A
B
C
D
F
G
J
K
M
P
R
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
T−  
SEATING  
PLANE  
J
M
K
1.27 BSC  
D 14 PL  
0.19  
0.10  
0
M
S
S
0.25 (0.010)  
T
B
A
7
0
7
_
_
_
_
5.80  
0.25  
6.20 0.228 0.244  
0.50 0.010 0.019  
SOLDERING FOOTPRINT*  
7X  
7.04  
14X  
1.52  
1
14X  
0.58  
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
MC34060A, MC33060A  
PACKAGE DIMENSIONS  
PDIP14  
CASE 64606  
ISSUE P  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
N
C
G
H
J
K
L
M
N
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.290  
−−−  
0.095  
0.015  
0.135  
0.310  
10  
1.32  
0.20  
2.92  
7.37  
−−−  
0.38  
2.41  
0.38  
3.43  
7.87  
10  
T−  
SEATING  
PLANE  
J
_
_
K
0.015  
0.039  
1.01  
D 14 PL  
H
G
M
M
0.13 (0.005)  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC34060A/D  

相关型号:

MC34060ADR2G

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
ONSEMI

MC34060AP

PRECISION SWITCHMODE PULSE WIDTH MODULATOR CONTROL CIRCUIT
MOTOROLA

MC34060AP

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
ONSEMI

MC34060APG

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
ONSEMI

MC34060A_06

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
ONSEMI

MC34060A_11

Fixed Frequency, PWM Voltage Mode Single Ended Controllers
ONSEMI

MC34060P

0.25A SWITCHING CONTROLLER, 200kHz SWITCHING FREQ-MAX, PDIP14, PLASTIC, DIP-14
MOTOROLA

MC34062

PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT
MOTOROLA

MC34062P1

PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT
MOTOROLA

MC34062U

PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT
MOTOROLA

MC34063

DC/DC CONVERTER CONTROL CIRCUIT
AIC

MC34063

DC-to-DC CONVERTER CONTROL CIRCUITS
ONSEMI