MC34060AP [ONSEMI]

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers; 固定频率,脉宽调制,电压模式单端控制器
MC34060AP
型号: MC34060AP
厂家: ONSEMI    ONSEMI
描述:

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
固定频率,脉宽调制,电压模式单端控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总16页 (文件大小:134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC34060A, MC33060A  
Fixed Frequency, PWM,  
Voltage Mode Single Ended  
Controllers  
The MC34060A is a low cost fixed frequency, pulse width  
modulation control circuit designed primarily for single–ended  
SWITCHMODEt power supply control.  
http://onsemi.com  
MARKING  
DIAGRAMS  
The MC34060A is specified over the commercial operating  
temperature range of 0° to +70°C, and the MC33060A is specified  
over an automotive temperature range of –40° to +85°C.  
14  
Complete Pulse Width Modulation Control Circuitry  
On–Chip Oscillator with Master or Slave Operation  
On–Chip Error Amplifiers  
On–Chip 5.0 V Reference, 1.5% Accuracy  
Adjustable Dead–Time Control  
SO–14  
D SUFFIX  
CASE 751A  
MC3x060AD  
AWLYWW  
14  
1
1
14  
PDIP–14  
P SUFFIX  
CASE 646  
Uncommitted Output Transistor Rated to 200 mA Source or Sink  
Undervoltage Lockout  
MC3x060AP  
AWLYYWW  
14  
1
1
x
= 3 or 4  
A
= Assembly Location  
WL = Wafer Lot  
YY, Y = Year  
WW = Work Week  
PIN CONNECTIONS  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
Noninv  
Input  
Noninv  
Input  
+
Error  
Amp  
+
-
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Error  
Amp  
1
2
Inv  
Input  
Inv  
Input  
-
V
CC  
Compen/PWM  
Comp Input  
5.0 V  
ref  
V
ref  
0.1V  
Dead-Time  
Control  
N.C.  
C
T
V
CC  
Oscillator  
R
T
C
E
Q1  
Ground  
8
(Top View)  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
January, 2002 – Rev. 3  
MC34060A/D  
MC34060A, MC33060A  
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)  
Rating  
Symbol  
Value  
42  
Unit  
V
Power Supply Voltage  
V
CC  
Collector Output Voltage  
V
C
42  
V
Collector Output Current (Note 1)  
Amplifier Input Voltage Range  
I
500  
mA  
V
C
V
P
–0.3 to +42  
1000  
in  
D
Power Dissipation @ T 45°C  
mW  
°C  
°C  
°C  
A
Operating Junction Temperature  
Storage Temperature Range  
T
125  
J
T
stg  
–55 to +125  
Operating Ambient Temperature Range  
For MC34060A  
T
A
0 to +70  
For MC33060A  
–40 to +85  
THERMAL CHARACTERISTICS  
P Suffix  
D Suffix  
Package Package  
Characteristics  
Thermal Resistance, Junction–to–Ambient  
Symbol  
Unit  
°C/W  
°C  
R
80  
45  
120  
45  
θ
JA  
Derating Ambient Temperature  
T
A
RECOMMENDED OPERATING CONDITIONS  
Condition/Value  
Symbol  
Min  
7.0  
Typ  
Max  
Unit  
V
Power Supply Voltage  
V
CC  
15  
30  
40  
40  
Collector Output Voltage  
V
C
V
Collector Output Current  
I
C
200  
mA  
V
Amplifier Input Voltage  
V
in  
–0.3  
V
CC  
–2  
Current Into Feedback Terminal  
Reference Output Current  
Timing Resistor  
I
fb  
0.3  
mA  
mA  
k  
µF  
kHz  
V
I
ref  
10  
500  
10  
R
T
C
T
1.8  
0.00047  
1.0  
–0.3  
47  
0.001  
25  
Timing Capacitor  
Oscillator Frequency  
f
200  
5.3  
osc  
PWM Input Voltage (Pins 3 and 4)  
1. Maximum thermal limits must be observed.  
http://onsemi.com  
2
MC34060A, MC33060A  
ELECTRICAL CHARACTERISTICS (V = 15 V, C = 0.01 µF, R = 12 k, unless otherwise noted. For typical values T = 25°C,  
CC  
T
T
A
for min/max values T is the operating ambient temperature range that applies, unless otherwise noted.)  
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
REFERENCE SECTION  
Reference Voltage (I = 1.0 mA, T 25°C)  
V
ref  
4.925  
4.9  
4.85  
5.0  
5.075  
5.1  
5.1  
V
O
A
T
= T  
= T  
to T  
to T  
– MC34060A  
A
low  
low  
high  
high  
T
A
– MC33060A  
Line Regulation (V = 7.0 V to 40 V, I = 10 mA)  
Reg  
2.0  
2.0  
35  
25  
15  
75  
mV  
mV  
mA  
CC  
O
line  
Load Regulation (I = 1.0 mA to 10 mA)  
Reg  
load  
O
Short Circuit Output Current (V = 0 V)  
I
15  
ref  
SC  
OUTPUT SECTION  
Collector Off–State Current (V = 40 V, V = 40 V)  
I
I
2.0  
100  
–100  
1.5  
µA  
µA  
V
CC  
CE  
C(off)  
Emitter Off–State Current (V = 40 V, V = 40 V, V = 0 V)  
)
CC  
CE  
E
E(off  
Collector–Emitter Saturation Voltage (Note 2)  
Common–Emitter  
V
1.1  
sat(C)  
(V = 0 V, I = 200 mA)  
E
C
Emitter–Follower  
(V = 15 V, I = 200 mA)  
V
sat(E)  
1.5  
2.5  
C
E
Output Voltage Rise Time (T = 25°C)  
Common–Emitter (See Figure 12)  
Emitter–Follower (See Figure 13)  
t
ns  
ns  
A
r
r
100  
100  
200  
200  
Output Voltage Fall Time (T = 25°C)  
t
A
Common–Emitter (See Figure 12)  
Emitter–Follower (See Figure 13)  
40  
40  
100  
100  
ERROR AMPLIFIER SECTION  
Input Offset Voltage (V  
Input Offset Current (V  
= 2.5 V)  
= 2.5 V)  
V
2.0  
5.0  
–0.1  
10  
250  
–2.0  
mV  
nA  
µA  
V
O[Pin 3]  
IO  
I
IO  
C[Pin 3]  
Input Bias Current (V  
= 2.5 V)  
I
IB  
O[Pin 3]  
Input Common Mode Voltage Range  
V
ICR  
0 to  
(V = 40 V)  
CC  
V
CC  
–2.0  
Inverting Input Voltage Range  
V
–0.3 to  
–2.0  
V
IR(INV)  
V
CC  
Open–Loop Voltage Gain  
A
70  
95  
dB  
VOL  
(V = 3.0 V, V = 0.5 V to 3.5 V, R = 2.0 k)  
O
O
L
Unity–Gain Crossover Frequency  
(V = 0.5 V to 3.5 V, R = 2.0 k)  
f
c
600  
65  
kHz  
deg.  
dB  
O
L
Phase Margin at Unity–Gain  
(V = 0.5 V to 3.5 V, R = 2.0 k)  
φ
m
O
L
Common Mode Rejection Ratio  
(V = 40 V, V = 0 V to 38 V))  
CMRR  
PSRR  
65  
90  
CC  
in  
Power Supply Rejection Ratio  
100  
dB  
(V = 33 V, V = 2.5 V, R = 2.0 k)  
CC  
O
L
Output Sink Current (V  
= 0.7 V)  
I –  
0.3  
0.7  
mA  
mA  
O[Pin 3]  
O
Output Source Current (V  
= 3.5 V)  
I +  
O
–2.0  
–4.0  
O[Pin 3]  
2. Low duty cycle techniques are used during test to maintain junction temperature as close to ambient temperatures as possible.  
T
low  
= –40°C for MC33060A  
= 0°C for MC34060A  
T
high  
= +85°C for MC33060A  
= +70°C for MC34060A  
http://onsemi.com  
3
MC34060A, MC33060A  
ELECTRICAL CHARACTERISTICS (continued) (V = 15 V, C = 0.01 µF, R = 12 k, unless otherwise noted.  
CC  
T
T
For typical values T = 25°C, for min/max values T is the operating ambient temperature range that applies, unless otherwise noted.)  
A
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
PWM COMPARATOR SECTION (Test circuit Figure 11)  
Input Threshold Voltage  
(Zero Duty Cycle)  
V
3.5  
0.7  
4.5  
V
TH  
Input Sink Current  
I
0.3  
mA  
I
(V  
[Pin 3]  
= 0.7 V)  
DEAD–TIME CONTROL SECTION (Test circuit Figure 11)  
Input Bias Current (Pin 4)  
I
–1.0  
–10  
µA  
IB(DT)  
(V = 0 V to 5.25 V)  
in  
Maximum Output Duty Cycle  
DC  
%
max  
(V = 0 V, C = 0.01 µF, R = 12 k)  
90  
96  
92  
100  
in  
T
T
(V = 0 V, C = 0.001 µF, R = 47 k)  
in  
T
T
Input Threshold Voltage (Pin 4)  
(Zero Duty Cycle)  
(Maximum Duty Cycle)  
V
TH  
V
0
2.8  
3.3  
OSCILLATOR SECTION  
Frequency  
f
kHz  
osc  
(C = 0.01 µF, R = 12 k, T = 25°C)  
9.7  
9.5  
9.0  
10.5  
11.3  
11.5  
11.5  
T
T
A
T
T
A
= T  
= T  
to T  
to T  
– MC34060A  
– MC33060A  
A
low  
high  
low  
high  
(C = 0.001 µF, R = 47 k)  
25  
T
T
Standard Deviation of Frequency*  
(C = 0.001 µF, R = 47 k)  
σf  
1.5  
%
%
%
osc  
T
T
Frequency Change with Voltage  
(V = 7.0 V to 40 V)  
CC  
f (V)  
osc  
0.5  
2.0  
Frequency Change with Temperature  
f (T)  
osc  
(T =T  
(C = 0.01 µF, R = 12 k)  
T
to T )  
high  
4.0  
A
low  
T
UNDERVOLTAGE LOCKOUT SECTION  
Turn–On Threshold (V increasing, I = 1.0 mA)  
V
th  
4.0  
50  
4.7  
5.5  
V
CC  
ref  
Hysteresis  
V
H
150  
300  
mV  
TOTAL DEVICE  
Standby Supply Current  
(Pin 6 at V , all other inputs and outputs open)  
I
mA  
mA  
CC  
ref  
(V = 15 V)  
5.5  
7.0  
10  
15  
CC  
(V = 40 V)  
CC  
Average Supply Current  
I
S
7.0  
(V  
[Pin 4]  
= 2.0 V, C = 0.001 µF, R = 47 k). See Figure 11.  
T T  
N
2
Σ (x –x)  
n – 1  
N–1  
n
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula; σ =  
http://onsemi.com  
4
MC34060A, MC33060A  
6
5
Reference  
Regulator  
10  
12  
Oscillator  
V
CC  
R
T
Dead-Time  
Comparator  
Undervoltage  
Lockout  
C
T
-
+
Ref Out  
-
+
0.12V  
0.7V  
4
Dead-Time  
Control  
V
TH  
-
+
9
8
Collector  
Emitter  
PWM.  
Comparator  
Q1  
0.7mA  
+
-
+
2
-
1
1
2
3
13  
14  
7
Gnd  
Error Amp  
1
Feedback/PWM  
Comparator Input  
Error Amp  
2
This device contains 46 active transistors.  
Figure 1. Block Diagram  
Description  
Output pulse width modulation is accomplished by  
comparison of the positive sawtooth waveform across  
The MC34060A is a fixed–frequency pulse width  
modulation control circuit, incorporating the primary  
building blocks required for the control of a switching power  
supply (see Figure 1). An internal–linear sawtooth oscillator  
is frequency–programmable by two external components,  
capacitor C to either of two control signals. The output is  
T
enabled only during that portion of time when the sawtooth  
voltage is greater than the control signals. Therefore, an  
increase in control–signal amplitude causes a corresponding  
linear decrease of output pulse width. (Refer to the Timing  
Diagram shown in Figure 2.)  
R
T
and C . The approximate oscillator frequency is  
T
determined by:  
1.2  
RT CT  
fosc  
^
For more information refer to Figure 3.  
Capacitor C  
T
Feedback/P.W.M.  
Comparator  
Dead-Time Control  
Output Q ,  
1
Emitter  
Figure 2. Timing Diagram  
http://onsemi.com  
5
MC34060A, MC33060A  
APPLICATIONS INFORMATION  
The control signals are external inputs that can be fed into  
pin varies from 0.5 V to 3.5 V. Both error amplifiers have a  
the dead–time control, the error amplifier inputs, or the  
feed–back input. The dead–time control comparator has an  
effective 120 mV input offset which limits the minimum  
output dead time to approximately the first 4% of the  
sawtooth–cycle time. This would result in a maximum duty  
cycle of 96%. Additional dead time may be imposed on the  
output by setting the dead time–control input to a fixed  
voltage, ranging between 0 V to 3.3 V.  
The pulse width modulator comparator provides a means  
for the error amplifiers to adjust the output pulse width from  
the maximum percent on–time, established by the dead time  
control input, down to zero, as the voltage at the feedback  
common mode input range from –0.3 V to (V –2.0 V), and  
CC  
may be used to sense power supply output voltage and  
current. The error–amplifier outputs are active high and are  
ORed together at the noninverting input of the pulse–width  
modulator comparator. With this configuration, the  
amplifier that demands minimum output on time, dominates  
control of the loop.  
The MC34060A has an internal 5.0 V reference capable  
of sourcing up to 10 mA of load currents for external bias  
circuits. The reference has an internal accuracy of ±5% with  
a typical thermal drift of less than 50 mV over an operating  
temperature range of 0° to +70°C.  
http://onsemi.com  
6
MC34060A, MC33060A  
120  
110  
500 k  
100 k  
VCC = 15 V  
VO = 3.0 V  
RL = 2.0 kΩ  
V
CC  
= 15 V  
100  
90  
0.001 µF  
0
80  
70  
60  
50  
40  
30  
20  
-20  
-40  
-60  
A
VOL  
θ
10 k  
C = 0.01 µF  
-80  
T
-100  
-120  
-140  
1.0 µF  
1.0 k  
500  
-160  
-180  
10  
0
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
1.0 k 2.0 k  
5.0 k 10 k 20 k  
50 k 100 k 200 k 500 k 1.0 M  
f, FREQUENCY (Hz)  
R , TIMING RESISTANCE ()  
T
Figure 3. Oscillator Frequency  
versus Timing Resistance  
Figure 4. Open Loop Voltage Gain and Phase  
versus Frequency  
100  
20  
18  
V
= 15 V  
C = 0.001  
16  
14  
80  
60  
40  
20  
0
CC  
T
R = 47 k  
T
12  
C = 0.001 µF  
T
10  
8.0  
6.0  
4.0  
2.0  
0.01 µF  
0
500 1.0 k  
10 k  
, OSCILLATOR FREQUENCY (Hz)  
100 k  
500 k  
0
1.0 2.0  
DEAD-TIME CONTROL VOLTAGE (V)  
3.0  
3.5  
f
osc  
Figure 5. Percent Deadtime versus  
Oscillator Frequency  
Figure 6. Percent Duty Cycle versus  
Dead–Time Control Voltage  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0
100  
200 300  
I , EMITTER CURRENT (mA)  
400  
500  
0
100  
200 300  
I , COLLECTOR CURRENT (mA)  
400  
500  
E
C
Figure 7. Emitter–Follower Configuration  
Output Saturation Voltage versus  
Emitter Current  
Figure 8. Common–Emitter Configuration  
Output Saturation Voltage versus  
Collector Current  
http://onsemi.com  
7
MC34060A, MC33060A  
10  
6.0  
9.0  
8.0  
7.0  
6.0  
5.5  
5.0  
Turn On  
Turn Off  
5.0  
4.0  
3.0  
2.0  
4.5  
4.0  
1.0  
0
0
5.0  
10  
15  
20  
25  
30  
35  
40  
0
5.0  
10  
15  
20  
25  
30  
35  
40  
I , REFERENCE LOAD CURRENT (mA)  
L
V
CC  
, SUPPLY VOLTAGE (V)  
Figure 9. Standby Supply Current  
versus Supply Voltage  
Figure 10. Undervoltage Lockout Thresholds  
versus Reference Load Current  
V
CC  
= 15V  
150Ω  
2W  
V
CC  
Dead-  
Time  
Test  
Inputs  
Error Amplifier  
Under Test  
+
-
Feedback  
V
in  
R
C
E
Output  
T
C
T
(+)  
(-)  
(+)  
Feedback  
Terminal  
(Pin 3)  
Error  
(-)  
Ref  
Out  
+
50kΩ  
Gnd  
V
ref  
-
Other Error  
Amplifier  
Figure 11. Error Amplifier Characteristics  
Figure 12. Deadtime and Feedback Control  
15V  
15V  
C
R
L
68Ω  
Output  
Transistor  
V
C
C
E
V
E
C
Output  
Transistor  
L
E
R
68Ω  
15pF  
90%  
C
L
15pF  
L
90%  
90%  
90%  
V
C
V
E
10%  
10%  
10%  
10%  
t
r
t
f
t
r
t
f
Figure 13. Common–Emitter Configuration  
and Waveform  
Figure 14. Emitter–Follower Configuration  
and Waveform  
http://onsemi.com  
8
MC34060A, MC33060A  
V
O
To Output  
Voltage of  
System  
V
ref  
R
R
1
1
2
1
2
+
-
+
-
R
R
2
3
3
V
ref  
Error  
Amp  
Error  
Amp  
2
1
Positive Output Voltage  
Negative Output Voltage  
To Output  
Voltage of  
System  
R
R
R
R
1
1
V
O
= V (1 +  
ref  
)
V
O
= -V (1 +  
ref  
)
V
O
2
2
Figure 15. Error Amplifier Sensing Techniques  
R
1
V
ref  
4
Q
D
T
Output  
+
-
R
T
C
T
C
S
R
1
R
2
V
ref  
6
5
4
D
T
Output  
Q
160  
R
2
47k  
0.001  
R
Max % On Time 92 -  
1
1 +  
R
2
Figure 16. Deadtime Control Circuit  
Figure 17. Soft–Start Circuit  
V
ref  
6
R
C
T
Master  
5
T
C
T
R
T
V
ref  
6
R
C
T
(Additional  
Circuits)  
Slave  
5
T
Figure 18. Slaving Two or More Control Circuits  
http://onsemi.com  
9
MC34060A, MC33060A  
150µH @ 2.0A  
V
V
in  
= 8.0V to 40V  
out  
Tip 32  
5.0V/1.0A  
47  
4.7k  
10  
75  
V
CC  
0.01  
1
2
+
47k  
1.0M  
9
C
-
3
Comp  
+
+
MC34060A  
14  
13  
12  
MR850  
50/50  
1000  
6.3V  
+
-
0.01  
8
7
E
Gnd  
V
4.7k  
ref  
D
T
C
T
R
T
4
5
6
10/16V  
+
0.001  
4.7k  
150  
4.7k  
47k  
390  
0.1  
Test  
Conditions  
= 8.0 V to 40 V, I = 1.0 A  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
25 mV  
3.0 mV  
0.5%  
0.06%  
O
= 12 V, I = 1.0 mA to 1.0 A  
O
= 12 V, I = 1.0 A  
75 mV p–p P.A.R.D.  
O
Short Circuit Current  
Efficiency  
= 12 V, R = 0.1 Ω  
1.6 A  
73%  
L
= 12 V, I = 1.0 A  
O
Figure 19. Step–Down Converter with Soft–Start  
and Output Current Limiting  
http://onsemi.com  
10  
MC34060A, MC33060A  
150µH @ 4.0A  
20µH @ 1.0A  
V
in  
= 8.0V to 26V  
MR850  
V
out  
*
28V/  
0.5A  
22k  
10  
V
CC  
0.05  
1
2
+
33k  
2.7M  
9
C
-
4.7k  
3
Comp  
+
+
+
+
*
MC34060A  
14  
50/35V  
470/  
35V  
470/  
35V  
300  
0.1  
13  
12  
8
7
-
3.9k  
E
Tip 111  
V
ref  
Gnd  
D
C
T
R
T
T
6
4
5
4.7k  
0.001  
470  
47k  
390  
Test  
Conditions  
= 8.0 V to 26 V, I = 0.5 A  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
40 mV 0.14%  
5.0 mV 0.18%  
O
= 12 V, I = 1.0 mA to 0.5 A  
O
= 12 V, I = 0.5 A  
24 mV p–p P.A.R.D.  
75%  
O
= 12 V, I = 0.5 A  
O
*Optional circuit to minimize output ripple  
Figure 20. Step–Up Converter  
http://onsemi.com  
11  
MC34060A, MC33060A  
V
in  
= 8.0V to 40V  
MR851  
V
out  
Tip 32C  
20µH *  
@ 1.0A  
-15V/  
0.25A  
47  
30k  
10  
75  
V
CC  
0.01  
1
2
+
47k  
1.0M  
9
C
-
7.5k  
3
+
Comp  
50/50V  
*
150µH  
@ 2.0A  
14  
13  
12  
MC34060A  
330/  
16V  
330/  
16V  
+
-
+
+
0.01  
8
7
E
V
Gnd  
ref  
10k  
D
T
C
T
R
T
4
5
6
10/16V  
0.001  
47k  
4.7k  
47k  
3.3k  
820  
1.0  
Test  
Conditions  
= 8.0 V to 40 V, I = 250 mA  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
52 mV  
47 mV  
0.35%  
0.32%  
O
= 12 V, I = 1.0 to 250 mA  
O
= 12 V, I = 250 mA  
10 mV p–p P.A.R.D.  
330 mA  
O
Short Circuit Current  
Efficiency  
= 12 V, R = 0.1 Ω  
L
= 12 V, I = 250 mA  
86%  
O
*Optional circuit to minimize output ripple  
Figure 21. Step–Up/Down Voltage Inverting Converter  
with Soft–Start and Current Limiting  
http://onsemi.com  
12  
L
1
1N5824  
2200/10V  
1N4934  
5.0V/3.0A  
1N4003  
T
2
+
+
3 each  
0.0047 UL/CSA  
100/10V  
3/200  
Vac  
L
2
1N4934  
+
12/075A  
Common  
*
T1  
+
+
+
+
*
1N4001  
47/25V  
10/35V  
1000/25V  
1000/25V  
1N4934  
*
22k  
10  
V
L
3
10/35V  
-12/0.75A  
+
*
CC  
180/200V  
1
2
3
9
+
C
1N4742  
1N4937  
-
1.0A  
15Ω  
Cold  
T
2.2M  
33k  
0.01  
Comp  
MPS  
A05  
MC34060A  
1N4687  
6.8k  
7.5k  
115 Vac  
±20%  
14  
13  
12  
+
-
10/25V  
8
7
MJE  
13005  
E
+
MPS  
A55  
Gnd  
V
ref  
8.2k  
D
C
R
T
T
T
*Optional R.F.I. Filter  
4
5
6
+
200  
47  
0.001  
10  
27k  
V
P
47k  
out out  
5.0k 25k  
1.5k  
11k  
1.0  
0.01  
1N4148  
2.7k  
Test  
Conditions  
Results  
T1 – Coilcraft W2961  
V
= 95 Vac to 135 Vac, I = 3.0 A  
O
= 95 Vac to 135 Vac, I = ±0.75 A  
20 mV 0.40%  
52 mV 0.26%  
476 mV 9.5%  
300 mV 2.5%  
Line Regulation 5.0 V  
Line Regulation ±12 V  
Load Regulation 5.0 V  
Load Regulation ±12 V  
Output Ripple 5.0 V  
Output Ripple ±12 V  
Efficiency  
T2 – Core: Coilcraft 11–464–16,  
0.025gap in each leg.  
Bobbin: Coilcraft 37–573  
Windings:  
Primary, 2 each, 75 turns #25 Awg Bifilar wound  
Feedback: 15 turns #26 Awg  
Secondary, 5.0 V, 6 turns @33 Awg Bifilar wound  
Secondary, 2 each, 14 turns #24 Awg Bifilar wound  
L1 – Coilcraft Z7156, 15 µH @ 5.0 A  
in  
V
in  
O
V
V
V
V
V
= 115 Vac, I = 1.0 A to 4.0 A  
O
in  
in  
in  
in  
in  
= 115 Vac, I = ±0.4 A to ±0.9 A  
O
= 115 Vac, I = 3.0 A  
O
45 mV p–p P.A.R.D.  
75 mV p–p P.A.R.D.  
74%  
= 115 Vac, I = ±0.75 A  
O
= 115 Vac, I 5.0 V = 3.0 A  
O
O
I
±12 V = ±0.75 A  
L2, L3 – Coilcraft Z7157, 25 µH @ 1.0 A  
Figure 22. 33 W Off–Line Flyback Converter with Soft–Start and Primary Power Limiting  
MC34060A, MC33060A  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Package  
SO–14  
Shipping  
55 Units/Rail  
MC34060AD  
MC34060ADR2  
MC34060AP  
MC33060AD  
MC33060ADR2  
MC33060AP  
SO–14  
2500 Tape & Reel  
25 Units/Rail  
T = 0° to +70°C  
A
PDIP–14  
SO–14  
55 Units/Rail  
SO–14  
2500 Tape & Reel  
25 Units/Rail  
T = –40° to +85°C  
A
PDIP–14  
http://onsemi.com  
14  
MC34060A, MC33060A  
PACKAGE DIMENSIONS  
PDIP–14  
P SUFFIX  
CASE 646–06  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
14  
1
8
7
B
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
MILLIMETERS  
A
F
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
18.80  
6.60  
4.69  
0.53  
1.78  
A
B
C
D
F
0.715  
0.240  
0.145  
0.015  
0.040  
0.770  
0.260  
0.185  
0.021  
0.070  
L
N
C
G
H
J
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.290  
---  
0.095  
0.015  
0.135  
0.310  
10  
1.32  
0.20  
2.92  
7.37  
---  
2.41  
0.38  
3.43  
7.87  
10  
–T–  
SEATING  
PLANE  
K
L
J
K
M
N
_
_
D 14 PL  
0.015  
0.039  
0.38  
1.01  
H
G
M
M
0.13 (0.005)  
SO–14  
D SUFFIX  
CASE 751A–03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
G
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
–T–  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
0.244  
0.019  
M
S
S
A
0.25 (0.010)  
T
B
K
M
P
R
7
0
_
_
_
_
5.80  
0.25  
6.20 0.228  
0.50 0.010  
http://onsemi.com  
15  
MC34060A, MC33060A  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MC34060A/D  

相关型号:

MC34060APG

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
ONSEMI

MC34060A_06

Fixed Frequency, PWM, Voltage Mode Single Ended Controllers
ONSEMI

MC34060A_11

Fixed Frequency, PWM Voltage Mode Single Ended Controllers
ONSEMI

MC34060P

0.25A SWITCHING CONTROLLER, 200kHz SWITCHING FREQ-MAX, PDIP14, PLASTIC, DIP-14
MOTOROLA

MC34062

PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT
MOTOROLA

MC34062P1

PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT
MOTOROLA

MC34062U

PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT
MOTOROLA

MC34063

DC/DC CONVERTER CONTROL CIRCUIT
AIC

MC34063

DC-to-DC CONVERTER CONTROL CIRCUITS
ONSEMI

MC34063

SMPS Controller
FAIRCHILD

MC34063

DC-DC CONVERTER CONTROL CIRCUITS
STMICROELECTR

MC34063

www.harom.cn
MOTOROLA