MC14521BFEL [ONSEMI]

24-Stage Frequency Divider; 24级分频器
MC14521BFEL
型号: MC14521BFEL
厂家: ONSEMI    ONSEMI
描述:

24-Stage Frequency Divider
24级分频器

预分频器 多谐振动器 逻辑集成电路 光电二极管 时钟
文件: 总12页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC14521B consists of a chain of 24 flip–flops with an input  
circuit that allows three modes of operation. The input will function as  
a crystal oscillator, an RC oscillator, or as an input buffer for an  
external oscillator. Each flip–flop divides the frequency of the  
24  
previous flip–flop by two, consequently this part will count up to 2  
=
http://onsemi.com  
16,777,216. The count advances on the negative going edge of the  
clock. The outputs of the last seven–stages are available for added  
flexibility.  
MARKING  
DIAGRAMS  
16  
All Stages are Resettable  
Reset Disables the RC Oscillator for Low Standby Power Drain  
PDIP–16  
P SUFFIX  
CASE 648  
MC14521BCP  
AWLYYWW  
RC and Crystal Oscillator Outputs Are Capable of Driving External  
Loads  
1
Test Mode to Reduce Test Time  
16  
V and V Pins Brought Out on Crystal Oscillator Inverter to  
DD  
SS  
SOIC–16  
D SUFFIX  
CASE 751B  
Allow the Connection of External Resistors for Low–Power  
Operation  
14521B  
AWLYWW  
Supply Voltage Range = 3.0 Vdc to 18 Vdc  
1
Capable of Driving Two Low–power TTL Loads or One Low–power  
16  
Schottky TTL Load over the Rated Temperature Range.  
SOEIAJ–16  
F SUFFIX  
CASE 966  
MC14521B  
AWLYWW  
1
MAXIMUM RATINGS (Voltages Referenced to V ) (Note 2.)  
SS  
A
= Assembly Location  
Symbol  
Parameter  
Value  
Unit  
V
WL or L = Wafer Lot  
YY or Y = Year  
V
DD  
DC Supply Voltage Range  
0.5 to +18.0  
WW or W = Work Week  
V , V  
in out  
Input or Output Voltage Range  
(DC or Transient)  
0.5 to V + 0.5  
V
DD  
I , I  
in out  
Input or Output Current  
(DC or Transient) per Pin  
±10  
mA  
ORDERING INFORMATION  
Device  
Package  
PDIP–16  
SOIC–16  
Shipping  
P
Power Dissipation,  
per Package (Note 3.)  
500  
mW  
D
MC14521BCP  
MC14521BD  
2000/Box  
48/Rail  
T
A
Ambient Temperature Range  
Storage Temperature Range  
55 to +125  
65 to +150  
260  
°C  
°C  
°C  
T
stg  
MC14521BDR2  
SOIC–16 2500/Tape & Reel  
T
Lead Temperature  
L
MC14521BF  
SOEIAJ–16  
SOEIAJ–16  
SOEIAJ–16  
See Note 1.  
See Note 1.  
See Note 1.  
(8–Second Soldering)  
2. Maximum Ratings are those values beyond which damage to the device  
may occur.  
3. Temperature Derating:  
MC14521BFEL  
MC14521BFR2  
Plastic “P and D/DW” Packages: – 7.0 mW/ C From 65 C To 125 C  
1. For ordering information on the EIAJ version of  
the SOIC packages, please contact your local  
ON Semiconductor representative.  
This device contains protection circuitry to guard against damage due to high  
static voltages or electric fields. However, precautions must be taken to avoid  
applications of any voltage higher than maximum rated voltages to this  
high–impedancecircuit. For proper operation, V and V should be constrained  
in  
out  
to the range V  
(V or V  
)
V
DD  
.
SS  
in  
out  
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,  
either V or V ). Unused outputs must be left open.  
SS  
DD  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
March, 2000 – Rev. 3  
MC14521B/D  
MC14521B  
PIN ASSIGNMENT  
Q24  
1
2
3
4
5
6
7
8
16  
V
DD  
RESET  
15 Q23  
14 Q22  
13 Q21  
12 Q20  
11 Q19  
10 Q18  
V
SS  
OUT 2  
V
DD  
IN 2  
V
SS  
9
IN 1  
BLOCK DIAGRAM  
RESET  
2
Output  
Count Capacity  
18  
Q18  
Q19  
Q20  
Q21  
Q22  
Q23  
Q24  
2
= 262,144  
= 524,288  
19  
20  
21  
22  
23  
24  
2
2
2
2
2
2
STAGES  
1 THRU 17  
STAGES  
18 THRU 24  
= 1,048,576  
= 2,097,152  
= 4,194,304  
= 8,388,608  
= 16,777,216  
9
6
IN 1  
IN 2  
Q18 Q19 Q20 Q21 Q22 Q23 Q24  
V
V
= PIN 16  
= PIN 8  
DD  
SS  
5
DD  
4
3
V
SS  
7
10 11 12 13 14 15  
1
V
OUT2  
OUT 1  
http://onsemi.com  
2
MC14521B  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
– 55 C  
25 C  
125 C  
V
Vdc  
DD  
(4.)  
Characteristic  
Output Voltage  
Symbol  
Unit  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
“0” Level  
“1” Level  
“0” Level  
V
OL  
5.0  
10  
15  
0.05  
0.05  
0.05  
0
0
0
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
Vdc  
V
in  
= V or 0  
DD  
V
OH  
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
5.0  
10  
15  
4.95  
9.95  
14.95  
Vdc  
Vdc  
V
in  
= 0 or V  
DD  
Input Voltage  
(V = 4.5 or 0.5 Vdc)  
V
IL  
5.0  
10  
15  
1.5  
3.0  
4.0  
2.25  
4.50  
6.75  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
O
(V = 9.0 or 1.0 Vdc)  
O
(V = 13.5 or 1.5 Vdc)  
O
“1” Level  
V
IH  
Vdc  
(V = 0.5 or 4.5 Vdc)  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
2.75  
5.50  
8.25  
3.5  
7.0  
11  
O
(V = 1.0 or 9.0 Vdc)  
O
(V = 1.5 or 13.5 Vdc)  
O
Output Drive Current  
I
mAdc  
OH  
(V = 2.5 Vdc)  
Source  
Pins 4 & 7  
5.0  
5.0  
10  
– 1.2  
– 0.25  
– 0.62  
– 1.8  
– 1.0  
– 0.2  
– 0.5  
– 1.5  
– 1.7  
– 0.36  
– 0.9  
– 3.5  
– 0.7  
– 0.14  
– 0.35  
– 1.1  
OH  
(V = 4.6 Vdc)  
OH  
(V = 9.5 Vdc)  
OH  
(V = 13.5 Vdc)  
OH  
15  
(V = 2.5 Vdc)  
Source  
Pins 1, 10,  
5.0  
5.0  
10  
– 3.0  
– 0.64  
– 1.6  
– 4.2  
– 2.4  
– 0.51  
– 1.3  
– 3.4  
– 4.2  
– 0.88  
– 2.25  
– 8.8  
– 1.7  
– 0.36  
– 0.9  
– 2.4  
mAdc  
mAdc  
OH  
(V = 4.6 Vdc)  
OH  
(V = 9.5 Vdc) 11, 12, 13, 14  
OH  
(V = 13.5 Vdc)  
OH  
and 15  
15  
(V = 0.4 Vdc)  
Sink  
I
OL  
5.0  
10  
15  
0.64  
1.6  
4.2  
0.51  
1.3  
3.4  
0.88  
2.25  
8.8  
0.36  
0.9  
2.4  
OL  
(V = 0.5 Vdc)  
OL  
(V = 1.5 Vdc)  
OL  
Input Current  
Input Capacitance  
I
15  
± 0.1  
±0.00001  
± 0.1  
± 1.0  
µAdc  
in  
C
5.0  
7.5  
pF  
in  
(V = 0)  
in  
Quiescent Current  
(Per Package)  
I
5.0  
10  
15  
5.0  
10  
20  
0.005  
0.010  
0.015  
5.0  
10  
20  
150  
300  
600  
µAdc  
µAdc  
DD  
(5.) (6.)  
Total Supply Current  
I
T
5.0  
10  
15  
I = (0.42 µA/kHz) f + I  
T
I = (0.85 µA/kHz) f + I  
T
I = (1.40 µA/kHz) f + I  
T
DD  
DD  
DD  
(Dynamic plus Quiescent,  
Per Package)  
(C = 50 pF on all outputs, all  
L
buffers switching)  
4. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
5. The formulas given are for the typical characteristics only at 25 C.  
6. To calculate total supply current at loads other than 50 pF:  
I (C ) = I (50 pF) + (C – 50) Vfk  
T
L
T
L
where: I is in µA (per package), C in pF, V = (V – V ) in volts, f in kHz is input frequency, and k = 0.003.  
T
L
DD  
SS  
http://onsemi.com  
3
MC14521B  
SWITCHING CHARACTERISTICS (7.) (C = 50 pF, T = 25 C)  
L
A
V
Vdc  
DD  
(8.)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Rise and Fall Time (Counter Outputs)  
t
, t  
ns  
TLH THL  
t
t
t
, t  
= (1.5 ns/pF) C + 25 ns  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
TLH THL  
L
, t  
= (0.75 ns/pF) C + 12.5 ns  
TLH THL  
L
, t  
= (0.55 ns/pF) C + 12.5 ns  
L
TLH THL  
Propagation Delay Time  
Clock to Q18  
t
, t  
µs  
PHL PLH  
t
t
t
, t  
= (1.7 ns/pF) C + 4415 ns  
= (0.66 ns/pF) C + 1667 ns  
L
= (0.5 ns/pF) C + 1275 ns  
L
5.0  
10  
15  
4.5  
1.7  
1.3  
9.0  
3.5  
2.7  
PHL PLH  
L
, t  
PHL PLH  
, t  
PHL PLH  
Clock to Q24  
t
t
t
, t  
= (1.7 ns/pF) C + 5915 ns  
= (0.66 ns/pF) C + 2167 ns  
L
= (0.5 ns/pF) C + 1675 ns  
L
5.0  
10  
15  
6.0  
2.2  
1.7  
12  
4.5  
3.5  
PHL PLH  
L
, t  
PHL PLH  
, t  
PHL PLH  
Propagation Delay Time  
Reset to Q  
t
ns  
PHL  
n
t
t
t
= (1.7 ns/pF) C + 1215 ns  
5.0  
10  
15  
1300  
500  
375  
2600  
1000  
750  
PHL  
PHL  
PHL  
L
= (0.66 ns/pF) C + 467 ns  
L
= (0.5 ns/pF) C + 350 ns  
L
Clock Pulse Width  
t
5.0  
10  
15  
385  
150  
120  
140  
55  
40  
ns  
MHz  
µs  
WH(cl)  
Clock Pulse Frequency  
Clock Rise and Fall Time  
Reset Pulse Width  
f
cl  
5.0  
10  
15  
3.5  
9.0  
12  
2.0  
5.0  
6.5  
t
, t  
5.0  
10  
15  
15  
5.0  
4.0  
TLH THL  
t
5.0  
10  
15  
1400  
600  
450  
700  
300  
225  
ns  
WH(R)  
Reset Removal Time  
t
5.0  
10  
15  
30  
0
– 40  
– 200  
– 160  
– 110  
ns  
rem  
7. The formulas given are for the typical characteristics only at 25 C.  
8. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
V
DD  
0.01 µF  
CERAMIC  
500 µF  
I
D
V
DD  
V
DD  
20 ns  
90%  
10%  
20 ns  
DD  
Q18  
Q19  
PULSE  
GENERATOR  
V
C
L
IN 2  
V
in  
50%  
C
L
Q20  
Q21  
Q22  
Q23  
Q24  
0 V  
C
L
50% DUTY CYCLE  
C
L
C
L
R
C
L
C
L
V
V
SS  
SS  
Figure 1. Power Dissipation Test Circuit and Waveform  
http://onsemi.com  
4
MC14521B  
V
DD  
V
V ′  
DD  
DD  
20 ns  
20 ns  
90%  
20 ns  
IN 2  
Q18  
Q19  
PULSE  
GENERATOR  
C
L
IN 2  
50%  
10%  
C
L
Q20  
Q21  
Q22  
Q23  
Q24  
C
L
t
t
WH  
WL  
C
L
90%  
C
L
50%  
Q
n
R
10%  
t
C
L
t
C
L
PLH  
PHL  
V
SS  
V ′  
SS  
t
t
THL  
TLH  
Figure 2. Switching Time Test Circuit and Waveforms  
500 kHz  
Circuit  
50 kHz  
Circuit  
Characteristic  
Unit  
Crystal Characteristics  
Resonant Frequency  
500  
1.0  
50  
6.2  
kHz  
kΩ  
Equivalent Resistance, R  
S
External Resistor/Capacitor Values  
V
DD  
R
C
C
47  
82  
20  
750  
82  
20  
kΩ  
pF  
pF  
o
T
S
R
o
R*  
V
V ′  
DD  
DD  
Frequency Stability  
18 M  
Frequency Change as a Function  
of V (T = 25 C)  
IN 1 OUT 1  
OUT 2  
Q18  
DD  
A
V
DD  
V
DD  
Change from 5.0 V to 10 V  
Change from 10 V to 15 V  
+ 6.0  
+ 2.0  
+ 2.0  
+ 2.0  
ppm  
ppm  
Q19  
IN 2  
Q20  
Q21  
Q22  
Q23  
Q24  
Frequency Change as a Function  
of Temperature (V = 10 V)  
DD  
– 4.0  
+ 100  
– 2.0  
+ 120  
ppm  
ppm  
T Change from – 55 C to + 25 C  
A
C
S
C
T
MC14521 only  
R
Complete Oscillator*  
V
SS  
V ′  
SS  
T Change from +25 C to+125 C  
A
R*  
MC14521 only  
– 2.0  
– 160  
– 2.0  
– 560  
ppm  
ppm  
Complete Oscillator*  
* Optional for low power operation,  
10 kR 70 k.  
*Complete oscillator includes crystal, capacitors, and resistors.  
Figure 4. Typical Data for Crystal Oscillator Circuit  
Figure 3. Crystal Oscillator Circuit  
http://onsemi.com  
5
MC14521B  
100  
50  
TEST CIRCUIT  
FIGURE 7  
V
DD  
= 10 V  
8.0  
4.0  
TEST CIRCUIT  
FIGURE 7  
V
DD  
= 15 V  
20  
10  
f AS A FUNCTION  
OF R  
TC  
(C = 1000 pF)  
(R 2R  
)
TC  
S
5.0  
0
–4.0  
–8.0  
–12  
–16  
f AS A FUNCTION  
OF C  
2.0  
1.0  
0.5  
10 V  
(R = 56 k)  
TC  
(R = 120 k)  
S
5.0 V  
0.2  
0.1  
R
= 56 k,  
R = 0, f = 10.15 kHz @ V = 10 V, T = 25°C  
S DD A  
R = 120 k, f = 7.8 kHz @ V = 10 V, T = 25°C  
S DD A  
TC  
1.0 k  
10 k  
100 k  
1.0 m  
0.1  
{
C = 1000 pF  
R
, RESISTANCE (OHMS)  
TC  
–55  
–25  
0
25  
50  
75  
100  
125  
0.0001  
0.001  
0.01  
T , AMBIENT TEMPERATURE (°C), DEVICE ONLY  
C, CAPACITANCE (µF)  
A
Figure 5. RC Oscillator Stability  
Figure 6. RC Oscillator Frequency as a  
Function of RTC and C  
R
S
R
TC  
V
DD  
V
DD  
C
V
DD  
V
DD  
V ′  
DD  
IN 1  
Q18  
IN 1 OUT 1  
OUT 2  
Q18  
Q19  
Q20  
Q21  
Q22  
Q23  
Q24  
Q19  
IN 2  
R
PULSE  
GENERATOR  
IN 2  
Q20  
Q21  
Q22  
Q23  
Q24  
OUT 1  
OUT 2  
R
V
SS  
V
SS  
V
SS  
V ′  
SS  
Figure 7. RC Oscillator Circuit  
Figure 8. Functional Test Circuit  
http://onsemi.com  
6
MC14521B  
FUNCTIONAL TEST SEQUENCE  
Inputs  
Outputs  
Comments  
Reset  
In 2  
Out 2  
V
V
Q18 thru  
Q24  
Counter is in three 8–stage  
sections in parallel mode  
Counter is reset. In 2 and  
Out 2 are connected  
together  
SS  
DD  
V
Gnd  
0
1
0
0
1
0
1
DD  
First “0” to “1” transition  
on In 2, Out 2 node.  
A test function (see Figure 8) has been  
includedfor the reduction of test time required to  
exercise all 24 counter stages. This test function  
divides the counter into three 8–stage sections,  
and 255 counts are loaded in each of the  
8–stage sections in parallel. All flip–flops are  
now at a logic “1”. The counter is now returned  
to the normal 24–stages in series configuration.  
One more pulse is entered into Input 2 (In 2)  
which will cause the counter to ripple from an all  
“1” state to an all “0” state.  
0
1
0
1
255 “0” to “1” transitions  
are clocked into this In 2,  
Out 2 node.  
The 255th “0” to “1”  
transition.  
1
1
1
0
0
0
0
1
1
Gnd  
Counter converted back to  
24–stages in series mode.  
1
1
0
0
1
1
V
DD  
Out 2 converts back to an  
output.  
Counter ripples from an all  
“1” state to an all “0” stage.  
0
1
0
http://onsemi.com  
7
MC14521B  
LOGIC DIAGRAM  
V
5
RESET  
2
DD  
9
STAGES  
3 THRU 7  
1
2
8
IN 1  
6
IN 2  
4
OUT 2  
7
3
V
SS  
OUT 1  
STAGES  
11 THRU 15  
9
10  
16  
17  
18  
19  
20  
21  
22  
23  
24  
V
V
= PIN 16  
= PIN 8  
10  
Q18  
11  
Q19  
12  
Q20  
13  
Q21  
14  
Q22  
15  
Q23  
1
Q24  
DD  
SS  
http://onsemi.com  
8
MC14521B  
PACKAGE DIMENSIONS  
PDIP–16  
P SUFFIX  
PLASTIC DIP PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
16  
1
9
8
B
S
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
MIN MAX  
F
A
B
C
D
F
G
H
J
K
L
M
S
C
L
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
0.040  
0.70  
SEATING  
PLANE  
–T–  
0.100 BSC  
0.050 BSC  
0.008 0.015  
2.54 BSC  
1.27 BSC  
K
M
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295 0.305  
10  
0.020 0.040  
0.130  
2.80  
7.50  
0
G
D 16 PL  
0
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
http://onsemi.com  
9
MC14521B  
PACKAGE DIMENSIONS  
SOIC–16  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751B–05  
ISSUE J  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
1
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
0.25 (0.010)  
B
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00 0.386  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
R X 45  
K
C
G
J
K
M
P
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
J
M
D
16 PL  
7
0
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T B  
A
R
http://onsemi.com  
10  
MC14521B  
PACKAGE DIMENSIONS  
SOEIAJ–16  
F SUFFIX  
PLASTIC EIAJ SOIC PACKAGE  
CASE 966–01  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
ISSUE O  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
L
E
16  
9
8
Q
1
H
E
M
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
E
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
1
L
DETAIL P  
Z
D
VIEW P  
e
MILLIMETERS  
INCHES  
A
DIM MIN  
MAX  
MIN  
–––  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
c
A
1
–––  
0.05  
0.35  
0.18  
9.90  
5.10  
2.05  
A
0.20 0.002  
0.50 0.014  
0.27 0.007  
10.50 0.390  
5.45 0.201  
b
c
D
E
A
1
b
0.13 (0.005)  
e
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
M
H
7.40  
0.50  
1.10  
0
0.70  
–––  
8.20 0.291  
0.85 0.020  
1.50 0.043  
10  
0.90 0.028  
0.78 –––  
0.323  
0.033  
0.059  
10  
0.035  
0.031  
E
L
L
E
M
Q
0
1
Z
http://onsemi.com  
11  
MC14521B  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC14521B/D  

相关型号:

MC14521BFELG

24−Stage Frequency Divider
ONSEMI

MC14521BFG

24−Stage Frequency Divider
ONSEMI

MC14521BFL2

IC,PRESCALER,SOP,16PIN,PLASTIC
ONSEMI

MC14521BFR1

IC,PRESCALER,SOP,16PIN,PLASTIC
ONSEMI

MC14521BFR2

24-Stage Frequency Divider
ONSEMI

MC14521B_06

24−Stage Frequency Divider
ONSEMI

MC145220

Dual 1.1 GHz PLL Frequency Synthesizer
MOTOROLA

MC145220DT

Dual 1.1 GHz PLL Frequency Synthesizer
MOTOROLA

MC145220DTR2

PLL Frequency Synthesizer, BICMOS, PDSO20, TSSOP-20
MOTOROLA

MC145220EVK

MC145220 Evaluation Board Manual
MOTOROLA

MC145220F

Dual 1.1 GHz PLL Frequency Synthesizer
MOTOROLA

MC145220FR2

PLL FREQUENCY SYNTHESIZER, 1100MHz, PDSO20, SOG-20
MOTOROLA