HC4052 [ONSEMI]

Analog Multiplexers/Demultiplexers; 模拟多路复用器/多路解复用器
HC4052
型号: HC4052
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexers/Demultiplexers
模拟多路复用器/多路解复用器

解复用器
文件: 总16页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High–Performance Silicon–Gate CMOS  
http://onsemi.com  
The MC74VHC4051, MC74VHC4052 and MC74VHC4053 utilize  
silicon–gate CMOS technology to achieve fast propagation delays,  
low ON resistances, and low OFF leakage currents. These analog  
multiplexers/demultiplexers control analog voltages that may vary  
MARKING  
DIAGRAMS  
16  
across the complete power supply range (from V  
to V ).  
CC  
EE  
SO–16  
D SUFFIX  
CASE 751B  
VHC405x  
AWLYWW  
The VHC4051, VHC4052 and VHC4053 are identical in pinout to  
the high–speed HC4051A, HC4052A and HC4053A, and the  
metal–gate MC14051B, MC14052B and MC14053B. The  
Channel–Select inputs determine which one of the Analog  
Inputs/Outputs is to be connected, by means of an analog switch, to the  
Common Output/Input. When the Enable pin is HIGH, all analog  
switches are turned off.  
16  
1
1
16  
VHC  
405x  
ALYW  
TSSOP–16  
DT SUFFIX  
CASE 948F  
16  
The Channel–Select and Enable inputs are compatible with standard  
CMOS outputs; with pullup resistors they are compatible with LSTTL  
outputs.  
1
1
A
= Assembly Location  
WL = Wafer Lot  
YY = Year  
These devices have been designed so that the ON resistance (R ) is  
on  
more linear over input voltage than R of metal–gate CMOS analog  
on  
switches.  
WW = Work Week  
Fast Switching and Propagation Speeds  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
ORDERING INFORMATION  
Seedetailedorderingandshippinginformationinthepackage  
dimensions section on page 14 of this data sheet.  
Analog Power Supply Range (V  
– V ) = 2.0 to 12.0 V  
CC  
EE  
Digital (Control) Power Supply Range (V  
CC  
– GND) = 2.0 to 6.0 V  
Improved Linearity and Lower ON Resistance Than Metal–Gate  
Counterparts  
Low Noise  
Chip Complexity: VHC4051 — 184 FETs or 46 Equivalent Gates  
VHC4052 — 168 FETs or 42 Equivalent Gates  
VHC4053 — 156 FETs or 39 Equivalent Gates  
Semiconductor Components Industries, LLC, 1999  
1
Publication Order Number:  
March, 2000 – Rev. 3  
MC74VHC4051/D  
MC74VHC4051, MC74VHC4052, MC74VHC4053  
LOGIC DIAGRAM  
MC74VHC4051  
FUNCTION TABLE – MC74VHC4051  
Control Inputs  
Single–Pole, 8–Position Plus Common Off  
Select  
Enable  
C
B
A
ON Channels  
13  
X0  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
NONE  
14  
X1  
15  
3
X2  
X3  
X4  
X5  
X6  
X7  
A
COMMON  
OUTPUT/  
INPUT  
X
ANALOG  
INPUTS/  
12  
1
L
MULTIPLEXER/  
DEMULTIPLEXER  
H
H
H
H
X
OUTPUTS  
L
5
H
H
X
2
4
11  
10  
9
X = Don’t Care  
CHANNEL  
SELECT  
INPUTS  
B
Pinout: MC74VHC4051 (Top View)  
C
6
V
CC  
16  
X2  
15  
X1  
14  
X0  
13  
X3  
12  
A
B
C
9
ENABLE  
PIN 16 = V  
CC  
PIN 7 = V  
PIN 8 = GND  
11  
10  
EE  
1
2
3
4
5
6
7
8
FUNCTION TABLE – MC74VHC4052  
LOGIC DIAGRAM  
MC74VHC4052  
Double–Pole, 4–Position Plus Common Off  
Control Inputs  
Select  
Enable  
B
A
ON Channels  
12  
X0  
L
L
L
L
H
L
L
H
H
X
L
H
L
H
X
Y0  
Y1  
Y2  
Y3  
X0  
X1  
X2  
X3  
14  
X1  
X2  
X3  
13  
X SWITCH  
Y SWITCH  
X
Y
15  
11  
COMMON  
OUTPUTS/INPUTS  
ANALOG  
NONE  
INPUTS/OUTPUTS  
1
5
Y0  
Y1  
Y2  
Y3  
A
X = Don’t Care  
3
2
4
Pinout: MC74VHC4052 (Top View)  
10  
9
V
X2  
15  
X1  
14  
X
X0  
12  
X3  
11  
A
B
9
CHANNEL-SELECT  
INPUTS  
CC  
PIN 16 = V  
CC  
B
16  
13  
10  
PIN 7 = V  
EE  
PIN 8 = GND  
6
ENABLE  
1
2
3
4
5
6
7
8
Y0  
Y2  
Y
Y3  
Y1 Enable  
V
EE  
GND  
http://onsemi.com  
2
MC74VHC4051, MC74VHC4052, MC74VHC4053  
FUNCTION TABLE – MC74VHC4053  
Control Inputs  
LOGIC DIAGRAM  
MC74VHC4053  
Triple Single–Pole, Double–Position Plus Common Off  
Select  
Enable  
C
B
A
ON Channels  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
Z0  
Y0  
Y0  
Y1  
Y1  
Y0  
Y0  
Y1  
Y1  
NONE  
X0  
12  
Z0  
Z0  
Z0  
Z1  
Z1  
Z1  
Z1  
X1  
X0  
X1  
X0  
X1  
X0  
X1  
X0  
X1  
14  
X
13  
X SWITCH  
L
H
H
H
H
X
2
1
L
Y0  
Y1  
15  
4
COMMON  
OUTPUTS/INPUTS  
ANALOG  
INPUTS/OUTPUTS  
Y
Z
H
H
X
Y SWITCH  
Z SWITCH  
5
3
Z0  
Z1  
X = Don’t Care  
11  
10  
9
A
B
C
PIN 16 = V  
CC  
CHANNEL-SELECT  
INPUTS  
PIN 7 = V  
EE  
Pinout: MC74VHC4053 (Top View)  
PIN 8 = GND  
6
V
Y
X
X1  
13  
X0  
12  
A
B
C
9
CC  
ENABLE  
16  
15  
14  
11  
10  
NOTE: This device allows independent control of each switch.  
Channel–Select Input A controls the X–Switch, Input B controls  
the Y–Switch and Input C controls the Z–Switch  
1
2
3
4
5
6
7
8
Y1  
Y0  
Z1  
Z
Z0 Enable  
V
EE  
GND  
http://onsemi.com  
3
MC74VHC4051, MC74VHC4052, MC74VHC4053  
MAXIMUM RATINGS*  
Symbol  
Parameter  
(Referenced to GND)  
Value  
Unit  
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
CC  
Positive DC Supply Voltage  
– 0.5 to + 7.0  
– 0.5 to + 14.0  
V
(Referenced to V  
)
EE  
V
Negative DC Supply Voltage (Referenced to GND)  
Analog Input Voltage  
– 7.0 to + 5.0  
V
V
EE  
V
V
V
– 0.5 to  
IS  
EE  
+ 0.5  
CC  
cuit. For proper operation, V and  
in  
V
should be constrained to the  
V
Digital Input Voltage (Referenced to GND)  
DC Current, Into or Out of Any Pin  
– 0.5 to V  
+ 0.5  
V
out  
in  
CC  
range GND (V or V  
)
V
CC  
.
in out  
I
± 25  
mA  
mW  
Unused inputs must always be  
tied to an appropriate logic voltage  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
level (e.g., either GND or V  
).  
CC  
Unused outputs must be left open.  
T
stg  
Storage Temperature Range  
– 65 to + 150  
260  
C
C
T
L
Lead Temperature, 1 mm from Case for 10 Seconds  
*Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — SOIC Package: – 7 mW/ C from 65 to 125 C  
TSSOP Package: – 6.1 mW/ C from 65 to 125 C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Positive DC Supply Voltage  
Min  
Max  
Unit  
V
CC  
(Referenced to GND)  
(Referenced to V  
2.0  
2.0  
6.0  
12.0  
V
)
EE  
V
EE  
Negative DC Supply Voltage, Output (Referenced to  
GND)  
– 6.0 GND  
V
V
Analog Input Voltage  
V
V
V
V
V
IS  
EE  
CC  
V
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature Range, All Package Types  
GND  
in  
CC  
V
IO  
*
1.2  
– 55 + 125  
V
T
C
ns  
A
t , t  
r f  
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
V
V
CC  
= 2.0 V  
= 3.0 V  
= 4.5 V  
= 6.0 V  
0
0
0
0
1000  
800  
500  
400  
CC  
V
V
CC  
CC  
*For voltage drops across switch greater than 1.2V (switch on), excessive V  
current may be  
CC  
drawn; i.e., the current out of the switch may contain both V  
and switch input components.  
CC  
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.  
http://onsemi.com  
4
MC74VHC4051, MC74VHC4052, MC74VHC4053  
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) V  
= GND, Except Where Noted  
EE  
Guaranteed Limit  
V
CC  
V
Symbol  
Parameter  
Condition  
= Per Spec  
Unit  
–55 to 25°C 85°C 125°C  
V
IH  
Minimum High–Level Input  
Voltage, Channel–Select or  
Enable Inputs  
R
R
2.0  
3.0  
4.5  
6.0  
1.50  
2.10  
3.15  
4.20  
1.50  
2.10  
3.15  
4.20  
1.50  
2.10  
3.15  
4.20  
V
on  
on  
V
IL  
Maximum Low–Level Input  
Voltage, Channel–Select or  
Enable Inputs  
= Per Spec  
2.0  
3.0  
4.5  
6.0  
0.5  
0.9  
1.35  
1.8  
0.5  
0.9  
1.35  
1.8  
0.5  
0.9  
1.35  
1.8  
V
I
Maximum Input Leakage Current,  
Channel–Select or Enable Inputs  
V
V
= V  
or GND,  
6.0  
± 0.1  
± 1.0  
± 1.0  
µA  
µA  
in  
in  
CC  
= – 6.0 V  
EE  
I
Maximum Quiescent Supply  
Current (per Package)  
Channel Select, Enable and  
CC  
V
V
= V  
CC  
= 0 V  
or GND;  
V
V
= GND  
= – 6.0  
6.0  
6.0  
1
4
10  
40  
40  
80  
IS  
IO  
EE  
EE  
DC ELECTRICAL CHARACTERISTICS Analog Section  
Guaranteed Limit  
– 55 to  
V
CC  
V
V
EE  
V
Symbol  
Parameter  
Test Conditions  
25 C  
Unit  
85 C  
125 C  
R
Maximum “ON” Resistance  
V
V
= V or V  
IH  
3.0  
4.5  
4.5  
6.0  
0.0  
0.0  
– 4.5  
– 6.0  
200  
160  
120  
100  
240  
200  
150  
125  
320  
280  
170  
140  
on  
in  
IS  
IL  
= V  
to V  
CC  
2.0 mA (Figures 1, 2)  
EE  
I
S
V
V
= V or V  
IL  
3.0  
4.5  
4.5  
6.0  
0.0  
0.0  
– 4.5  
– 6.0  
150  
110  
90  
180  
140  
120  
100  
230  
190  
140  
115  
in  
IS  
IH  
or V  
EE  
= V  
CC  
(Endpoints)  
I
S
2.0 mA (Figures 1, 2)  
80  
R  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
= V or V  
IL  
CC  
2.0 mA  
3.0  
4.5  
4.5  
6.0  
0.0  
0.0  
– 4.5  
– 6.0  
40  
20  
10  
10  
50  
25  
15  
12  
80  
40  
18  
14  
on  
in  
IS  
IH  
= 1/2 (V  
– V  
)
EE  
I
S
I
off  
Maximum Off–Channel Leakage  
Current, Any One Channel  
V
V
= V or V  
IL  
;
µA  
in  
IH  
= V  
– V  
;
6.0  
– 6.0  
0.1  
0.5  
1.0  
IO  
CC EE  
Switch Off (Figure 3)  
Maximum Off–ChannelVHC4051  
V
V
= V or V  
IL  
;
6.0  
6.0  
6.0  
– 6.0  
– 6.0  
– 6.0  
0.2  
0.1  
0.1  
2.0  
1.0  
1.0  
4.0  
2.0  
2.0  
in  
IH  
– V  
Leakage Current,  
Common Channel  
VHC4052  
VHC4053 Switch Off (Figure 4)  
= V  
;
IO  
CC  
EE  
I
on  
Maximum On–ChannelVHC4051  
Leakage Current, VHC4052 Switch–to–Switch =  
Channel–to–Channel VHC4053 – V ; (Figure 5)  
V
= V or V  
;
6.0  
6.0  
6.0  
– 6.0  
– 6.0  
– 6.0  
0.2  
0.1  
0.1  
2.0  
1.0  
1.0  
4.0  
2.0  
2.0  
µA  
in  
IL  
IH  
V
CC  
EE  
http://onsemi.com  
5
MC74VHC4051, MC74VHC4052, MC74VHC4053  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 6 ns)  
L
r
f
Guaranteed Limit  
V
CC  
V
Symbol  
Parameter  
Unit  
–55 to 25°C  
85°C  
125°C  
t
t
t
,
Maximum Propagation Delay, Channel–Select to Analog Output  
(Figure 9)  
2.0  
3.0  
4.5  
6.0  
270  
90  
59  
320  
110  
79  
350  
125  
85  
ns  
PLH  
t
PHL  
45  
65  
75  
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figure 10)  
2.0  
3.0  
4.5  
6.0  
40  
25  
12  
10  
60  
30  
15  
13  
70  
32  
18  
15  
ns  
ns  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
3.0  
4.5  
6.0  
160  
70  
48  
200  
95  
63  
220  
110  
76  
PLZ  
t
PHZ  
39  
55  
63  
t
t
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
3.0  
4.5  
6.0  
245  
115  
49  
315  
145  
69  
345  
155  
83  
PZL  
PZH  
39  
58  
67  
C
Maximum Input Capacitance, Channel–Select or Enable Inputs  
10  
35  
10  
35  
10  
35  
pF  
pF  
in  
C
Maximum Capacitance  
(All Switches Off)  
Analog I/O  
I/O  
Common O/I: VHC4051  
VHC4052  
130  
80  
130  
80  
130  
80  
VHC4053  
50  
50  
50  
Feedthrough  
1.0  
1.0  
1.0  
Typical @ 25°C, V  
= 5.0 V, V  
= 0 V  
EE  
CC  
C
Power Dissipation Capacitance (Figure 13)*  
VHC4051  
VHC4052  
VHC4053  
pF  
45  
80  
45  
PD  
2
* Used to determine the no–load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
http://onsemi.com  
6
MC74VHC4051, MC74VHC4052, MC74VHC4053  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Limit*  
25°C  
‘52  
V
V
CC  
V
EE  
V
Symbol  
Parameter  
Condition  
= 1MHz Sine Wave; Adjust f Voltage to  
Unit  
BW  
Maximum On–Channel Bandwidth  
or Minimum Frequency Response  
(Figure 6)  
f
‘51  
‘53  
MHz  
in  
in  
Obtain 0dBm at V ; Increase f  
OS  
Frequency Until dB Meter Reads –3dB;  
= 50, C = 10pF  
in  
2.25  
4.50  
6.00  
80  
80  
80  
95  
95  
95  
120  
120  
120  
–2.25  
–4.50  
–6.00  
R
L
L
Off–Channel Feedthrough Isolation  
(Figure 7)  
f
= Sine Wave; Adjust f Voltage to  
in  
2.25 –2.25  
4.50 –4.50  
–50  
–50  
–50  
dB  
in  
Obtain 0dBm at V  
IS  
f
in  
= 10kHz, R = 600, C = 50pF 6.00 –6.00  
L L  
2.25 –2.25  
4.50 –4.50  
–40  
–40  
–40  
f
in  
= 1.0MHz, R = 50, C = 10pF 6.00 –6.00  
L L  
Feedthrough Noise.  
Channel–Select Input to Common  
I/O (Figure 8)  
V
1MHz Square Wave (t = t = 6ns);  
2.25 –2.25  
4.50 –4.50  
25  
105  
135  
mV  
PP  
in  
r
f
Adjust R at Setup so that I = 0A;  
Enable = GND  
L
S
R
= 600, C = 50pF 6.00 –6.00  
L
L
2.25 –2.25  
4.50 –4.50  
= 10k, C = 10pF 6.00 –6.00  
35  
145  
190  
R
L
L
Crosstalk Between Any Two  
Switches (Figure 12)  
(Test does not apply to VHC4051)  
f
= Sine Wave; Adjust f Voltage to  
in  
2.25 –2.25  
4.50 –4.50  
–50  
–50  
–50  
dB  
in  
Obtain 0dBm at V  
IS  
f
in  
= 10kHz, R = 600, C = 50pF 6.00 –6.00  
L L  
2.25 –2.25  
4.50 –4.50  
= 1.0MHz, R = 50, C = 10pF 6.00 –6.00  
–60  
–60  
–60  
f
in  
L
L
THD  
Total Harmonic Distortion  
(Figure 14)  
f
= 1kHz, R = 10k, C = 50pF  
%
in  
THD = THD  
L
L
– THD  
= 4.0V  
= 8.0V  
measured  
source  
V
sine wave  
sine wave  
sine wave  
2.25 –2.25  
4.50 –4.50  
6.00 –6.00  
0.10  
0.08  
0.05  
IS  
V
PP  
PP  
PP  
IS  
V
IS  
= 11.0V  
*Limits not tested. Determined by design and verified by qualification.  
180  
160  
140  
300  
250  
200  
120  
100  
80  
125°C  
125°C  
150  
25°C  
25°C  
55°C  
100  
60  
55°C  
40  
50  
0
20  
0
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25  
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
Figure 1a. Typical On Resistance, V  
CC  
– V  
EE  
= 2.0 V  
Figure 1b. Typical On Resistance, V  
CC  
– V = 3.0 V  
EE  
http://onsemi.com  
7
MC74VHC4051, MC74VHC4052, MC74VHC4053  
105  
90  
120  
100  
80  
75  
125°C  
125°C  
60  
25°C  
60  
45  
30  
15  
0
25°C  
55°C  
40  
20  
0
55°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
Figure 1c. Typical On Resistance, V  
– V  
EE  
= 4.5 V  
Figure 1d. Typical On Resistance, V – V  
CC EE  
= 6.0 V  
CC  
80  
70  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
125°C  
25°C  
125°C  
55°C  
25°C  
55°C  
10  
0
10  
0
–4.5 –3.5 –2.5 –1.5 –0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
–6.0 –5.0 –4.0 –3.0 –2.0 –1.0  
0
1.0 2.0 3.0 4.0 5.0 6.0  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS  
EE  
IS  
EE  
Figure 1e. Typical On Resistance, V  
– V  
EE  
= 9.0 V  
Figure 1f. Typical On Resistance, V  
– V = 12.0 V  
EE  
CC  
CC  
PLOTTER  
PROGRAMMABLE  
POWER  
MINI COMPUTER  
DC ANALYZER  
SUPPLY  
+
V
CC  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
V
EE  
GND  
Figure 1. On Resistance Test Set–Up  
http://onsemi.com  
8
MC74VHC4051, MC74VHC4052, MC74VHC4053  
V
CC  
V
CC  
V
V
CC  
CC  
16  
16  
V
V
EE  
EE  
ANALOG I/O  
OFF  
OFF  
OFF  
OFF  
A
V
V
CC  
V
CC  
COMMON O/I  
NC  
COMMON O/I  
V
6
7
8
6
7
8
IH  
IH  
V
EE  
V
EE  
Figure 2. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set–Up  
Figure 3. Maximum Off Channel Leakage Current,  
Common Channel, Test Set–Up  
V
CC  
16  
V
OS  
V
V
CC  
V
CC  
16  
0.1µF  
A
dB  
METER  
f
in  
ON  
ON  
N/C  
R
L
C *  
L
EE  
COMMON O/I  
OFF  
V
CC  
ANALOG I/O  
V
IL  
6
7
8
6
7
8
V
EE  
V
EE  
*Includes all probe and jig capacitance  
Figure 4. Maximum On Channel Leakage Current,  
Channel to Channel, Test Set–Up  
Figure 5. Maximum On Channel Bandwidth,  
Test Set–Up  
V
CC  
16  
V
CC  
16  
V
IS  
V
OS  
0.1µF  
dB  
METER  
R
L
f
in  
OFF  
ON/OFF  
OFF/ON  
COMMON O/I  
TEST  
ANALOG I/O  
R
L
R
L
C *  
L
POINT  
R
L
C *  
L
R
L
6
7
8
6
7
8
V
CC  
V 1 MHz  
in  
11  
t = t = 6 ns  
r
f
V
EE  
V
EE  
V
CC  
GND  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
V
IL  
or V  
IH  
Figure 6. Off Channel Feedthrough Isolation,  
Test Set–Up  
Figure 7. Feedthrough Noise, Channel Select to  
Common Out, Test Set–Up  
http://onsemi.com  
9
MC74VHC4051, MC74VHC4052, MC74VHC4053  
V
CC  
16  
V
CC  
V
CC  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
CHANNEL  
SELECT  
TEST  
POINT  
50%  
ANALOG I/O  
GND  
L
t
t
PHL  
PLH  
6
7
8
ANALOG  
OUT  
50%  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 9a. Propagation Delays, Channel Select  
to Analog Out  
Figure 8b. Propagation Delay, Test Set–Up Channel  
Select to Analog Out  
V
CC  
16  
COMMON O/I  
C *  
ANALOG I/O  
TEST  
POINT  
V
CC  
ON  
ANALOG  
IN  
50%  
L
GND  
t
t
PHL  
PLH  
6
7
8
ANALOG  
OUT  
50%  
*Includes all probe and jig capacitance  
Figure 10a. Propagation Delays, Analog In  
to Analog Out  
Figure 9b. Propagation Delay, Test Set–Up  
Analog In to Analog Out  
t
t
POSITION 1 WHEN TESTING t  
POSITION 2 WHEN TESTING t  
AND t  
AND t  
f
r
PHZ  
PLZ  
PZH  
PZL  
1
2
V
CC  
90%  
50%  
10%  
ENABLE  
V
CC  
16  
GND  
1kΩ  
V
CC  
t
t
PZL PLZ  
HIGH  
IMPEDANCE  
1
2
ANALOG I/O  
ENABLE  
TEST  
POINT  
ON/OFF  
ANALOG  
OUT  
50%  
C *  
L
10%  
V
OL  
t
t
PZH PHZ  
6
7
8
V
OH  
90%  
ANALOG  
OUT  
50%  
HIGH  
IMPEDANCE  
Figure 11a. Propagation Delays, Enable to  
Analog Out  
Figure 10b. Propagation Delay, Test Set–Up  
Enable to Analog Out  
http://onsemi.com  
10  
MC74VHC4051, MC74VHC4052, MC74VHC4053  
V
CC  
V
IS  
A
V
CC  
16  
16  
R
L
V
OS  
ON/OFF  
OFF/ON  
COMMON O/I  
f
in  
ON  
NC  
ANALOG I/O  
0.1µF  
OFF  
V
EE  
R
L
R
L
C *  
L
C *  
L
V
CC  
R
L
6
7
8
6
7
8
11  
V
EE  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 11. Crosstalk Between Any Two  
Switches, Test Set–Up  
Figure 12. Power Dissipation Capacitance,  
Test Set–Up  
0
10  
20  
30  
40  
V
IS  
FUNDAMENTAL FREQUENCY  
V
CC  
16  
V
OS  
0.1µF  
TO  
f
in  
DISTORTION  
METER  
ON  
R
L
C *  
L
50  
60  
70  
80  
90  
100  
DEVICE  
SOURCE  
6
7
8
V
EE  
*Includes all probe and jig capacitance  
1.0  
2.0  
3.125  
FREQUENCY (kHz)  
Figure 14a. Total Harmonic Distortion, Test Set–Up  
Figure 13b. Plot, Harmonic Distortion  
APPLICATIONS INFORMATION  
The Channel Select and Enable control pins should be at outputs to V  
or GND through a low value resistor helps  
CC  
or GND logic levels. V being recognized as a logic  
V
minimize crosstalk and feedthrough noise that may be  
picked up by an unused switch.  
Although used here, balanced supplies are not a  
requirement. The only constraints on the power supplies are  
that:  
CC  
CC  
high and GND being recognized as a logic low. In this  
example:  
V
= +5V = logic high  
CC  
GND = 0V = logic low  
V
– GND = 2 to 6 volts  
– GND = 0 to –6 volts  
CC  
The maximum analog voltage swings are determined by  
V
V
EE  
CC  
thesupplyvoltagesV andV . Thepositivepeakanalog  
CC EE  
– V = 2 to 12 volts  
EE  
voltageshouldnotexceedV .Similarly,thenegativepeak  
CC  
and V GND  
EE  
analog voltage should not go below V . In this example,  
EE  
thedifferencebetweenV andV istenvolts.Therefore,  
CC EE  
WhenvoltagetransientsaboveV and/orbelowV are  
CC EE  
anticipated on the analog channels, external Germanium or  
Schottky diodes (D ) are recommended as shown in Figure  
16. These diodes should be able to absorb the maximum  
anticipated current surges during clipping.  
using the configuration of Figure 15, a maximum analog  
signal of ten volts peak–to–peak can be controlled. Unused  
analog inputs/outputs may be left floating (i.e., not  
connected). However, tying unused analog inputs and  
x
http://onsemi.com  
11  
MC74VHC4051, MC74VHC4052, MC74VHC4053  
V
V
CC  
CC  
+5V  
V
CC  
16  
ON/OFF  
D
D
x
16  
x
+5V  
–5V  
+5V  
–5V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
D
D
x
x
V
EE  
V
EE  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 5V  
DIGITAL SIGNALS  
6
7
8
11  
10  
9
7
8
–5V  
V
EE  
Figure 14. Application Example  
Figure 15. External Germanium or  
Schottky Clipping Diodes  
+5V  
16  
+5V  
16  
+5V  
+5V  
+5V  
+5V  
ANALOG  
SIGNAL  
ANALOG  
ANALOG  
SIGNAL  
ANALOG  
ON/OFF  
ON/OFF  
SIGNAL  
SIGNAL  
V
EE  
V
EE  
V
EE  
V
EE  
+5V  
*
R
R
R
+5V  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
LSTTL/NMOS  
CIRCUITRY  
LSTTL/NMOS  
CIRCUITRY  
V
EE  
V
EE  
* 2K R 10K  
HCT  
BUFFER  
a. Using Pull–Up Resistors  
b. Using HCT Interface  
Figure 16. Interfacing LSTTL/NMOS to CMOS Inputs  
11  
10  
9
13  
X0  
LEVEL  
SHIFTER  
A
B
C
14  
X1  
15  
X2  
LEVEL  
SHIFTER  
12  
X3  
1
LEVEL  
SHIFTER  
X4  
5
X5  
6
2
LEVEL  
SHIFTER  
ENABLE  
X6  
4
X7  
3
X
Figure 18. Function Diagram, VHC4051  
http://onsemi.com  
12  
MC74VHC4051, MC74VHC4052, MC74VHC4053  
10  
12  
14  
15  
LEVEL  
SHIFTER  
A
B
X0  
X1  
X2  
9
LEVEL  
SHIFTER  
11  
13  
1
X3  
X
6
LEVEL  
SHIFTER  
ENABLE  
Y0  
5
2
4
3
Y1  
Y2  
Y3  
Y
Figure 19. Function Diagram, VHC4052  
11  
10  
9
13  
LEVEL  
SHIFTER  
A
X1  
12  
14  
1
X0  
X
LEVEL  
SHIFTER  
B
C
Y1  
2
15  
3
Y0  
Y
LEVEL  
SHIFTER  
Z1  
5
4
Z0  
Z
6
LEVEL  
SHIFTER  
ENABLE  
Figure 20. Function Diagram, VHC4053  
http://onsemi.com  
13  
MC74VHC4051, MC74VHC4052, MC74VHC4053  
ORDERING & SHIPPING INFORMATION  
Device  
MC74VHC4051D  
Package  
SOIC–16  
Shipping  
48 Units / Rail  
MC74VHC4051DR2  
MC74VHC4051DT  
MC74VHC4051DTR2  
MC74VHC4052D  
SOIC–16  
2500 Units / Tape & Reel  
96 Units / Rail  
TSSOP–16  
TSSOP–16  
SOIC–16  
2500 Units / Tape & Reel  
48 Units / Rail  
MC74VHC4052DR2  
MC74VHC4052DT  
MC74VHC4052DTR2  
MC74VHC4053D  
SOIC–16  
2500 Units / Tape & Reel  
96 Units / Rail  
TSSOP–16  
TSSOP–16  
SOIC–16  
2500 Units / Tape & Reel  
48 Units / Rail  
MC74VHC4053DR2  
MC74VHC4053DT  
MC74VHC4053DTR2  
SOIC–16  
2500 Units / Tape & Reel  
96 Units / Rail  
TSSOP–16  
TSSOP–16  
2500 Units / Tape & Reel  
http://onsemi.com  
14  
MC74VHC4051, MC74VHC4052, MC74VHC4053  
PACKAGE DIMENSIONS  
SOIC–16  
D SUFFIX  
CASE 751B–05  
ISSUE J  
–A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
1
9
8
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
–B  
P 8 PL  
M
M
0.25 (0.010)  
B
G
MILLIMETERS  
INCHES  
MIN MAX  
DIM MIN  
MAX  
A
B
C
D
F
G
J
K
M
P
9.80 10.00  
0.386 0.393  
0.150 0.157  
0.054 0.068  
0.014 0.019  
0.016 0.049  
0.050 BSC  
F
K
R X 45°  
3.80  
1.35  
0.35  
0.40  
4.00  
1.75  
0.49  
1.25  
C
1.27 BSC  
–T  
0.19  
0.10  
0°  
0.25  
0.25  
7°  
0.008 0.009  
0.004 0.009  
J
SEATING  
M
PLANE  
D 16 PL  
0°  
7°  
5.80  
0.25  
6.20  
0.50  
0.229 0.244  
0.010 0.019  
M
S
S
0.25 (0.010)  
T
B
A
R
TSSOP–16  
DT SUFFIX  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T U  
V
NOTES:  
S
0.15 (0.006) T U  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
K
K1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR  
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER  
SIDE.  
16  
9
2X L/2  
J1  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
B
–U–  
SECTION N–N  
L
0.25 (0.010) PER SIDE.  
J
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE DETERMINED AT  
DATUM PLANE W.  
S
0.15 (0.006) T U  
A
M
MILLIMETERS  
DIM MIN MAX  
INCHES  
–V–  
MIN  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
N
A
B
C
4.90  
4.30  
–––  
5.10 0.193  
4.50 0.169  
1.20  
F
–––  
D
F
0.05  
0.50  
0.15 0.002  
0.75 0.020  
DETAIL E  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007  
0.20 0.004  
0.16 0.004  
0.30 0.007  
0.25 0.007  
0.011  
0.008  
0.006  
0.012  
0.010  
–W–  
C
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
M
0
8
0
8
DETAIL E  
H
SEATING  
PLANE  
–T–  
D
G
http://onsemi.com  
15  
MC74VHC4051, MC74VHC4052, MC74VHC4053  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC74VHC4051/D  

相关型号:

HC4053

Analog Multiplexer/Demultiplexer
SLS

HC4054

NPN SILICON TRANSISTOR
HUASHAN

HC4060

14-STAGE ASYNCHRONOUS BINARY COUNTERS AND OSCILLATORS
TI

HC4060

14-stage binary counter/oscillator
STMICROELECTR

HC4060M

High Speed CMOS Logic 14-Stage Binary Counter with Oscillator
TI

HC4060M

14 STAGE BINARY COUNTER/OSCILLATOR
STMICROELECTR

HC4060M

14 Stage Binary Counter
FAIRCHILD

HC4060Y

14-stage binary counter/oscillator
STMICROELECTR

HC4094

8-Bit Serial-Input Shift Register With Latched 3-State Outputs(High-Performance Silicon-Gate CMOS)
SLS

HC40CD/2J5S2

Card Edge Connector, 80 Contact(s), 2 Row(s), Straight, 0.1 inch Pitch, Press Fit Terminal, Black Insulator, Receptacle,
COOPER