FGH50N6S2D [ONSEMI]

600V,SMPS II IGBT;
FGH50N6S2D
型号: FGH50N6S2D
厂家: ONSEMI    ONSEMI
描述:

600V,SMPS II IGBT

局域网 栅 双极性晶体管 功率控制
文件: 总11页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IGBT - SMPS II Series  
N-Channel with  
Anti-Parallel Stealth Diode  
600 V  
FGH50N6S2D  
www.onsemi.com  
Description  
The FGH50N6S2D is a Low Gate Charge, Low Plateau Voltage  
SMPS II IGBT combining the fast switching speed of the SMPS  
IGBTs along with lower gate charge, plateau voltage and avalanche  
capability (UIS). These LGC devices shorten delay times, and reduce  
the power requirement of the gate drive. These devices are ideally  
suited for high voltage switched mode power supply applications  
where low conduction loss, fast switching times and UIS capability are  
essential. SMPS II LGC devices have been specially designed for:  
C
G
E
E
Power Factor Correction (PFC) Circuits  
Full Bridge Topologies  
Half Bridge Topologies  
PushPull Circuits  
Uninterruptible Power Supplies  
Zero Voltage and Zero Current Switching Circuits  
C
G
Features  
TO2473LD  
CASE 340CK  
100 kHz Operation at 390 V, 40 A  
200 kHz Operation at 390 V, 25 A  
600 V Switching SOA Capability  
Typical Fall Time  
Low Gate Charge  
Low Plateau Voltage  
UIS Rated  
90 ns at T = 125°C  
J
MARKING DIAGRAM  
70 nC at V = 15 V  
6.5 V Typical  
480 mJ  
GE  
$Y&Z&3&K  
50N6S2D  
Low Conduction Loss  
This is a PbFree Device  
$Y  
= ON Semiconductor Logo  
&Z  
&3  
&K  
= Assembly Plant Code  
= Numeric Date Code  
= Lot Code  
50N6S2D  
= Specific Device Code  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
November, 2020 Rev. 1  
FGH50N6S2D/D  
FGH50N6S2D  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Parameter  
Symbol  
Ratings  
Unit  
V
Collector to Emitter Breakdown Voltage  
Collector Current Continuous  
BV  
I
600  
CES  
C
TC = 25°C  
TC = 110°C  
75  
A
60  
A
Collector Current Pulsed (Note 1)  
Gate to Emitter Voltage Continuous  
Gate to Emitter Voltage Pulsed  
I
240  
A
CM  
V
GES  
GEM  
20  
30  
V
V
V
Switching Safe Operating Area at T = 150°C, Figure 2  
SSOA  
150 A at 600 V  
480  
J
Pulsed Avalanche Energy, I = 30 A, L = 1 mH, V = 50 V  
E
AS  
mJ  
W
CE  
DD  
Power Dissipation Total  
TC = 25°C  
TC > 25°C  
P
463  
D
Power Dissipation Derating  
3.7  
W/°C  
°C  
Operating Junction Temperature Range  
Storage Junction Temperature Range  
T
55 to +150  
55 to +150  
J
T
STG  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Pulse width limited by maximum junction temperature.  
PACKAGE MARKING AND ORDERING INFORMATION  
Device Marking  
Device  
Package  
Tape Width  
Quantity  
50N6S2D  
FGH50N6S2D  
TO247  
N/A  
30  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance JunctionCase, IGBT  
Thermal Resistance JunctionCase, Diode  
R
R
0.27  
1.1  
°C/W  
JC  
JC  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
OFF STATE CHARACTERISTICS  
Collector to Emitter Breakdown Voltage  
BV  
I
I
= 250 A, V = 0 V,  
600  
V
CES  
C
GE  
Collector to Emitter Leakage Current  
V
= 600 V  
T = 25°C  
250  
2.8  
250  
A  
mA  
nA  
CES  
CE  
J
T = 125°C  
J
Gate to Emitter Leakage Current  
I
V
=
20 V  
GES  
GE  
ON STATE CHARACTERISTICs  
Collector to Emitter Saturation Voltage  
V
I
= 30 A, V = 15 V  
T = 25°C  
1.9  
1.7  
2.2  
2.7  
2.2  
2.6  
V
V
V
CE(SAT)  
C
GE  
J
T = 125°C  
J
Diode Forward Voltage  
V
EC  
I = 30 A  
EC  
DYNAMIC CHARACTERISTICS  
Gate Charge  
Q
I
= 30 A, V = 300 V  
V
V
= 15 V  
= 20 V  
70  
90  
85  
110  
5.0  
8.0  
nC  
nC  
V
G(ON)  
C
CE  
GE  
GE  
Gate to Emitter Threshold Voltage  
Gate to Emitter Plateau Voltage  
V
I
I
= 250 A, V = V  
GE  
3.5  
4.3  
6.5  
GE(TH)  
C
CE  
V
= 30 A, V = 300 V  
V
GEP  
C
CE  
www.onsemi.com  
2
 
FGH50N6S2D  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (continued)  
C
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS  
Switching SOA  
SSOA  
T = 150°C, R = 3  
V
=
1
5
V
,
150  
A
J
G
GE  
L = 100 H, V = 600 V  
CE  
Current TurnOn Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25°C,  
13  
15  
ns  
ns  
ns  
ns  
J  
J  
J  
ns  
ns  
ns  
ns  
J  
J  
J  
ns  
ns  
d(ON)I  
J
I
= 30 A,  
CE  
t
rI  
d(OFF)I  
V
V
= 390 V,  
= 15 V,  
CE  
GE  
G
Current TurnOff Delay Time  
Current Fall Time  
t
55  
R
= 3 ꢂ ꢃ ,  
L = 200 H,  
t
fI  
50  
Test Circuit Figure 26  
TurnOn Energy (Note 2)  
TurnOn Energy (Note 2)  
TurnOff Energy Loss (Note 3)  
Current TurnOn Delay Time  
Current Rise Time  
E
E
E
260  
330  
250  
13  
ON1  
ON2  
OFF  
350  
t
IGBT and Diode at T = 125°C,  
J
d(ON)I  
I
= 30 A,  
CE  
t
15  
rI  
d(OFF)I  
V
V
= 390 V,  
= 15 V,  
CE  
GE  
Current TurnOff Delay Time  
Current Fall Time  
t
92  
150  
100  
R
= 3 ꢂ ꢃ ,  
G
L = 200 H,  
t
fI  
88  
Test Circuit Figure 26  
TurnOn Energy (Note 2)  
TurnOn Energy (Note 2)  
TurnOff Energy (Note 3)  
Diode Reverse Recovery Time  
E
E
E
260  
490  
575  
50  
ON1  
ON2  
OFF  
600  
850  
55  
42  
t
rr  
I
I
= 30 A, dI /dt = 200 A/s  
EC  
EC  
= 1 A, dI /dt = 200 A/s  
30  
EC  
EC  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
2. Values for two TurnOn loss conditions are shown for the convenience of the circuit designer. E  
is the turnon loss  
ON1  
of the IGBT only. E  
is the turnon loss when a typical diode is used in the test circuit and the diode is at the same TJ as the IGBT. The  
ON2  
diode type is specified in Figure 26.  
3. TurnOff Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of  
OFF  
the input pulse and ending at the point where the collector current equals zero (I = 0A). All devices were tested per  
CE  
JEDEC Standard No. 241 Method for Measurement of Power Device TurnOff Switching Loss. This test method produces  
the true total TurnOff Energy Loss.  
www.onsemi.com  
3
 
FGH50N6S2D  
TYPICAL PERFORMANCE CURVES (T = 25°C unless otherwise noted)  
J
140  
120  
200  
T = 150°C, R = 3 , V = 15 V, L = 100 H  
J
G
GE  
150  
100  
80  
100  
50  
Package Limited  
60  
40  
20  
0
0
125  
150  
600 700  
, Collector to Emitter Voltage (V)  
50  
75  
100  
25  
200  
300 400 500  
0
100  
V
T , Case Temperature (°C)  
C
CE  
Figure 2. Minimum Switching Safe Operating  
Area  
Figure 1. DC Collector Current vs. Case  
Temperature  
14  
12  
900  
800  
700  
600  
700  
V
= 390 V, R = 3 , T = 125°C  
T
V
= 75°C  
CE  
G
J
C
= 15 V  
GE  
300  
10  
I
sc  
8
6
100  
f
f
= 0.05 / (t  
+ t  
ON2  
)
MAX1  
MAX2  
C
d(OFF)I  
C
d(ON)I  
= (P P ) / (E  
+ E  
)
D
OFF  
500  
400  
300  
200  
P
= Conduction Dissipation  
(Duty Factor = 50%)  
4
2
R
= 0.27°C/W, See Notes  
V
GE  
= 10 V  
JC  
t
sc  
T = 125°C, R = 3 , L = 200 H, V = 390 V  
J
G
CE  
10  
0
9
10  
V
11  
12  
13  
14  
15  
16  
10  
30  
60  
1
, Gate to Emitter Voltage (V)  
I
, Collector to Emitter Current (A)  
GE  
CE  
Figure 4. Short Circuit Withstand Time  
Figure 3. Operating Frequency vs. Collector  
to Emitter Current  
60  
60  
Duty Cycle < 0.5%, V = 10 V  
Duty Cycle < 0.5%, V = 15 V  
GE  
GE  
Pulse Duration = 250 s  
Pulse Duration = 250 s  
50  
50  
40  
30  
20  
40  
30  
20  
T = 25°C  
J
T = 25°C  
J
T = 150°C  
J
T = 150°C  
J
10  
0
10  
T = 125°C  
J
T = 125°C  
J
0
1.50 1.75 2.00 2.25  
0.50 0.75 1.00 1.25  
1.50 1.75 2.00 2.25  
0.50 0.75 1.00 1.25  
V
CE  
, Collector to Emitter Voltage (V)  
V
CE  
, Collector to Emitter Voltage (V)  
Figure 6. Collector to Emitter OnState  
Figure 5. Collector to Emitter OnState  
Voltage  
Voltage  
www.onsemi.com  
4
 
FGH50N6S2D  
TYPICAL PERFORMANCE CURVES (T = 25°C unless otherwise noted) (continued)  
J
1400  
2500  
2250  
R
= 3 , L = 200 H, V = 390 V  
CE  
G
R = 3 , L = 200 H, V = 390 V  
G CE  
1200  
1000  
T = 125°C, V = 10 V, V = 15 V  
J
GE  
GE  
2000  
1750  
1500  
1250  
1000  
750  
T = 25°C, T = 125°C, V = 10 V  
J
J
GE  
800  
600  
400  
200  
0
500  
T = 125°C,  
GE  
T = 25°C, V = 10 V,  
J
J
GE  
GE  
250  
0
T = 25°C  
J
V
= 15 V  
V
= 15 V  
40  
60  
0
10  
I
20  
30  
50  
10  
I
0
20  
30  
40  
50  
60  
, Collector to Emitter Current (A)  
, Collector to Emitter Current (A)  
CE  
CE  
Figure 8. TurnOff Energy Loss vs. Collector  
Figure 7. TurnOn Energy Loss vs. Collector  
to Emitter Current  
to Emitter Current  
25  
70  
60  
50  
R
= 3 , L = 200 H, V = 390 V  
CE  
R
= 3 , L = 200 H, V = 390 V  
CE  
G
G
20  
15  
10  
5
T = 25°C, T = 125°C, V = 10 V  
J
J
GE  
T = 25°C, T = 125°C,  
J
GE  
J
V
= 10 V  
40  
30  
20  
T = 25°C, T = 125°C,  
J
GE  
J
V
= 15 V  
10  
0
T = 25°C, T = 125°C, V = 15 V  
J
J
GE  
0
60  
0
10  
I
20  
30  
40  
50  
60  
0
10  
I
20  
30  
40  
50  
, Collector to Emitter Current (A)  
, Collector to Emitter Current (A)  
CE  
CE  
Figure 10. TurnOn Rise Time vs. Collector  
Figure 9. TurnOn Delay Time vs. Collector  
to Emitter Current  
to Emitter Current  
100  
90  
125  
100  
75  
R
= 3 , L = 200 H, V = 390 V  
R
= 3 , L = 200 H, V = 390 V  
CE  
G
CE  
G
80  
V
GE  
= 10 V, V = 15 V, T = 125°C  
GE J  
70  
T = 125°C, V = 10 V, V = 15 V  
J
GE  
GE  
60  
50  
40  
50  
25  
T = 25°C, V = 10 V, V = 15 V  
J
GE  
GE  
V
= 10 V, V = 15 V, T = 25°C  
GE J  
GE  
40  
50  
60  
0
10  
I
20  
30  
60  
10  
20  
30  
40  
50  
0
, Collector to Emitter Current (A)  
I
, Collector to Emitter Current (A)  
CE  
CE  
Figure 12. Fall Time vs. Collector to Emitter  
Current  
Figure 11. TurnOff Delay Time vs. Collector  
to Emitter Current  
www.onsemi.com  
5
 
FGH50N6S2D  
TYPICAL PERFORMANCE CURVES (T = 25°C unless otherwise noted) (continued)  
J
250  
225  
16  
Duty Cycle < 0.5%, V = 10 V  
I
= 1 mA, R = 10  
CE  
G(REF)  
L
Pulse Duration = 250 s  
14  
12  
10  
8
200  
175  
150  
V
CE  
= 600 V  
V
= 400 V  
= 200 V  
CE  
125  
100  
75  
T = 125°C  
J
6
T = 25°C  
J
T = 55°C  
J
4
50  
25  
0
V
CE  
2
0
5
6
10  
7
8
9
4
10 20  
30 40  
50 60  
70 80  
0
V
GE  
, Gate to Emitter Voltage (V)  
Q , Gate Charge (nC)  
G
Figure 14. Gate Charge  
Figure 13. Transfer Characteristics  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
10  
R
V
TOTAL  
= 3 , L = 200 H, V = 390 V  
T = 125°C, L = 200 H, V = 390 V,  
G
CE  
J
V
CE  
= 15 V  
= 15 V  
GE  
GE  
TOTAL  
E
= E + E  
ON2 OFF  
E
= E + E  
ON2 OFF  
I
= 60 A  
CE  
I
= 60 A  
CE  
I
= 30 A  
= 15 A  
CE  
I
= 30 A  
= 15 A  
CE  
CE  
1
I
I
CE  
0.1  
100  
50  
75  
125  
150  
25  
1
10  
R , Gate Resistance ()  
1000  
100  
T , Case Temperature (°C)  
C
G
Figure 16. Total Switching Loss vs. Gate  
Resistance  
Figure 15. Total Switching Loss vs. Case  
Temperature  
4.0  
3.5  
3.0  
2.5  
2.5  
2.4  
2.3  
2.2  
Frequency = 1 MHz  
Duty Cycle < 0.5%  
Pulse Duration = 250 s  
I
= 45 A  
C
CE  
IES  
2.0  
1.5  
2.1  
I
= 30 A  
CE  
2.0  
1.9  
1.8  
1.7  
1.0  
0.5  
0.0  
C
OES  
I
= 15 A  
CE  
C
RES  
0
10 20 30 40 50 60 70 80 90 100  
, Collector to Emitter Voltage (V)  
6
7
8
V
9
10 11 12 13 14 15 16  
V
CE  
, Gate to Emitter Voltage (V)  
GE  
Figure 18. Collector to Emitter OnState  
Figure 17. Capacitance vs. Collector to Emitter  
Voltage  
Voltage vs. Gate to Emitter Voltage  
www.onsemi.com  
6
FGH50N6S2D  
TYPICAL PERFORMANCE CURVES (T = 25°C unless otherwise noted) (continued)  
J
200  
75  
60  
45  
dI /dt = 200 A/s, V = 390 V  
Duty Cycle < 0.5%  
EC  
CE  
175  
150  
Pulse Duration = 250 s  
°
125°C t  
rr  
°
125 C  
125  
100  
°
125°C t  
b
30  
15  
0
75  
50  
25  
0
°
25°C t  
rr  
25°C t , t  
a
b
°
25 C  
125°C t  
a
2
6
10  
14  
18  
22  
26  
30  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
V
EC  
, Forward Voltage (V)  
I
, Forward Current (A)  
EC  
Figure 20. Recovery Times vs. Forward Current  
Figure 19. Diode Forward Current vs. Forward  
Voltage Drop  
1200  
150  
°
V
CE  
= 390 V  
125 C, I = 30 A  
I
= 30 A, V = 390 V  
EC  
EC  
CE  
1000  
800  
125  
100  
°
125 C, I = 30 A  
EC  
°
125 C t  
b
600  
400  
200  
75  
50  
25  
0
°
°
125 C t  
a
25 C, I = 30 A  
EC  
°
25 C t  
a
°
25 C, I = 15 A  
EC  
°
25 C t  
b
0
200  
400  
600  
800  
1000  
1200  
200  
400  
600  
800  
1000  
1200  
dI /dt, Rate of Changes of Current (A/s)  
EC  
dI /dt, Rate of Changes of Current (A/s)  
EC  
Figure 21. Recovery Times vs. Rate  
of Change of Current  
Figure 22. Stored Charge vs. Rate  
of Change of Current  
30  
25  
20  
15  
3.0  
°
V
CE  
= 390 V, T = 125 C  
°
J
V
CE  
= 390 V, T = 125 C  
J
I
= 30 A  
EC  
2.5  
2.0  
I
= 30 A  
EC  
I
= 15 A  
EC  
I
= 15 A  
EC  
1.5  
1.0  
0.5  
10  
5
0
1200  
200  
400  
600  
800  
1000  
1200  
200  
400  
600  
800  
1000  
dI /dt, Current Rate of Change (A/s)  
EC  
dI /dt, Current Rate of Change (A/s)  
EC  
Figure 24. Maximum Reverse Recovery Current  
vs. Rate of Change of Current  
Figure 23. Reverse Recovery Softness Factor  
vs. Rate of Change of Current  
www.onsemi.com  
7
FGH50N6S2D  
TYPICAL PERFORMANCE CURVES (T = 25°C unless otherwise noted) (continued)  
J
0
10  
0.50  
0.20  
t
1
0.10  
0.05  
P
D
1  
10  
10  
t
2
0.02  
0.01  
Duty Factor, D = t /t  
1
2
JC  
Peak T = (P x Z  
x R ) + T  
J
D
JC  
C
Single Pulse  
2  
4  
5  
3  
2  
1  
0
1
10  
10  
10  
10  
10  
10  
10  
t , Rectangular Pulse Duration (s)  
1
Figure 25. IGBT Normalized Transient Thermal Impedance, Junction to Case  
TEST CIRCUIT AND WAVEFORMS  
FGH50N6S2D  
Diode TA49392  
90%  
10%  
V
GE  
E
ON2  
E
OFF  
L = 200 H  
V
CE  
90%  
10%  
R
= 3  
G
I
+
CE  
t
rI  
t
d(OFF)I  
V
DD  
= 390 V  
t
fI  
FGH50N6S2D  
t
d(ON)I  
Figure 27. Switching Test Waveforms  
Figure 26. Inductive Switching Test Circuit  
www.onsemi.com  
8
 
FGH50N6S2D  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gateinsulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge built  
in the handler’s body capacitance is not discharged through  
the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers  
in military, industrial and consumer applications, with  
virtually no damage problems due to electrostatic discharge.  
IGBTs can be handled safely if the following basic  
precautions are taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8,  
9 and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/  
I+ td  
.
MAX1  
MAX1  
(td(OFF)  
(ON)I)  
Deadtime (the denominator) has been arbitrarily held to  
1. Prior to assembly into a circuit, all leads should be  
kept shorted together either by the use of metal  
shorting springs or by the insertion into conductive  
material such as “ECCOSORBDt LD26” or  
equivalent.  
10% of the onstate time for a 50% duty factor. Other  
definitions are possible. t  
and t  
are defined in  
d(OFF)I  
d(ON)I  
Figure 27. Device turnoff delay can establish an additional  
frequency limiting condition for an application other than  
T
. t  
is important when controlling output ripple  
JM d(OFF)I  
2. When devices are removed by hand from their  
carriers, the hand being used should be grounded  
by any suitable means for example, with a  
metallic wristband.  
under a lightly loaded condition.  
is defined by f = (P P )/(E  
f
+ E  
ON2  
).  
MAX2  
MAX2  
D
C
OFF  
The allowable dissipation (P ) is defined by P = (T  
D
D
JM  
T )/R . The sum of device switching and conduction  
C
J
C
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed  
from circuits with power on.  
losses must not exceed P . A 50% duty factor was used  
D
(Figure 3) and the conduction losses (P ) are approximated  
C
by P = (V x I )/2.  
C
CE  
CE  
5. Gate Voltage Rating Never exceed the  
E
and E  
are defined in the switching waveforms  
ON2  
OFF  
gatevoltage rating of V . Exceeding the rated  
GEM  
shown in Figure 27. E  
is the integral of the instantaneous  
ON2  
V
GE  
can result in permanent damage to the oxide  
power loss (I x V ) during turnon and E  
is the  
CE  
CE  
OFF  
layer in the gate region.  
integral of the instantaneous power loss (I x V ) during  
CE CE  
6. Gate Termination The gates of these devices  
are essentially capacitors. Circuits that leave the  
gate opencircuited or floating should be avoided.  
These conditions can result in turnon of the  
device due to voltage buildup on the input  
capacitor due to leakage currents or pickup.  
7. Gate Protection These devices do not have an  
internal monolithic Zener diode from gate to  
emitter. If gate protection is required an external  
Zener is recommended.  
turnoff. All tail losses are included in the calculation for  
; i.e., the collector current equals zero (I = 0)  
E
OFF  
CE  
All brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders.  
www.onsemi.com  
9
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2473LD SHORT LEAD  
CASE 340CK  
ISSUE A  
DATE 31 JAN 2019  
P1  
D2  
A
E
P
A
A2  
Q
E2  
S
D1  
D
E1  
B
2
2
1
3
L1  
A1  
b4  
L
c
(3X) b  
(2X) b2  
M
M
B A  
0.25  
MILLIMETERS  
MIN NOM MAX  
4.58 4.70 4.82  
2.20 2.40 2.60  
1.40 1.50 1.60  
1.17 1.26 1.35  
1.53 1.65 1.77  
2.42 2.54 2.66  
0.51 0.61 0.71  
20.32 20.57 20.82  
(2X) e  
DIM  
A
A1  
A2  
b
b2  
b4  
c
GENERIC  
D
MARKING DIAGRAM*  
D1 13.08  
~
~
D2  
E
0.51 0.93 1.35  
15.37 15.62 15.87  
AYWWZZ  
XXXXXXX  
XXXXXXX  
E1 12.81  
~
~
E2  
e
L
4.96 5.08 5.20  
5.56  
15.75 16.00 16.25  
3.69 3.81 3.93  
3.51 3.58 3.65  
XXXX = Specific Device Code  
~
~
A
Y
= Assembly Location  
= Year  
WW = Work Week  
ZZ = Assembly Lot Code  
L1  
P
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
P1 6.60 6.80 7.00  
Q
S
5.34 5.46 5.58  
5.34 5.46 5.58  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13851G  
TO2473LD SHORT LEAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FGH50N6S2D_NL

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-247
FAIRCHILD

FGH50N6S2_NL

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-247, TO-247, 3 PIN
FAIRCHILD

FGH50T65SQD-F155

IGBT,650V,50A,场截止 4 沟槽
ONSEMI

FGH50T65UPD

650 V, 50 A Field Stop Trench IGBT
FAIRCHILD

FGH50T65UPD

650V,50A,场截止沟槽 IGBT
ONSEMI

FGH60N60SF

600V, 60A Field Stop IGBT
FAIRCHILD

FGH60N60SFD

600V, 60A Field Stop IGBT
FAIRCHILD

FGH60N60SFDTU

600V, 60A Field Stop IGBT
FAIRCHILD

FGH60N60SFDTU

IGBT,场截止,600V,60A
ONSEMI

FGH60N60SFDTU-F085

IGBT,600V,60A,2.2V,TO-247,高速场截止
ONSEMI

FGH60N60SFTU

600V, 60A Field Stop IGBT
FAIRCHILD

FGH60N60SFTU

IGBT,600V,60A,2.2V,TO-247,高速场截止
ONSEMI