FDS3992 [ONSEMI]

分立式商用N沟道PowerTrench MOSFET,100V,4.5A,0.062 Ohms @ VGS = 10V,SO-8封装;
FDS3992
型号: FDS3992
厂家: ONSEMI    ONSEMI
描述:

分立式商用N沟道PowerTrench MOSFET,100V,4.5A,0.062 Ohms @ VGS = 10V,SO-8封装

PC 开关 光电二极管 晶体管
文件: 总13页 (文件大小:499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
April 2013  
FDS3992  
Dual N-Channel PowerTrench® MOSFET  
100V, 4.5A, 62mΩ  
Features  
Applications  
r
= 54m(Typ.), V = 10V, I = 4.5A  
D
• DC/DC converters and Off-Line UPS  
DS(ON)  
GS  
Q (tot) = 11nC (Typ.), V = 10V  
GS  
g
Distributed Power Architectures and VRMs  
Primary Switch for 24V and 48V Systems  
High Voltage Synchronous Rectifier  
Direct Injection / Diesel Injection Systems  
42V Automotive Load Control  
Low Miller Charge  
Low Q Body Diode  
RR  
Optimized efficiency at high frequencies  
UIS Capability (Single Pulse and Repetitive Pulse)  
Formerly developmental type 82745  
Electronic Valve Train Systems  
(1)  
(2)  
(8)  
(7)  
Branding Dash  
5
1
(3)  
(4)  
(6)  
(5)  
2
3
4
SO-8  
MOSFET Maximum Ratings T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Ratings  
100  
Units  
V
V
Drain to Source Voltage  
Gate to Source Voltage  
V
V
DSS  
GS  
20  
Drain Current  
o
o
4.5  
2.8  
A
A
Continuous (T = 25 C, V = 10V, R  
GS  
= 50 C/W)  
o
A
θJA  
I
D
o
Continuous (T = 100 C, V = 10V, R  
GS  
= 50 C/W)  
A
θJA  
Pulsed  
Figure 4  
167  
A
E
P
Single Pulse Avalanche Energy (Note 1)  
Total Package Power Dissipation  
mJ  
W
AS  
2.5  
D
o
o
Derate above 25 C  
20  
mW/ C  
o
T , T  
J
Operating and Storage Temperature  
-55 to 150  
C
STG  
Thermal Characteristics  
o
R
R
R
Thermal Resistance, Junction to Ambient at 10 seconds (Note 3)  
Thermal Resistance, Junction to Ambient at 1000 seconds (Note 3)  
Thermal Resistance, Junction to Case (Note 2)  
50  
85  
25  
C/W  
θJA  
θJA  
θJC  
o
C/W  
o
C/W  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
12mm  
Quantity  
FDS3992  
FDS3992  
SO-8  
13’’  
2500 units  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
Electrical Characteristics T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250µA, V = 0V  
GS  
100  
-
-
-
-
-
V
VDSS  
D
V
V
V
= 80V  
-
-
-
1
DS  
GS  
GS  
I
µA  
nA  
DSS  
GSS  
o
= 0V  
T
= 150 C  
250  
100  
C
I
= 20V  
On Characteristics  
V
Gate to Source Threshold Voltage  
V
I
= V , I = 250µA  
DS  
2
-
-
4
V
GS(TH)  
GS  
D
= 4.5A, V = 10V  
GS  
0.054 0.062  
0.072 0.108  
D
I
I
= 2A, V = 6V  
GS  
-
D
r
Drain to Source On Resistance  
DS(ON)  
= 4.5A, V = 10V,  
GS  
D
-
0.107 0.123  
o
T
= 150 C  
C
Dynamic Characteristics  
C
C
C
Input Capacitance  
-
-
-
-
-
-
-
-
750  
118  
27  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
ISS  
V
= 25V, V = 0V,  
GS  
DS  
f = 1MHz  
Output Capacitance  
OSS  
RSS  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
-
Q
Q
Q
Q
Q
V
V
= 0V to 10V  
11  
15  
1.9  
-
g(TOT)  
g(TH)  
gs  
GS  
= 0V to 2V  
1.4  
3.5  
2.1  
2.8  
GS  
V
I
= 50V  
DD  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
= 4.5A  
D
I = 1.0mA  
g
-
gs2  
-
gd  
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
47  
-
ns  
ns  
ns  
ns  
ns  
ns  
ON  
8
d(ON)  
23  
28  
26  
-
-
V
V
= 50V, I = 4.5A  
D
= 10V, R = 27Ω  
r
DD  
Turn-Off Delay Time  
Fall Time  
-
GS  
GS  
d(OFF)  
-
f
Turn-Off Time  
81  
OFF  
Drain-Source Diode Characteristics  
I
= 4.5A  
= 2A  
-
-
-
-
-
-
-
-
1.25  
1.0  
48  
V
V
SD  
V
Source to Drain Diode Voltage  
SD  
I
I
I
SD  
SD  
SD  
t
Reverse Recovery Time  
Reverse Recovery Charge  
= 4.5A, dI /dt= 100A/µs  
SD  
ns  
nC  
rr  
Q
= 4.5A, dI /dt= 100A/µs  
SD  
65  
RR  
Notes:  
1:  
2:  
starting T = 25°C, L = 37mH, I = 3A. 100% test at L = 1mH, I = 10.3A.  
AS  
J AS  
E
of 167mJ is based on  
AS  
R
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the  
θJA  
drain pins.  
R
is guaranteed by design while R  
2
is determined by the user’s board design.  
θCA  
θJC  
is measured with 1.0 in copper on FR-4 board  
3:  
R
θJA  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
V
= 10V  
GS  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
, AMBIENT TEMPERATURE ( C)  
A
100  
125  
150  
o
o
T
T , AMBIENT TEMPERATURE ( C)  
A
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Ambient Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
o
R
=50 C/W  
0.2  
0.1  
θJA  
0.05  
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
t
2
SINGLE PULSE  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
x R  
PEAK T = P  
J
x Z  
+ T  
A
DM  
θJA  
θJA  
0.001  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
200  
o
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
T = 25 C  
A
FOR TEMPERATURES  
o
100  
10  
1
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
150 - T  
C
I = I  
25  
V
= 10V  
GS  
125  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
10  
Figure 4. Peak Current Capability  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
A
200  
100  
7
10µs  
o
STARTING T = 25 C  
J
10  
1
o
STARTING T = 150 C  
J
100µs  
1
1ms  
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY r  
DS(ON)  
10ms  
100ms  
0.1  
0.01  
SINGLE PULSE  
= MAX RATED  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
AV  
- V  
DD  
)
T
AS  
DSS  
J
o
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
T
= 25 C  
1s  
C
t
- V ) +1]  
DD  
AV  
AS  
DSS  
0.1  
0.1  
1
10  
100  
300  
0.01  
0.1  
t
1
10  
100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
, TIME IN AVALANCHE (ms)  
DS  
AV  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
30  
30  
PULSE DURATION = 80µs  
o
T
= 25 C  
A
V
= 10V  
DUTY CYCLE = 0.5% MAX  
= 15V  
GS  
V
DD  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
= 7V  
GS  
o
V
= 6V  
T
= 150 C  
GS  
J
o
T
= 25 C  
J
V
= 5V  
GS  
o
T
= -55 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
0
0
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
0
0.5  
1.0  
1.5  
, DRAIN TO SOURCE VOLTAGE (V)  
2.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
GS  
DS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
80  
75  
70  
65  
60  
55  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
GS  
V
= 10V, I = 4.5A  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
o
I , DRAIN CURRENT (A)  
D
T , JUNCTION TEMPERATURE ( C)  
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
A
1.2  
1.0  
0.8  
0.6  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS D  
I
= 250µA  
GS  
D
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
T , JUNCTION TEMPERATURE ( C)  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
2000  
10  
C
= C + C  
GS  
V
= 50V  
DD  
ISS  
GD  
1000  
100  
10  
8
6
4
2
0
C
C + C  
GD  
OSS  
DS  
C
= C  
RSS  
GD  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 4.5A  
= 2A  
D
D
V
= 0V, f = 1MHz  
1
GS  
0.1  
10  
100  
0
2
4
6
8
Q , GATE CHARGE (nC)  
10  
12  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
DS  
L
V
= 10V  
GS  
V
GS  
+
V
DD  
V
GS  
-
V
= 2V  
DUT  
GS  
Q
gs2  
0
I
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
maximum transient thermal impedance curve.  
JM  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, P , in an  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2. The area, in square inches is the top copper  
area including the gate and source pads.  
DM  
Therefore the application’s ambient  
application.  
temperature, T ( C), and thermal resistance R  
o
o
( C/W)  
θJA  
is never exceeded.  
A
must be reviewed to ensure that T  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
26  
0.23 + Area  
R
= 64 + -------------------------------  
(EQ. 2)  
θJA  
(T T )  
= ------------------------------  
JM  
A
(EQ. 1)  
P
DM  
RθJA  
The transient thermal impedance (Z ) is also effected by  
θJA  
varied top copper board area. Figure 22 shows the effect of  
copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
In using surface mount devices such as the SO8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power  
dissipation ratings. Precise determination of P  
and influenced by many factors:  
is complex  
DM  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package.  
Therefore, CTHERM1 through CTHERM5 and RTHERM1  
through RTHERM5 remain constant for each of the thermal  
models. A listing of the model component values is available  
in Table 1.  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
200  
5. Air flow and board orientation.  
R
= 64 + 26/(0.23+Area)  
θJA  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
150  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
100  
50  
defines the R  
for the device as a function of the top  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
0.001  
0.01  
0.1  
1
10  
2
AREA, TOP COPPER AREA (in )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
150  
COPPER BOARD AREA - DESCENDING ORDER  
0.04 in  
2
2
0.28 in  
120  
2
0.52 in  
2
0.76 in  
2
90  
60  
30  
0
1.00 in  
-1  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
Figure 22. Thermal Impedance vs Mounting Pad Area  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
PSPICE Electrical Model  
rev Aug 2002  
.SUBCKT FDS3992 2 1 3 ;  
Ca 12 8 2.3e-10  
Cb 15 14 3.5e-10  
LDRAIN  
Cin 6 8 7.47e-10  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
51  
ESLC  
11  
Ebreak 11 7 17 18 108  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
-
+
50  
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
MWEAK  
ESG  
EVTHRES  
+
+
16  
21  
-
19  
8
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
-
18  
22  
It 8 17 1  
MMED  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 5.61e-9  
Ldrain 2 5 1e-9  
Lsource 3 7 1.98e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 56.1  
RLdrain 2 5 10  
RLsource 3 7 19.8  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 25.e-3  
Rgate 9 20 3.7  
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 20e-3  
Rvthres 22 8 Rvthresmod 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*45),2.5))}  
.MODEL DbodyMOD D (IS=2.4E-12 N=1.04 RS=13e-3 TRS1=2.1e-3 TRS2=4.7e-7  
+ CJO=5.5e-10 M=0.57 TT=3.25e-8 XTI=4.6)  
.MODEL DbreakMOD D (RS=1.6 TRS1=2.4e-3 TRS2=-1e-5)  
.MODEL DplcapMOD D (CJO=1.6e-10 IS=1e-30 N=10 M=0.54)  
.MODEL MmedMOD NMOS (VTO=3.8 KP=2 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.7)  
.MODEL MstroMOD NMOS (VTO=4.35 KP=28 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=3.26 KP=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=37 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.1e-3 TC2=-1e-8)  
.MODEL RdrainMOD RES (TC1=1.15e-2 TC2=2.8e-5)  
.MODEL RSLCMOD RES (TC1=3.3e-3 TC2=1e-6)  
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-4.8e-3 TC2=-1.1e-5)  
.MODEL RvtempMOD RES (TC1=-3e-3 TC2=1.5e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-2)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-3)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=1)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=1 VOFF=-1.5)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
SABER Electrical Model  
REV Aug 2002  
template FDS3992 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=2.4e-12,nl=1.04,rs=13e-3,trs1=2.1e-3,trs2=4.7e-7,cjo=5.5e-10,m=0.57,tt=3.25e-8,xti=4.6)  
dp..model dbreakmod = (rs=1.6,trs1=2.4e-3,trs2=-1.0e-5)  
dp..model dplcapmod = (cjo=1.6e-10,isl=10e-30,nl=10,m=0.54)  
m..model mmedmod = (type=_n,vto=3.8,kp=2.0,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=4.35,kp=28,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=3.26,kp=0.04,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-3.0,voff=-2.0)  
LDRAIN  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-3.0)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=1.0)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=1.0,voff=-1.5)  
c.ca n12 n8 = 2.3e-10  
c.cb n15 n14 = 3.5e-10  
c.cin n6 n8 = 7.47e-10  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
+
16  
21  
-
spe.ebreak n11 n7 n17 n18 = 108  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
i.it n8 n17 = 1  
RLSOURCE  
S1A  
S2A  
l.lgate n1 n9 = 5.61e-9  
l.ldrain n2 n5 = 1e-9  
l.lsource n3 n7 = 1.98e-9  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 19.8  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
22  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1.1e-3,tc2=-1e-8  
res.rdrain n50 n16 = 25e-3, tc1=1.15e-2,tc2=2.8e-5  
res.rgate n9 n20 = 3.7  
res.rslc1 n5 n51 = 1e-6, tc1=3.3e-3,tc2=1e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 20e-3, tc1=1e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-4.8e-3,tc2=-1.1e-5  
res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=1.5e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/45))** 2.5))  
}
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
SPICE Thermal Model  
REV Aug 2002  
JUNCTION  
th  
FDS3992  
Copper Area =1.0 in2  
CTHERM1 TH 8 4e-4  
CTHERM2 8 7 5e-3  
CTHERM3 7 6 6e-2  
CTHERM4 6 5 9e-2  
CTHERM5 5 4 3e-1  
CTHERM6 4 3 4e-1  
CTHERM7 3 2 9e-1  
CTHERM8 2 TL 2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
8
7
RTHERM1 TH 8 5e-1  
RTHERM2 8 7 6e-1  
RTHERM3 7 6 4  
RTHERM4 6 5 5  
RTHERM5 5 4 8  
RTHERM6 4 3 9  
RTHERM7 3 2 15  
RTHERM8 2 TL 23  
6
5
SABER Thermal Model  
Copper Area = 1.0 in2  
template thermal_model th tl  
thermal_c th, tl  
{
CTHERM1 TH 8 4e-4  
CTHERM2 8 7 5e-3  
CTHERM3 7 6 6e-2  
CTHERM4 6 5 9e-2  
CTHERM5 5 4 3e-1  
CTHERM6 4 3 4e-1  
CTHERM7 3 2 9e-1  
CTHERM8 2 TL 2  
4
3
2
RTHERM1 TH 8 5e-1  
RTHERM2 8 7 6e-1  
RTHERM3 7 6 4  
RTHERM4 6 5 5  
RTHERM5 5 4 8  
RTHERM6 4 3 9  
RTHERM7 3 2 15  
RTHERM8 2 TL 23  
}
tl  
CASE  
TABLE 1. THERMAL MODELS  
2
2
2
2
2
COMPONANT  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM6  
RTHERM7  
RTHERM8  
0.04 in  
3.2e-1  
8.5e-1  
0.3  
0.28 in  
0.52 in  
0.76 in  
1.0 in  
3.5e-1  
9.0e-1  
1.8  
4.0e-1  
9.0e-1  
2.0  
4.0e-1  
9.0e-1  
2.0  
4.0e-1  
9.0e-1  
2.0  
24  
18  
12  
10  
9
36  
21  
18  
16  
15  
53  
37  
30  
28  
23  
©2004 Fairchild Semiconductor Corporation  
FDS3992 Rev. C  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
2Cool™  
AccuPower™  
AX-CAP *  
BitSiC™  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
Current Transfer Logic™  
DEUXPEED  
Dual Cool™  
EcoSPARK  
EfficentMax™  
ESBC™  
FPS™  
F-PFS™  
FRFET  
Global Power Resource  
Green Bridge™  
Green FPS™  
Green FPS™ e-Series™  
Gmax™  
GTO™  
IntelliMAX™  
ISOPLANAR™  
Sync-Lock™  
®*  
®
tm  
®
®
®
PowerTrench  
PowerXS™  
Programmable Active Droop™  
QFET  
QS™  
Quiet Series™  
RapidConfigure™  
SM  
TinyBoost™  
TinyBuck™  
TinyCalc™  
®
®
TinyLogic  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
®
Marking Small Speakers Sound Louder Saving our world, 1mW/W/kW at a time™  
®
TranSiC  
®
and Better™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MicroPak2™  
MillerDrive™  
MotionMax™  
mWSaver™  
OptoHiT™  
SignalWise™  
SmartMax™  
TriFault Detect™  
TRUECURRENT *  
PSerDes™  
®
SMART START™  
Solutions for Your Success™  
®
®
SPM  
®
STEALTH™  
SuperFET  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
Fairchild  
®
®
UHC  
®
Fairchild Semiconductor  
FACT Quiet Series™  
Ultra FRFET™  
UniFET™  
VCX™  
VisualMax™  
VoltagePlus™  
XS™  
®
FACT  
FAST  
®
®
®
OPTOLOGIC  
OPTOPLANAR  
SupreMOS  
SyncFET™  
FastvCore™  
FETBench™  
®
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY  
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY  
THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used here in:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,  
www.Fairchildsemi.com, under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their  
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed  
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the  
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild  
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild  
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of  
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and  
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is  
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications  
may change in any manner without notice.  
Advance Information  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later  
date. Fairchild Semiconductor reserves the right to make changes at any time without  
notice to improve design.  
Preliminary  
First Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to  
make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
Datasheet contains specifications on a product that is discontinued by Fairchild  
Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I64  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FDS3992_04

Dual N-Channel PowerTrench㈢ MOSFET 100V, 4.5A, 62mз
FAIRCHILD

FDS402BE

Rectifier Diode, 1 Phase, 98A, Silicon,
MITSUBISHI

FDS402SN

Rectifier Diode, 3 Phase, 215A, Silicon,
MITSUBISHI

FDS402TG

Rectifier Diode, 3 Phase, 225A, Silicon,
MITSUBISHI

FDS402TN

Rectifier Diode, 3 Phase, 215A, Silicon,
MITSUBISHI

FDS4070N3

40V N-Channel PowerTrench MOSFET
FAIRCHILD

FDS4070N3_04

40V N-Channel PowerTrench MOSFET
FAIRCHILD

FDS4070N7

40V N-Channel PowerTrench MOSFET
FAIRCHILD

FDS4070N7-BBA004B

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDS4070N7-SBBA004

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDS4070N7_04

40V N-Channel PowerTrench MOSFET
FAIRCHILD

FDS4072N3

40V N-Channel PowerTrench MOSFET
FAIRCHILD