FDMD8900 [ONSEMI]

N 沟道,PowerTrench® MOSFET,30V;
FDMD8900
型号: FDMD8900
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,30V

文件: 总12页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOSFET, N-Channel,  
POWERTRENCH)  
Q1: 30 V, 66 A, 4 mW  
Q2: 30 V, 42 A, 5.5 mW  
FDMD8900  
www.onsemi.com  
General Description  
This devices utilizes two optimized N−ch FETs in a dual 3.3 x 5 mm  
thermally enhanced power package. The HS Source and LS drain are  
internally connected providing a low source inductance package,  
helping to provide the best FOM.  
1
2
3
4
5
6
12  
D1  
D1  
D1  
G2  
S2  
S2  
G1  
11  
10  
9
G1R  
D2/S1  
D2/S1  
Features  
Q1: N−Channel  
8
D2/S1  
D2/S1  
Max r  
Max r  
Max r  
Max r  
= 4 mW at V = 10 V, I = 19 A  
GS D  
DS(on)  
DS(on)  
DS(on)  
DS(on)  
7
= 5 mW at V = 4.5 V, I = 17 A  
GS  
D
= 6.5 mW at V = 3.8 V, I = 15 A  
GS  
D
= 8.3 mW at V = 3.5 V, I = 14 A  
GS  
D
Q2: N−Channel  
Max r  
= 5.5 mW at V = 10 V, I = 17 A  
GS D  
DS(on)  
Max r  
= 6.5 mW at V = 4.5 V, I = 15 A  
GS D  
DS(on)  
Max r  
= 9 mW at V = 3.8 V, I = 13 A  
GS D  
DS(on)  
Max r  
= 12 mW at V = 3.5 V, I = 12 A  
GS D  
DS(on)  
Power 3.3 x 5  
Ideal for Flexible Layout in Primary Side of Bridge Topology  
100% UIL Tested  
Kelvin High Side MOSFET Drive Pin−out Capability  
This Device is Pb−Free and is RoHS Compliant  
PQFN12 3.3X5, 0.65P  
CASE 483BN  
MARKING DIAGRAM  
Applications  
Computing  
Buck, Boost and Buck/Boost Applications  
General Purpose POL  
$Y&Z&3&K  
8900  
$Y  
&Z  
&3  
&K  
8900  
= ON Semiconductor Logo  
= Assembly Plant Code  
= Numeric Date Code  
= Lot Code  
= Specific Device Code  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
August, 2019 − Rev. 2  
FDMD8900/D  
FDMD8900  
MOSFET MAXIMUM RATINGS (T = 25°C, Unless otherwise noted)  
A
Symbol  
VDS  
Parameter  
Q1  
30  
12  
66  
42  
19  
Q2  
30  
12  
42  
26  
17  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
V
V
A
VGS  
ID  
Drain Current  
−Continuous  
TC = 25°C  
(Note 5)  
(Note 5)  
(Note 1a)  
(Note 4)  
(Note 3)  
−Continuous  
−Continuous  
−Pulsed  
TC = 100°C  
TA = 25°C  
280  
73  
210  
54  
EAS  
PD  
Single Pulse Avalanche Energy  
Power Dissipation  
mJ  
W
TC = 25°C  
TA = 25°C  
27  
15  
Power Dissipation  
(Note 1a)  
2.1  
TJ, TSTG  
Operating and Storage Junction Temperature Range  
−55 to +150  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
THERMAL CHARACTERISTICS  
Symbol  
RθJC  
Parameter  
Thermal Resistance, Junction to Case  
Thermal Resistance, Junction to Ambient  
Value  
Ratings  
Unit  
4.7  
8.4  
°C/W  
RθJA  
(Note 1a)  
60  
PACKAGE MARKING AND ORDERING INFORMATION  
Device Marking  
Device  
Package  
PQFN12 3.3x5, 0.65P (Pb−Free)  
Shipping  
8900  
FDMD8900  
3000 units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D  
www.onsemi.com  
2
FDMD8900  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Symbol  
Parameter  
Test Conditions  
Type  
Min.  
Typ.  
Max.  
Units  
OFF CHARACTERISTICS  
BV  
Drain to Source Breakdown  
Voltage  
I
I
= 250 mA, V = 0 V  
Q1  
Q2  
30  
30  
V
mV/°C  
mA  
DSS  
D
D
GS  
= 250 mA, V = 0 V  
GS  
DBV  
DT  
Breakdown Voltage  
Temperature Coefficient  
I
D
I
D
= 250 mA, referenced to 25°C  
= 250 mA, referenced to 25°C  
Q1  
Q2  
14  
13  
DSS  
J
I
Zero Gate Voltage Drain  
Current  
V
V
= 24 V, V = 0 V  
Q1  
Q2  
1
1
DSS  
GSS  
DS  
DS  
GS  
= 24 V, V = 0 V  
GS  
I
Gate to Source Leakage  
Current  
V
V
=
=
12 V, V = 0 V  
Q1  
Q2  
100  
100  
nA  
GS  
GS  
DS  
12 V, V = 0 V  
DS  
ON CHARACTERISTICS  
V
GS(th)  
Gate to Source Threshold  
Voltage  
V
GS  
V
GS  
= V , I = 250 mA  
Q1  
Q2  
0.8  
1
1.3  
1.4  
2.5  
2.5  
V
DS  
D
= V , I = 250 mA  
DS  
D
DV  
DT  
Gate to Source Threshold  
Voltage Temperature  
Coefficient  
I
= 250 mA, referenced to 25°C  
= 250 mA, referenced to 25°C  
Q1  
Q2  
−4  
−4  
mV/°C  
GS(th)  
D
I
D
J
r
Drain to Source On Resistance  
V
V
V
V
V
= 10 V, I = 19 A  
Q1  
Q2  
3.4  
4
4.3  
4.6  
4.6  
4
5
6.5  
8.3  
6
mW  
DS(on)  
GS  
GS  
GS  
GS  
GS  
D
= 4.5 V, I = 17 A  
D
= 3.8 V, I = 15 A  
D
= 3.5 V, I = 14 A  
D
= 10 V, I = 19 A, T = 125°C  
D
J
V
GS  
V
GS  
V
GS  
V
GS  
V
GS  
= 10 V, I = 17 A  
4.5  
5.4  
6
6.6  
5.8  
5.5  
6.5  
9
12  
6.9  
D
= 4.5 V, I = 15 A  
D
= 3.8 V, I = 13 A  
D
= 3.5 V, I = 12 A  
D
= 10 V, I = 17 A , T = 125°C  
D
J
g
FS  
Forward Transconductance  
V
DS  
V
DS  
= 5 V, I = 19 A  
Q1  
Q2  
86  
80  
S
D
= 5 V, I = 17 A  
D
DYNAMIC CHARACTERISTICS  
C
Input Capacitance  
Q1:  
Q1  
Q2  
1735  
1210  
2605  
1815  
pF  
pF  
pF  
W
iss  
V
DS  
= 15 V, V = 0 V, f = 1 MHz  
GS  
C
Output Capacitance  
Reverse Transfer Capacitance  
Gate Resistance  
Q1  
Q2  
462  
356  
695  
535  
oss  
Q2:  
V
DS  
= 15 V, V = 0 V, f = 1 MHz  
GS  
C
Q1  
Q2  
47  
52  
75  
80  
rss  
R
Q1  
Q2  
0.8  
1.9  
g
SWITCHING CHARACTERISTICS  
t
Turn−On Delay Time  
Q1:  
Q1  
Q2  
8.7  
7.1  
17  
14  
ns  
ns  
d(on)  
V
DD  
= 15 V, I = 19 A, R  
= 6 W  
= 6 W  
D
GEN  
t
r
Rise Time  
Q1  
Q2  
2.3  
2
10  
10  
Q2:  
V
DD  
= 15 V, I = 17 A, R  
D
GEN  
t
Turn−Off Delay Time  
Fall Time  
Q1  
Q2  
25  
22  
40  
35  
ns  
d(off)  
t
f
Q1  
Q2  
2.4  
2.3  
10  
10  
ns  
Q
Q
Total Gate Charge  
Total Gate Charge  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
V
V
= 0 V to 10 V  
= 0 V to 4.5 V  
Q1:  
Q1  
Q2  
25  
19  
35  
27  
nC  
nC  
nC  
nC  
g
g
GS  
V
DD  
= 15 V, I = 19 A  
D
Q1  
Q2  
12  
8.8  
17  
12  
GS  
Q2:  
V
DD  
= 15 V, I = 17 A  
D
Q
Q1  
Q2  
3.6  
2.7  
gs  
Q
Q1  
Q2  
2.7  
2.6  
gd  
www.onsemi.com  
3
FDMD8900  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Symbol  
Parameter  
Test Conditions  
Type  
Min.  
Typ.  
Max.  
Units  
DRAIN−SOURCE DIODE CHARACTERISTICS T = 25°C unless otherwise noted.  
J
V
Source to Drain Diode Forward  
Voltage  
V
GS  
V
GS  
= 0 V, I = 19 A  
(Note 2)  
(Note 2)  
Q1  
Q2  
0.8  
0.8  
1.2  
1.2  
V
SD  
S
= 0 V, I = 17 A  
S
t
Reverse Recovery Time  
Q1:  
Q1  
Q2  
26  
22  
42  
35  
ns  
nC  
rr  
I = 19 A, Di/Dt = 100 A/ms  
F
Q
Reverse Recovery Charge  
Q1  
Q2  
10  
7.8  
20  
16  
Q2:  
rr  
I = 17 A, Di/Dt = 100 A/ms  
F
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
NOTES:  
2
1. R  
is determined with the device mounted on a 1 in pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR−4 material. R  
is guaranteed  
JC  
θ
θ
JA  
by design while R  
is determined by the user’s board design.  
θ
CA  
b. 130 °C/W when mounted on  
a minimum pad of 2 oz copper  
a. 60 °C/W when mounted on  
2
a 1 in pad of 2 oz copper  
2. Pulse Test: Pulse Width < 300 ms, Duty cycle < 2.0 %.  
°
°
3. Q1: E of 73 mJ is based on starting T = 25 C, L = 3 mH, I = 7 A, V = 30 V, V = 10 V. 100% tested at L = 0.1 mH, I = 25 A.  
AS  
J
AS  
DD  
GS  
AS  
Q2: E of 54 mJ is based on starting T = 25 C, L = 3 mH, I = 6 A, V = 30 V, V = 10 V. 100% tested at L = 0.1 mH, I = 20 A.  
AS  
J
AS  
DD  
GS  
AS  
4. Pulse Id refers to Figure “Forward Bias Safe Operation Area”.  
5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal &  
electro−mechanical application board design.  
www.onsemi.com  
4
 
FDMD8900  
TYPICAL CHARACTERISTICS (Q1 N−CHANNEL) T = 25°C unless otherwise noted.  
J
80  
60  
40  
20  
0
3
2
1
0
V
GS = 10 V  
VGS = 4.5 V  
VGS = 3.8 V  
VGS = 3 V  
V
GS = 4.5 V  
VGS = 3.8 V  
VGS = 3.5 V  
VGS = 3.5 V  
VGS = 3 V  
VGS = 10 V  
PULSE DURATION = 80ms  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
0.0  
0.2  
0.4  
0.6  
0.8  
0
20  
40  
I , Drain Current (A)  
60  
80  
V
DS  
, Drain to Source Voltage (V)  
D
Figure 1. On-Region Characteristics  
Figure 2. Normalized On−Resistance  
vs. Drain Current and Gate Voltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
20  
15  
10  
5
ID = 19 A  
PULSE DURATION = 80ms  
DUTY CYCLE = 0.5% MAX  
VGS = 10 V  
ID = 19 A  
TJ = 125 o  
C
TJ = 25 o  
C
0
2
4
6
8
10  
−75 −50 −25  
0
25 50 75 100 125 150  
T , Junction Temperature (5C)  
J
V
GB  
, Gate to Source Voltage (V)  
Figure 3. Normalized On Resistance vs. Junction  
Temperature  
Figure 4. On Resistance vs. Gate to  
Source Voltage  
100  
10  
80  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
VGS = 0 V  
VDS = 5 V  
60  
TJ = 150oC  
1
TJ = 150 o  
C
40  
20  
0
TJ = 25oC  
0.1  
TJ = 25oC  
TJ = −55oC  
0.01  
T
J = −55 o  
C
0.001  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
1
2
3
4
V , Gate to Source Voltage (V)  
GS  
V
SD  
, Body Diode Forward Voltage (V)  
Figure 5. Transfer Characteristics  
Figure 6. Source to Drain Diode Forward  
Voltage vs. Source Current  
www.onsemi.com  
5
FDMD8900  
TYPICAL CHARACTERISTICS (Q1 N−CHANNEL) T = 25°C unless otherwise noted.  
J
10  
8
10000  
1000  
100  
ID = 19 A  
VDD = 10 V  
Ciss  
VDD = 15 V  
VDD = 20 V  
Coss  
6
4
Crss  
2
f = 1 MHz  
GS = 0 V  
V
0
10  
0.1  
0
5
10  
15  
20  
25  
30  
1
10  
30  
Qg, Gate Charge (nC)  
V , Drain to Source Voltage (V)  
DS  
Figure 7. Gate Charge Characteristics  
Figure 8. Capacitance vs. Drain to Source Voltage  
100  
10  
1
80  
R
qJC = 4.7oC/W  
60  
40  
20  
0
VGS = 10 V  
TJ = 25oC  
VGS = 4.5 V  
TJ = 100oC  
TJ = 125oC  
25  
50  
75  
100  
125  
150  
0.001  
0.01  
t
0.1  
1
10  
100  
, Time in Avalanche (ms)  
Tc , Case Temperature (5C)  
AV  
Figure 9. Unclamped Inductive Switching Capability  
Figure 10. Maximum Continuous Drain Current  
vs. Case Temperature  
1000  
10000  
SINGLE PULSE  
qJC = 4.7oC/W  
R
T
C = 25 oC  
100  
10 ms  
1000  
100  
10  
10  
THIS AREA IS  
100 ms  
LIMITED BY rDS(on)  
SINGLE PULSE  
1 ms  
10 ms  
100 ms/DC  
1
TJ = MAX RATED  
qJC = 4.7oC/W  
R
CURVE BENT TO  
MEASURED DATA  
T
C = 25oC  
0.1  
0.1  
10−5  
10−4  
10−3  
t, Pulse Width (sec)  
10−2  
10−1  
1
1
10  
100 200  
V , Drain to Source Voltage (V)  
DS  
Figure 11. Forward Bias Safe Operating Area  
Figure 12. Single Pulse Maximum Power  
Dissipation  
www.onsemi.com  
6
FDMD8900  
TYPICAL CHARACTERISTICS (Q1 N−CHANNEL) T = 25°C unless otherwise noted.  
J
2
DUTY CYCLE−DESCENDING ORDER  
1
D = 0.5  
0.2  
P
DM  
0.1  
0.05  
0.1  
0.02  
0.01  
t
1
t
2
NOTES:  
(t) = r(t) x R  
SINGLE PULSE  
0.01  
Z
qJC  
qJC  
o
R
= 4.7 C/W  
qJC  
Peak T = P  
x Z (t) + T  
J
DM  
qJC C  
Duty Cycle, D = t / t  
1
2
0.001  
10−5  
10−4  
10−3  
10−2  
10−1  
1
t, Rectangular Pulse Duration (sec)  
Figure 13. Junction−to−Case Transient Thermal Response Curve  
www.onsemi.com  
7
FDMD8900  
TYPICAL CHARACTERISTICS (Q2 N−CHANNEL) T = 25°C unless otherwise noted.  
J
60  
45  
30  
15  
0
4
3
2
1
0
V
GS = 10 V  
GS = 4.5 V  
VGS = 3.8 V  
V
VGS = 3 V  
VGS = 3.5 V  
VGS = 3.5 V  
VGS = 3 V  
VGS = 3.8 V  
VGS = 10 V  
VGS = 4.5 V  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
0.0  
0.2  
0.4  
0.6  
0.8  
0
15  
30  
I , Drain Current (A)  
45  
60  
V , Drain to Source Voltage (V)  
DS  
D
Figure 14. On-Region Characteristics  
Figure 15. Normalized On−Resistance  
vs. Drain Current and Gate Voltage  
30  
20  
10  
0
1.6  
= 17 A  
ID  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
= 10 V  
VGS  
1.4  
1.2  
1.0  
0.8  
0.6  
ID = 17 A  
TJ = 150oC  
TJ = 25 oC  
2
4
6
8
10  
−75 −50 −25  
0
25 50 75 100 125 150  
T , Junction Temperature (5C)  
J
V , Gate to Source Voltage (V)  
GS  
Figure 16. Normalized On−Resistance  
vs. Junction Temperature  
Figure 17. On Resistance  
vs. Gate to Source Voltage  
100  
10  
60  
40  
20  
0
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
VGS = 0 V  
VDS = 5 V  
TJ = 150 o  
C
1
TJ = 150 o  
C
TJ = 25 o  
C
T
J = 25oC  
0.1  
0.01  
TJ = −55 o  
C
TJ = −55 o  
C
0.001  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1
2
3
4
V , Gate to Source Voltage (V)  
GS  
V
SD  
, Body Diode Forward Voltage (V)  
Figure 18. Transfer Characteristics  
Figure 19. Source to Drain Diode Forward Voltage  
vs. Source Current  
www.onsemi.com  
8
FDMD8900  
TYPICAL CHARACTERISTICS (Q2 N−CHANNEL) T = 25°C unless otherwise noted.  
J
10000  
1000  
100  
10  
8
ID = 17 A  
Ciss  
Coss  
Crss  
VDD = 10 V  
6
VDD = 15 V  
4
VDD = 20 V  
f = 1 MHz  
GS = 0 V  
2
V
10  
0.1  
0
1
10  
, Drain to Source Voltage (A)  
DS  
30  
0
5
10  
15  
20  
Q , Gate Charge (nC)  
V
g
Figure 20. Gate Charge Characteristics  
Figure 21. Capacitance vs. Drain to Source  
Voltage  
60  
40  
20  
0
100  
10  
1
R
qJC = 8.4 oC/W  
V
GS = 10 V  
TJ = 25oC  
TJ = 100 o  
C
VGS = 4.5 V  
TJ = 125 o  
C
0.001  
0.01  
0.1  
1
10  
100  
25  
50  
75  
100  
125  
150  
t
AV  
Time in Avalanche (ms)  
T , Case Temperature (5C)  
C
Figure 22. Unclamped Inductive Switching Capability  
Figure 23. Maximum Continuous Drain Current  
vs. Case Temperature  
500  
2000  
SINGLE PULSE  
oC/W  
TC = 25oC  
1000  
R
qJC = 8.4  
100  
10 ms  
10  
THIS AREA IS  
100 ms  
100  
LIMITED BY rDS(on)  
SINGLE PULSE  
1 ms  
1
TJ = MAX RATED  
10 ms  
DC  
qJC = 8.4oC/W  
= 25oC  
R
CURVE BENT TO  
MEASURED DATA  
TC  
0.1  
0.1  
10  
10−5 10−4 10−3 10−2 10−1  
t, Pulse Width (sec)  
1
10  
1
10  
100  
100 1000  
V
DS  
, Drain to Source Voltage (V)  
Figure 24. Forward Bias Safe Operating Area  
Figure 25. Single Pulse Maximum Power  
Dissipation  
www.onsemi.com  
9
FDMD8900  
TYPICAL CHARACTERISTICS (Q2 N−CHANNEL) T = 25°C unless otherwise noted.  
J
1
0.1  
DUTY CYCLE−DESCENDING ORDER  
D = 0.5  
0.2  
P
DM  
0.1  
0.05  
0.02  
t
0.01  
1
t
SINGLE PULSE  
2
0.01  
0.001  
(t) = r(t) x RqJC  
Z
R
qJC  
o
= 8.4 C/W  
qJC  
Peak T = P  
x Z  
(t) + T  
C
J
DM  
qJC  
Duty Cycle, D = t / t  
1
2
10−5  
10−4  
10−3  
10−2  
10−1  
1
10  
t, Rectangular Pulse Duration (sec)  
Figure 26. Junction −to−Case Transient Thermal Response Curve  
POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PQFN12 3.3X5, 0.65P  
CASE 483BN  
ISSUE A  
DATE 26 AUG 2021  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13670G  
PQFN12 3.3X5, 0.65P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FDME1023PZT

Small Signal Field-Effect Transistor, 2.6A I(D), 20V, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, 1.60 X 1.60 MM, HALOGEN FREE AND ROHS COMPLIANT, THIN, MICROFET-6
FAIRCHILD

FDME1023PZT

双 P 沟道,Power Trench® MOSFET,-20V,-2.6A,142mΩ
ONSEMI

FDME1024NZT

Dual N-Channel PowerTrench MOSFET 20 V, 3.8 A, 66 m
FAIRCHILD

FDME1024NZT

双 N 沟道,Power Trench® MOSFET,20V,3.8A,66mΩ
ONSEMI

FDME1034CZT

Complementary PowerTrench® MOSFET N-channel: 20 V, 3.8 A, 66 mΩ P-channel: -20 V, -2.6 A, 142 mΩ
FAIRCHILD

FDME1034CZT

互补,PowerTrench® MOSFET,±20V
ONSEMI

FDME410NZT

N-Channel PowerTrench® MOSFET 20 V, 7 A, 26 mΩ
FAIRCHILD

FDME410NZT

N 沟道,PowerTrench® MOSFET,20V,7A,26mΩ
ONSEMI

FDME430NT

N-Channel PowerTrench® MOSFET 30 V, 6 A, 40 mΩ
FAIRCHILD

FDME510PZT

P-Channel PowerTrench® MOSFET -20 V, -6 A, 37 mΩ
FAIRCHILD

FDME510PZT

P 沟道,PowerTrench® MOSFET,-20V,-6A,37mΩ
ONSEMI

FDME820NZT

N-Channel PowerTrench® MOSFET 20 V, 9 A, 18 mΩ
FAIRCHILD