CA3059 [ONSEMI]

Zero Voltage Switch; 零电压开关
CA3059
型号: CA3059
厂家: ONSEMI    ONSEMI
描述:

Zero Voltage Switch
零电压开关

开关
文件: 总8页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
CA3059  
Zero Voltage Switch  
This series is designed for thyristor control in a variety of AC power  
switching applications for AC input voltages of 24 V, 120 V,  
208/230 V, and 277 V @ 50/60 Hz.  
ZERO VOLTAGE  
SWITCH  
Applications:  
SEMICONDUCTOR  
TECHNICAL DATA  
Relay Control  
Valve Control  
Heater Control  
Lamp Control  
On–Off Motor Switching  
Differential Comparator with Self–Contained Power Supply for  
Industrial Applications  
14  
1
Synchronous Switching of Flashing Lights  
PLASTIC PACKAGE  
CASE 646  
ORDERING INFORMATION  
Operating  
2
V
CC  
Temperature Range  
Device  
Package  
R
S
5
Power  
Supply  
Limiter  
V
CA3059  
T = – 40° to +85°C  
A
Plastic DIP  
CC  
AC  
Input  
R
L
Current  
Boost  
3
Zero  
Crossing  
Detector  
12  
AC  
Input  
Voltage  
MT2  
MT1  
DC Mode or  
400 Hz Input  
14  
R
P
4
Gate  
Protection  
Circuit  
100  
µF  
Triac  
Drive  
FUNCTIONAL BLOCK  
DESCRIPTION  
+
-
15  
V
13  
+
1. Limiter–Power Supply — Allows operation of  
the CA3059 directly from an AC line. Suggested  
dropping resistor (R ) values are given in the table  
S
On/Off  
Sensing  
Amp  
-
below.  
9
2. Differential On/Off Sensing Amplifier Tests  
for condition of external sensors or input command  
signals. Proportional control capability or hysteresis  
may be implemented using this block.  
*
V
CC  
10  
11  
R
X
3. Zero–Crossing Detector — Synchronizes the  
output pulses to the zero voltage point of the AC cycle.  
This synchronization eliminates RFI when used with  
resistive loads.  
8
1
Inhibit  
6
External Trigger  
Gnd  
7
* NTC Sensor  
4. Triac Drive — Supplies high–current pulses to  
the external power controlling thyristor.  
5. Protection Circuit — A built–in circuit may be  
actuated, if the sensor opens or shorts, to remove the  
drive current from the external triac.  
6. Inhibit Capability — Thyristor firing may be  
inhibited by the action of an internal diode gate at  
Pin 1.  
Figure 1. Representative Block Diagram  
AC Input Voltage  
(50/60 Hz)  
Vac  
Input Series  
Dissipation Rating  
Resistor (R )  
for R  
S
S
kΩ  
W
7. High Power DC Comparator Operation —  
Operation in this mode is accomplished by connecting  
Pin 7 to Pin 12 (thus overriding the action of the  
zero–crossing detector). When Pin 13 is positive with  
respect to Pin 9, current to the thyristor is continuous.  
24  
120  
2.0  
10  
20  
25  
0.5  
2.0  
4.0  
5.0  
208/230  
277  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
August, 2001 – Rev. 1  
CA3059/D  
CA3059  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
DC Supply Voltage  
(Between Pins 2 and 7)  
V
Vdc  
CC  
CC  
5,7  
12  
DC Supply Voltage  
(Between Pins 2 and 8)  
V
Vdc  
12  
± 50  
Peak Supply Current (Pins 5 and 7)  
Fail–Safe Input Current (Pin 14)  
Output Pulse Current (Pin 4) (Note 1)  
Junction Temperature  
I
mA  
mA  
mA  
°C  
I
14  
2.0  
I
150  
out  
T
150  
J
Operating Temperature Range  
Storage Temperature Range  
T
– 40 to + 85  
– 65 to + 150  
°C  
A
T
stg  
°C  
ELECTRICAL CHARACTERISTICS (Operation @ 120 Vrms, 50–60 Hz, T = 25°C [Note 2])  
A
Characteristic  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
Inhibit Mode  
2
V
S
Vdc  
R
R
= 10 k, I = 0  
6.1  
6.5  
6.1  
7.0  
S
L
= 5.0 k, I = 2.0 mA  
S
L
Pulse Mode  
R
R
= 10 k, I = 0  
6.0  
6.4  
6.2  
7.0  
S
S
L
= 5.0 k, R = 2.0 mA  
L
Gate Trigger Current  
(V = 1.0 V, Pins 3 and 2 connected)  
GT  
3
3
I
160  
mA  
mA  
GT  
Peak Output Current, Pulsed  
I
OM  
With Internal Power Supply, V = 0  
GT  
Pin 3 Open  
Pins 3 and 2 Connected  
50  
90  
125  
190  
With External Power Supply, V = 12 V, V = 0  
4
CC  
GT  
Pin 3 Open  
Pins 3 and 2 Connected  
230  
300  
Inhibit Input Ratio  
(Ratio of Voltage @ Pin 9 to Pin 2)  
5
6
V /V  
0.465  
0.485  
0.520  
9
2
Total Gate Pulse Duration (C = 0)  
µs  
Ext  
Positive dv/dt  
Negative dv/dt  
t
t
70  
70  
100  
100  
140  
140  
p
n
Pulse Duration After Zero Crossing  
6
µs  
(C = 0, R = R)  
Ext  
Ext  
Positive dv/dt  
Negative dv/dt  
t
50  
60  
p1  
t
n1  
Output Leakage Current Inhibit Mode (Note 3)  
Input Bias Current  
3
7
I
0.001  
0.15  
10  
1.0  
µA  
µA  
4
I
IB  
Common Mode Input Voltage Range  
(Pins 9 and 13 Connected)  
V
1.4 to 5.0  
Vdc  
CMR  
Inhibit Input Voltage  
8
V
1.4  
1.4  
1.6  
Vdc  
Vdc  
1
External Trigger Voltage  
V –V  
6 4  
NOTES: 1. Care must be taken, especially when using an external power supply, that total package dissipation is not exceeded.  
2. The values given in the Electrical Characteristics Table at 120 V also apply for operation at input voltages of 24 V, 208/230 V, and 277 V, except for  
Pulse Duration test. However, the series resistor (R ) must have the indicated value, shown in Table A for the specified input voltage.  
S
3. I out of Pin 4, 2.0 V on Pin 1, S position 2.  
4
1
http://onsemi.com  
2
CA3059  
TEST CIRCUITS  
(All resistor values are in ohms)  
9
10 11  
R
S
10 k  
4.6 k  
13  
Pulse  
5
7
AC Line  
4
0.3 k  
2
I
OM  
or  
Oscilloscope  
With  
High-Gain  
Input  
1 Ω  
± 1%  
I
GT  
Inhibit  
R
L
4.6 k  
R
S
V
S
5
7
11  
AC Line  
8
13  
2
3
100 µF  
S
2
1
1
V
GT  
I
L
5 k  
5 k  
External  
Load  
Current  
8
4
9
10  
100 µF  
Figure 2. DC Supply Voltage  
Figure 3. Peak Output (Pulsed) and Gate  
Trigger Current with Internal Power Supply  
100 µF  
9
10 11  
6
2
3
5 k  
5 k  
R
S
10 k  
5
7
R
120 Vrms  
60 Hz  
S
10 k  
13  
4
12  
7
120 Vrms  
60 Hz  
4
Oscilloscope  
With  
High-Gain  
Input  
11  
10  
1 Ω  
± 1%  
8
13 14  
2
I
OM  
9
8
R1  
R2  
V
GT  
5
100 µF  
Figure 4. Peak Output Current (Pulsed)  
with External Power Supply  
Figure 5. Input Inhibit Ratio  
Gate Pulse  
AC Line  
Positive  
dv/dt  
Negative  
dv/dt  
Zero  
Voltage  
V
CC  
= 6.0 V  
2
t
t
N1  
P1  
9
t
t
P
N
10  
R
S
11  
5
7
120  
Vrms 60  
Hz  
10 k  
C
4
Ext  
Oscilloscope  
With  
High-Gain  
Input  
1 k  
9
+ 3.0 V  
12  
8
13  
5 k  
2
I
IB  
5 k  
R
Ext  
13  
7
8
100 µF  
Figure 6. Gate Pulse Duration Test Circuit  
with Associated Waveform  
Figure 7. Input Bias Current Test Circuit  
http://onsemi.com  
3
CA3059  
TYPICAL CHARACTERISTICS  
10 k  
9
5
300  
250  
200  
150  
100  
50  
10  
14  
1
1
4
1
Pins 2 and 3 Connected  
Pin 3 Open  
2
7
39 k  
13  
8
V
I
120 Vrms, 60 Hz  
Gate Voltage = 0  
R2  
5 k  
R1  
5 k  
0
5.0  
6.0  
7.0  
8.0  
9.0  
10  
11  
12  
EXTERNAL POWER SUPPLY VOLTAGE (V)  
Figure 8. Inhibit Input Voltage Test  
Figure 9. Peak Output Current (Pulsed)  
versus External Power Supply Voltage  
120 Vrms, 60Hz  
160  
140  
140  
130  
120  
110  
120 Vrms, 60 Hz Operation  
120  
100  
100  
90  
120 Vrms, 60 Hz  
Gate Voltage = 0  
80  
- 40  
- 20  
0
20  
40  
60  
80  
100  
- 40  
- 20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 10. Peak Output Current (Pulsed)  
versus Ambient Temperature  
Figure 11. Total Pulse Width versus  
Ambient Temperature  
120 Vrms, 60 Hz  
0.52  
0.50  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
0.48  
0.46  
0.44  
0.42  
Inhibit Mode  
0.40  
- 40  
- 20  
0
20  
40  
60  
80  
100  
- 40  
- 20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 12. Internal Supply versus  
Ambient Temperature  
Figure 13. Inhibit Voltage Ratio versus  
Ambient Temperature  
http://onsemi.com  
4
CA3059  
R
P
R
x
C
NTC Sensor  
F
+
-
Inhibit  
Input  
100 µF  
15 V  
2
1
13  
10 k  
50 k  
15  
25  
10  
3
Current  
Boost  
8
9
70 µA  
R
S
85 k  
9.6 k  
AC Line  
Input  
35 µA  
5
11  
30 k  
30 k  
5 k  
30 k  
50 k  
4
To  
Thyristor  
Gate  
53 µA  
150 µA  
12  
14  
Fail-Safe  
Input  
7
6
For  
External  
Trigger  
For DC Mode  
or 400 Hz  
Operation  
To  
Common  
NOTE: Current sources are established by an internal reference.  
Figure 14. Circuit Schematic  
APPLICATION INFORMATION  
Power Supply  
b. Sensor Resistance (R ) and R values should be  
X
P
The CA3059 is a self–powered circuit, powered from the  
AC line through an appropriate dropping resistor (see  
Table A). The internal supply is designed to power the  
auxiliary power circuits.  
In applications where more output current from the  
internal supply is required, an external power supply of  
higher voltage should be used. To use an external power  
supply, connect Pin 5 and Pin 7 together and apply the  
synchronizing voltage to Pin 12 and the DC supply voltage  
to Pin 2 as shown in Figure 4.  
between 2 kand 100 k.  
c. The relationship 0.33 < R /R < 3 must be met over  
X
P
the anticipated temperature range to prevent  
undesired activation of the circuit. A shunt or series  
resistor may have to be added.  
External Inhibit Function  
A priority inhibit command applied to Pin 1 will remove  
current drive from the thyristor. A command of at least  
+1.2 V @ 10 µA is required. A DTL or TTL logic 1 applied  
to Pin 1 will activate the inhibit function.  
Operation of Protection Circuit  
DC Gate Current Mode  
The protection circuit, when connected, will remove  
current drive from the triac if an open or shorted sensor is  
detected. This circuit is activated by connecting Pin 13 to  
Pin 14 (see Figure 1).  
The following conditions should be observed when the  
protection circuit is utilized:  
When comparator operation is desired or inductive loads  
are being switched, Pins 7 and 12 should be connected. This  
connection disables the zero–crossing detector to permit the  
flow of gate current from the differential sensing amplifier  
on demand. Care should be exercised to avoid possible  
overloading of the internal power supply when operating the  
device in this mode. A resistor should be inserted between  
Pin 4 and the thyristor gate in order to limit the current.  
a. The internal supply should be used and the external  
load current must be limited to 2 mA with a 5 kΩ  
dropping resistor.  
http://onsemi.com  
5
CA3059  
PACKAGE DIMENSIONS  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
14  
1
8
7
B
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
MILLIMETERS  
A
F
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
18.80  
6.60  
4.69  
0.53  
1.78  
A
B
C
D
F
0.715  
0.240  
0.145  
0.015  
0.040  
0.770  
0.260  
0.185  
0.021  
0.070  
L
N
C
G
H
J
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.290  
---  
0.095  
0.015  
0.135  
0.310  
10  
1.32  
0.20  
2.92  
7.37  
---  
2.41  
0.38  
3.43  
7.87  
10  
–T–  
SEATING  
PLANE  
K
L
J
K
M
N
_
_
0.015  
0.039  
0.38  
1.01  
D 14 PL  
H
G
M
M
0.13 (0.005)  
http://onsemi.com  
6
CA3059  
Notes  
http://onsemi.com  
7
CA3059  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
CA3059/D  

相关型号:

CA3059/D

Zero Voltage Switches
MOTOROLA

CA3059E

Analog IC
ETC

CA3059H

IC,ZERO-CROSSING DETECTOR,BIPOLAR,DIE
RENESAS

CA3059_06

Zero Voltage Switch
ONSEMI

CA3060

110kHz, Operational Transconductance Amplifier Array
INTERSIL

CA3060

110kHz, Operational Transconductance Amplifier Array
HARRIS

CA3060BD

Operational Amplifier
ETC

CA3060BD/3

Operational Amplifier
ETC

CA3060BD3

CA3060BD3
RENESAS

CA3060E

110kHz, Operational Transconductance Amplifier Array
INTERSIL

CA3060E

110kHz, Operational Transconductance Amplifier Array
HARRIS

CA3064

TV Automatic Fine Tuning Circuit
ETC