SAA2013H [NXP]

Adaptive allocation and scaling for PASC coding in DCC systems; 自适应分配和缩放PASC编码的DCC系统
SAA2013H
型号: SAA2013H
厂家: NXP    NXP
描述:

Adaptive allocation and scaling for PASC coding in DCC systems
自适应分配和缩放PASC编码的DCC系统

消费电路 商用集成电路
文件: 总32页 (文件大小:136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA2013  
Adaptive allocation and scaling for  
PASC coding in DCC systems  
May 1994  
Preliminary specification  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
FEATURES  
Wide operating voltage range: 2.7 to 5.5 V  
Low power consumption: 13 mW; 3.0 V  
Low power decode mode: 1 mW; 5.0 V  
Sleep mode for low power and low Electromagnetic  
Interference (EMI)  
GENERAL DESCRIPTION  
The SAA2013 performs the adaptive allocation and  
scaling function in the Precision Adaptive Sub-band  
Coding (PASC) system. It is not required in playback only  
applications, and is only used during recording. To  
complete the PASC processor, a SAA2003 stereo filter  
and codec is required.  
Sophisticated allocation algorithm  
Optimum sound quality  
Three-wire L3 bus microcontroller interface  
Stereo or 2-channel mono recording  
Small surface mounted package (QFP; SOT307).  
ORDERING INFORMATION  
TYPE NUMBER  
PACKAGE  
PINS  
PIN POSITION  
QFP(1)  
MATERIAL  
CODE  
SAA2013H  
44  
plastic  
SOT307-2  
Note  
1. When using reflow soldering it is recommended that the Dry Packing instructions in the “Quality Reference  
Pocketbook” are followed. The pocketbook can be ordered using the code 9398 510 34011.  
May 1994  
2
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
BLOCK DIAGRAM  
FRESET  
FDAI  
V
V
V
DD1  
14  
DD2  
24  
DD3  
40  
FDIR FSYNC  
FS256  
39  
37 36 35 34  
3
4
5
L3MODEM  
L3CLKM  
32  
31  
30  
26  
MICROCONTROLLER  
BUS  
FDCL  
FDWS  
COMPENSATION  
DELAY  
L3DATAM  
CONTROL  
AND  
SYNC  
SLEEP  
CLK24  
RESET  
SAA2013  
23  
33  
FDAO  
9
L3MODEC  
L3CLKC  
10  
11  
SFC  
BUS  
ALLOCATION AND SCALE FACTOR  
COMPUTATION  
L3DATAC  
6
25  
44  
20  
21  
22  
MGB355  
NODONE RESOL0 RESOL1  
V
V
V
SS3  
SS1  
SS2  
Fig.1 Block diagram.  
May 1994  
3
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
PINNING  
SYMBOL  
TEST10  
PIN  
DESCRIPTION  
TYPE  
1
test input; connect to VSS  
test input; connect to VSS  
I
I
TEST11  
L3MODEM  
L3CLKM  
L3DATAM  
VSS1  
2
3
microcontroller interface mode input  
microcontroller interface clock input  
microcontroller interface data 3-state input/output  
supply ground  
I
4
I
5
I/O  
O
O
O
O
I/O  
O
O
I
6
TEST12  
TEST13  
L3MODEC  
L3CLKC  
L3DATAC  
TEST1  
TEST2  
VDD1  
7
test output; do not connect  
test output; do not connect  
codec interface mode output  
codec interface clock output  
codec interface data 3-state input/output  
test output; do not connect  
test output; do not connect  
supply voltage  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
TEST3  
TEST4  
TEST5  
TEST6  
TEST7  
NODONE  
RESOL0  
RESOL1  
RESET  
VDD2  
test mode input; connect to VDD  
test mode input; connect to VDD  
test input; connect to VSS  
test input; connect to VSS  
test input; connect to VSS  
nodone state selection input; connect to VDD  
resolution selection 0 input  
resolution selection 1 input  
reset input; active HIGH  
I
I
I
I
I
I
I
I
supply voltage  
I
VSS2  
supply ground  
CLK24  
LOWPWR  
POR  
24.576 MHz clock input  
low power decode select input  
power on reset input  
I
I
TEST8  
SLEEP  
FDWS  
test input; connect to VSS  
sleep mode select input  
I
I
filtered data word select  
I
FDCL  
filtered data clock  
I
FDAO  
filtered data output  
O
I
FDAI  
filtered data input  
FSYNC  
FRESET  
FDIR  
sub-band synchronization on filtered I2S bus  
reset signal input from SAA2003  
filtered data direction input  
test input; connect to VSS  
system clock input; 256 × sample frequency (fs)  
supply voltage  
I
I
I
TEST9  
FS256  
I
I
VDD3  
May 1994  
4
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
SYMBOL  
n.c.  
PIN  
DESCRIPTION  
TYPE  
41  
42  
43  
44  
not connected  
not connected  
not connected  
supply ground  
n.c.  
n.c.  
VSS3  
TEST10  
1
FDAO  
FDCL  
33  
32  
TEST11  
2
L3MODEM  
31 FDWS  
SLEEP  
3
4
L3CLKM  
30  
29 TEST8  
L3DATAM  
5
V
POR  
28  
27  
26  
25  
24  
23  
6
SS1  
SAA2013  
LOWPWR  
CLK24  
TEST12  
TEST13  
7
8
L3MODEC  
V
9
SS2  
V
L3CLKC  
10  
11  
DD2  
RESET  
L3DATAC  
MGB356  
Fig.2 Pin configuration.  
May 1994  
5
RAM  
41464  
BUFFER  
64K x 4  
speed control  
CAPSTAN  
DRIVE  
L
DAC  
analog  
output  
TDA1305  
sub-band  
R
2
I S  
SFC3  
SAA2003  
WRAMP  
TDA1381  
WRITE AMP.  
baseband  
STEREO  
FILTER CODEC  
2
I S  
DRP  
SAA2023  
OR  
L
FIXED  
HEAD  
TAPE  
analog  
input  
ADC  
SAA7366  
SAA3323  
DRIVE  
PROCESSOR  
2
R
filtered I S  
RDAMP  
TDA1380  
READ AMP.  
ADAS3  
SAA2013  
ADAPTIVE  
ALLOCATION  
DIGITAL  
AUDIO I/O  
TDA1315  
MECHANICS  
DRIVERS  
IEC958  
search data  
analog CC  
L output  
detect  
switch  
analog CC  
R output  
AUDIO IN/OUT  
PASC PROCESSOR  
TAPE DRIVE PROCESSING  
SYSTEM  
MICROCONTROLLER  
SYSTEM CONTROL  
MBD620  
Fig.3 DCC system block diagram.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
to determine the operation mode. When FDIR is HIGH,  
SAA2013 is in decode mode. When FDIR is LOW the  
SAA2013 is in encode mode. See Fig.4.  
PASC processor  
The PASC processor is a dedicated Digital Signal  
Processor (DSP) engine which efficiently codes digital  
audio data at a bit rate of 384 kbits/s without affecting the  
sound quality. This is achieved using an efficient adaptive  
data notation and by only encoding the audio information  
which can be heard by the human ear.  
Reset  
When used with low-power mode disabled  
(LOWPWR = VSS), and with the SLEEP input LOW,  
SAA2013 is reset if the RESET pin is held HIGH for at least  
5 periods of the CLK24 clock, see Fig.5. SAA2013 defaults  
to decode mode. When in low-power mode, the RESET  
pin is disabled.  
The audio data is split into 32 equal sub-bands during  
encoding. For each of the sub-bands a masking threshold  
is calculated. The samples from each of the sub-bands are  
included in the PASC data with an accuracy that is  
determined by the available bit-pool and by the difference  
between the signal power and the masking threshold for  
that sub-band. In decode, the sub-band signals are  
reconstructed into the full bandwidth audio signal.  
Sleep mode  
Sleep mode is entered by taking the SLEEP input HIGH  
with the LOWPWR pin connected to VSS; CLK24 and  
FS256 are stopped internally to the SAA2013, the 3-state  
buffers will have a high impedance, and outputs will freeze  
in the same state as just before the sleep mode became  
active (clocks stopped). To come out of sleep mode, the  
SLEEP input must be taken LOW again. To clear data  
present from before sleep was entered, this should be  
followed by a reset, see Fig.5.  
The stereo filter codec performs the splitting (encoding)  
and reconstruction (decoding), including the necessary  
formatting functions. During encoding, the adaptive  
allocation and scaling circuit calculates the required  
accuracy (bit allocation) and scale factors of the  
sub-band samples.  
Decode/encode control  
Selection of decode or encode is controlled using FRESET  
and FDIR. FRESET causes a general reset. The FDIR  
signal is sampled at the falling edge of the FRESET signal  
t
H
FRESET  
t
t
su  
h
FDIR  
MGB357  
Fig.4 FDIR and FRESET timing.  
May 1994  
7
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
SLEEP  
t
h
RESET  
t
d
CLK24  
MGB358  
Fig.5 SLEEP and RESET timing.  
Low-power decode mode  
V
Low-power decode mode is made available by connecting  
DD  
handbook, halfpage  
the LOWPWR pin to VDD. With LOWPWR = VDD  
,
1 µF  
low-power decode mode is entered 9 cycles of CLK24  
after the SLEEP input is taken HIGH. In low-power decode  
mode, the L3 bus connections are connected straight  
trough the SAA2013, which is effectively bypassed. The  
compensation delay connection between pins FDAI and  
FDAO is no longer needed by the SAA2003, and CLK24  
and FS256 are stopped internally to the SAA2013.  
V
V
DD  
POR  
SS  
150  
kΩ  
V
SS  
MGB359  
To get out of low-power decode mode, it is necessary to  
take SLEEP LOW, FDIR LOW, and FRESET HIGH (in a  
normal application taking FDIR LOW and FRESET HIGH  
can be achieved by setting SAA2003 into encode mode),  
SAA2013 then performs an internal reset, and defaults to  
normal decode mode. The RESET pin does not reset the  
circuit from low-power decode mode.  
Fig.6 POR circuit.  
Encode mode  
In encode mode the SAA2013 receives sub-band filtered  
samples from SAA2003 on the FDAI pin. The SAA2013  
has to collect a complete frame of sub-band data before  
the allocation and scale factor information can be  
calculated. So that the allocation and scale factor  
information is available in the same time frame as the  
audio samples at the output, the sub-band filtered samples  
are delayed by 480 FDWS periods.  
Power-On Reset (POR)  
When low-power decode mode is enabled  
(LOWPWR = VDD), a power-on reset circuit is required to  
ensure that the internal clocks are connected correctly at  
power-on. A suitable circuit is shown in Fig.6. This circuit  
will correctly reset the internal clock connection provided  
that the nominal value of the VDD supply is reached within  
40 ms at power-on.  
1
fs  
One FDWS period is equal to  
where fs is the audio  
---  
sample rate of 32, 44.1 or 48 kHz. The delayed samples  
are passed to the codec part of SAA2003 on the  
FDAO pin.  
May 1994  
8
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
For each sub-band frame, SAA2013 calculates the  
allocation and scale factor index information required by  
the SAA2003. In order to synchronize the codec part of  
SAA2003, SAA2013 frequently requests status  
information from the codec. It monitors sample frequency,  
emphasis information and stereo mode, and uses the  
ready-to-receive bit of the codec to determine when to  
transfer information.  
Audio sample resolution section  
The SAA2013 is designed for operation with audio input  
sources of 14, 15, 16 or 18-bit resolution.  
For optimum audio performance the bit allocation  
algorithm of the SAA2013 can be varied to suit the bit  
resolution of the audio source. This is done with the pins  
RESOL0 and RESOL1 as shown in Table 1.  
Table 1 Resolution set by pins RESOL0 and RESOL1.  
Decode mode  
In decode the SAA2003 will transfer samples from FDAI to  
FDAO with a delay of 480 FDWS periods. Settings and  
status information can be sent to SAA2003 via SAA2013,  
but the SAA2013 does not itself act on this information.  
Transfer of this information is automatically synchronized  
to the ready-to-receive bit of SAA2003 by SAA2013.  
RESOLUTION  
RESOL0  
RESOL1  
16 bits  
18 bits  
14 bits  
15 bits  
0
0
1
1
0
1
0
1
Filtered data interface  
The filtered data interface signals are given in Table 2.  
Table 2 Filtered data interface signals.  
PIN  
INPUT/OUTPUT  
FUNCTION  
FREQUENCY  
FDWS  
FDCL  
FDAI  
input  
input  
input  
filtered data interface word select  
filtered data interface bit clock  
filtered data input  
fs  
64fs  
FDAO  
output  
input  
filtered data output  
FSYNC  
filtered data sub-band synchronization  
The filtered data interface transfers sub-band filtered  
samples between the stereo filter codec SAA2003 and  
SAA2013. The interface is similar to a normal I2S interface,  
consisting of clock (FDCL), data (FDAI/FDAO) and word  
select lines (FDWS), except that the samples sent  
represent signals divided into 32 sub-bands. One frame of  
data consists of 12 samples from 32 sub-bands for both  
left and right channels, i.e.: 768 audio samples. Each  
audio sub-band sample is represented by a 24-bit two’s  
complement number.  
Table 3 Order of samples.  
SUB-BAND  
0
0
1
1
2
2
... 31 31  
Channel  
Sample  
L
0
1
2
.
R
0
1
2
.
L
0
1
2
.
R
0
1
2
.
L
0
1
2
.
R
0
1
2
.
...  
...  
...  
...  
...  
...  
L
0
1
2
.
R
0
1
2
.
.
.
.
.
.
.
.
.
The order in which the samples are sent is shown in  
Table 3.  
11 11 11 11 11 11 ... 11 11  
For two channel mono, the order is the same, but with  
Channel 1 samples in the place of left and Channel 2  
samples in place of right.  
The signal FSYNC is used between each PASC frame to  
indicate the sending of samples for sub-band 0 (Fig.7).  
May 1994  
9
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
channel  
32 bits  
h
left  
20  
FDWS  
FDCL  
right  
1
0
23  
22  
21  
7 bit  
1 bit  
FSYNC  
timing  
L
L
L
L
L
FDWS  
R
R
R
R
R
FSYNC  
sub-band  
31  
0
1
31  
0
T
c
t
t
cL  
cH  
FDCL  
t
d4  
t
d3  
FDAO  
t
t
su1  
h1  
FDAI  
FDWS  
MGB360  
Fig.7 Filtered interface format.  
Status information from the codec is interpreted to ensure  
that SAA2013 quickly acts upon the status of SAA2003.  
Control interfaces  
Two 3-wire control interfaces are provided (referred to as  
‘L3’ interfaces). One is connected to the system  
microcontroller (L3MODEM, L3CLKM, L3DATAM where  
‘M’ represents microcontroller), the other to SAA2003  
(L3MODEC, L3CLKC, L3DATAC where ‘C’ represents  
codec). In general, control data is passed between  
SAA2003 and the microcontroller via SAA2013. This  
ensures that the microcontroller is buffered from the  
time-critical SAA2013 to SAA2003 interface during  
encode.  
The L3 bus operation is shown in Fig.8. There are three  
modes:  
1. Address.  
2. Data.  
3. Halt.  
Each interface operates as either a master or a slave,  
where the master provides L3CLK and L3MODE. For the  
microcontroller to SAA2013 interface, the microcontroller  
is the master. For the SAA2013 to SAA2003 interface,  
SAA2013 is the master.  
The SAA2013 does not interpret the data from the  
microcontroller interface.  
May 1994  
10  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
L3MODE  
L3CLK  
L3DATA  
0
1
2
3
4
5
6
7
MGB361  
Fig.8 L3 bus operation; address mode.  
L3MODE  
L3CLK  
L3DATA  
0
1
2
3
4
5
6
7
MGB362  
Fig.9 L3 single byte transfer.  
L3MODE  
L3CLK  
L3DATA  
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
MGB363  
Fig.10 L3 bus two byte transfer.  
11  
May 1994  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
ADDRESS MODE  
HALT MODE  
Address mode is entered by the master pulling L3MODE  
LOW. This causes the L3DATA line to act as an input on  
the slave, and 8 bits of address data are clocked into the  
slave. If the slave recognizes the address, it will set-up its  
internal state based on the 2 Least Significant Bits (LSBs)  
of the address. The slave than expects to send status data  
or receive control data.  
Halt mode consists of pulling L3MODE LOW after sending  
data. It is used for marking the end of a data transfer mode  
which does not have an internal bit counter.  
SAA2013 interface modes  
The SAA2013 may be used to read and write from or to  
SAA2003. Information is transferred via a set of transit  
registers within SAA2013.  
The addresses for SAA2013 are shown in Table 4.  
Table 4 SAA2013 addresses.  
DECODE OPERATION  
During decode, the SAA2013 does not perform allocation.  
Therefore no allocation and scale factor indices are sent to  
SAA2003. Settings and extended settings may still be sent  
to SAA2003, and SAA2013 monitors the status of the  
codec by reading status from it after every occurrence of  
FSYNC. Peak level data can also be transferred from  
SAA2003.  
L3 OPERATION  
MSB LSB  
FUNCTION  
MODE  
0010 0000 WDAT  
0010 0001 RDAT  
0010 0010 WCMD  
0010 0011 RSTAT  
extended settings  
allocation information  
settings  
status/peak read  
ENCODE OPERATION  
The interface may be reset by sending an address of all  
zeros (‘00000000’). This may be used to allow  
inter-operation with other devices sharing the L3CLK and  
L3DATA lines (e.g. SAA7345 CD decoder).  
In encode, the same information may be sent as for  
decode, and in addition, allocation/scale factor indices are  
sent to the codec by SAA2013.  
The interface modes are shown in Table 5.  
DATA MODE  
In data mode, bytes of data are clocked into (e.g. control)  
or out of (e.g. status) the slave. A single byte transfer is  
shown in Fig.9. A two byte transfer is shown in Fig.10,  
between bytes there must be a pause during which the  
clock remains HIGH.  
May 1994  
12  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
Table 5 Interface modes.  
ADDRESS  
MODE  
INTERFACE MODE  
LENGTH (BITS)  
DIRECTION  
BIT 1  
BIT 0  
Decode  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
extended settings  
8
microcontroller to SAA2003  
settings  
16  
microcontroller to SAA2003  
SAA2003 to microcontroller  
microcontroller to SAA2003  
SAA2013 to SAA2003  
microcontroller to SAA2003  
SAA2003 to microcontroller  
status/peak  
extended settings  
allocation/scale  
settings  
16 or 48  
8
Encode  
48 × 16  
16  
status/peak  
16 or 48  
the transit registers, and sent next time that allocation is  
being sent. In decode, settings are sent as soon as  
possible subject to the RTRC flag from SAA2003.  
PRIORITY  
Each type of transfer has a priority. The priorities are:  
1. Allocation/scale/settings (highest priority).  
2. Status read.  
Before sending settings the microcontroller should read  
the status of SAA2013 to examine the Ready-To-Receive  
bit Settings (RTRS). After the settings have been received  
by SAA2013, RTRS will be made logic 0, until the settings  
have been sent to SAA2003. Only after RTRS is logic 1  
again may the microcontroller send new settings.  
3. Peak read.  
4. Extended settings (lowest priority).  
ALLOCATION AND SCALE FACTOR TRANSFER  
The allocation and scale factor information sent from  
SAA2013 to SAA2003 during encode has the highest  
priority. The other types of transfer interleaved with the  
allocation/scale information.  
STATUS READ  
Status and peak information may be read from SAA2003  
by the microcontroller. The status bits are defined in  
Table 6.  
SETTINGS TRANSFER  
This is a 16-bit transfer. The microcontroller sends settings  
to SAA2003. SAA2013 only transfers these without taking  
notice of the contents. In encode, the settings are held in  
Table 6 Status bits.  
BIT  
B15 to B12  
B11 and B10  
B9  
NAME  
bit rate index  
FUNCTION  
bit rate indication  
VALID IN  
encode/decode  
sample frequency indication  
RTRS (settings)  
44.1, 48, 32 kHz indication  
1 = ready; 0 = not ready  
1 = ready; 0 = not ready  
encode/decode  
encode/decode  
encode/decode  
encode/decode  
B8  
RTRE (external settings)  
MODE  
B7 and B6  
sub-band signal mode  
identification  
B5  
SYNC  
synchronization indication  
1 = OK; 0 = not OK  
transparent bits  
encode/decode  
encode/decode  
encode/decode  
encode/decode  
B4  
CLKOK  
B3 and B2  
B1 and B0  
Tr0 and Tr1  
EMPHASIS  
emphasis indication  
May 1994  
13  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
Since the two bytes of status information are sampled  
separately, the bytes may result from different sub-band  
frames.  
is possible that peak data may contain an additional delay  
of 1 column (667 µs minimum at 48 kHz, 1 ms maximum  
at 32 kHz). If the microcontroller attempts to read peak  
level data with a delay of less than 1 column, the peak level  
data from the previous reading will be repeated. Normally  
the microcontroller should allow at least 1 ms between  
reads. There is also a delay required between peak data  
words (Fig.13).  
The only valid bit rate code for the SAA2013 is 1100.  
The sample frequency indication is shown in Table 7.  
Table 7 Sample frequency indication.  
If the SAA2013 does not have peak data available (for  
instance the microcontroller attempts two reads in very  
quick succession), it will return all peak data bits set to  
logic 0. The microcontroller can detect if valid peak data  
has been returned by inspecting bits T16 and T32. If both  
bits are set to logic 0 the data is not valid.  
BIT 11  
BIT 10  
SAMPLE FREQUENCY  
0
0
1
1
0
1
0
1
44.1 kHz; default  
48.0 kHz  
32.0 kHz  
do not use  
Ready-to-receive S or E indicates whether the SAA2013 is  
ready-to-receive new settings or extended settings from  
the microcontroller. This should be checked before  
sending new information.  
MSB  
LSB  
handbook, halfpage  
0 0 1 0 0 0 1 1  
For details of the MODE, SYNC, CLKOK and transparent  
bits, refer to the “SAA2003 data sheet”.  
STATUS MSB  
PEAK BYTE 1  
PEAK BYTE 3  
STATUS LSB  
PEAK BYTE 0  
PEAK BYTE 2  
The emphasis indication can be used to apply the correct  
de-emphasis. In encode SAA2013 will correct the  
calculated allocation if 50  
15 µs emphasis is applied. When  
“CCITT J.17” emphasis is applied, the bit allocation  
remains the same as when no emphasis is applied.  
MGB364  
The 2 bytes of the status are ‘sampled’ at different  
moments. So the information may not result from the same  
sub-band frame.  
Fig.11 Peak level read format; SAA2013 to  
microcontroller.  
When making repeated status reads (for instance reading  
the RTRS/RTRE flags before sending settings or extended  
settings), the microcontroller must send an address  
before each status read, to ensure that the byte counter in  
the interface is reset to logic 0. If this is not done, then the  
peak data will be read. Conversely, it is important not to  
send a new address after a status read if the peak data is  
required.  
handbook, halfpage  
16  
32  
15-bit peak  
15-bit peak  
PEAK READ  
channel  
indicator  
channel  
indicator  
Peak information is read by clocking a further 4 bytes of  
data after a status read. The data format is shown in  
Figs 11 and 12. Bits B17 to B31 contain a 15-bit unsigned  
peak, LSB first, channel indicated by bit B16. Bits B33 to  
B47 contain a 15-bit unsigned peak, channel indicated by  
bit B32.  
bits 17 to 31  
bits 33 to 47  
MGB365  
Fig.12 Peak level format.  
The peak data is delayed by 1 read period. If for example  
the microcontroller reads peak level data every 50 ms, the  
peak data sourced by SAA2013 will be 50 ms old. Also it  
May 1994  
14  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
15.625 µs  
HALT  
L3MODEC  
STATUS  
BYTES  
PEAK 1  
PEAK 2  
MGB366  
Fig.13 Peak data timing.  
EXTENDED SETTINGS  
This is a single byte transfer, valid during decode and encode. The sequence of operations is:  
1. Microcontroller reads status from SAA2013, waiting for the flag RTRE to be set.  
2. When RTRE is logic 1, the microcontroller writes address bit 0 is logic 0, bit 1 is logic 0.  
3. One byte of extended settings is clocked into the transit register (SAA2013).  
4. When it is possible (i.e. subject to RTRC being HIGH, and assuming that allocation or status is not waiting), the byte  
is transferred from the transit register to the SAA2003.  
L3MODEC  
t
t
t
h2  
t
cH  
cL  
d1  
L3CLKC  
t
t
t
d5  
d3  
d4  
t
t
h1  
d2  
L3DATAC  
(ADAS-SFC)  
MGB367  
Fig.14 L3 interface timing; SAA2013 to SAA2003 (address mode).  
May 1994  
15  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
h
L3MODEC  
t
t
t
t
h2  
d1  
cH  
cL  
L3CLKC  
t
t
h1  
su1  
L3DATAC  
SFC-ADAS)  
t
t
d3  
d4  
h3  
t
d5  
t
t
d2  
L3DATAC  
(ADAS-SFC)  
MGB368  
Fig.15 L3 interface timing; SAA2013 to SAA2003 (data mode).  
L3MODEM  
L3CLKM  
t
t
t
cL  
t
d1  
cH  
h2  
t
t
h1  
su1  
L3DATAM  
(microcontroller-  
ADAS)  
MGB369  
Fig.16 L3 interface timing; microcontroller to SAA2013 (address mode).  
16  
May 1994  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
L3MODEM  
t
t
t
t
h2  
d1  
cH  
cL  
L3CLKCM  
t
t
t
su1  
h1  
L3DATAM  
(microcontroller-  
ADAS)  
t
t
d3  
d4  
t
d5  
t
d2  
h3  
L3DATAM  
(ADAS-  
microcontroller)  
MGB370  
Fig.17 L3 interface timing; microcontroller to SAA2013 (data mode).  
t
L
L3MODEM/  
L3MODEC  
t
t
d1  
h2  
L3CLKM/  
L3CLKC  
t
t
d2  
d5  
L3DATA/  
L3DATAC  
(OUTPUT)  
MGB371  
Fig.18 L3 interface timing; microcontroller to SAA2013 and SAA2013 to SAA2003 (halt mode).  
17  
May 1994  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
T
c24  
t
t
cH  
cL  
CLK24  
MGB372  
t
t
f
r
Fig.19 Input timing CLK24.  
CLK24  
t
t
h
su  
DATA  
MGB373  
t , t  
r
f
Fig.20 Input signal timing for FSYNC, FRESET, FDIR, FDWS, L3MODEM, L3CLKM, L3DATAM and L3DATAC.  
May 1994  
18  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
FS256  
t
d
t
h
FDAO  
MGB374  
Fig.21 Output signal timing FDAO.  
T
c
t
t
cH  
cL  
FDCL  
t
d4  
t
d3  
FDAO  
(FDAI)  
t
t
h1  
su1  
FDAI,  
FDWS  
MGB375  
Fig.22 Filtered data interface timing.  
19  
May 1994  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
Current consumption  
The typical current consumption is shown in Fig.23.  
MBD697  
10  
handbook, halfpage  
I
DD  
(mA)  
8
6
4
2
0
2
3
4
5
6
V
(V)  
DD  
Tamb = 25 °C.  
Fig.23 Typical current consumption.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER CONDITIONS  
supply voltage  
MIN.  
0.5  
MAX.  
+6.5  
UNIT  
VDD  
VI  
V
V
input voltage  
0.5  
VDD + 0.5  
20  
II  
input current  
mA  
V
VO  
IO  
output voltage  
0.5  
+6.5  
20  
output current  
mA  
°C  
°C  
Tstg  
storage temperature  
operating ambient temperature  
electrostatic handling  
Human Body Model (HBM)  
Machine Model (MM)  
65  
40  
+150  
+85  
Tamb  
Ves  
note 1  
note 2  
2000  
200  
+2000  
+200  
V
V
Notes  
1. Equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
2. Equivalent to discharging a 200 pF capacitor through a 0 series resistor.  
May 1994  
20  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
CHARACTERISTICS  
V
DD = 2.7 to 5.5 V; VSS = 0 V;Tamb = 40 to 85 °C; unless otherwise specified; IOL and IOH derated by 75% for  
DD < 4.5 V.  
V
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
VDD  
supply voltage  
2.7  
4
5.0  
5
5.5  
6
V
IDD  
supply current  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 5.0 V  
mA  
mA  
µA  
7
10  
12  
400  
Istb  
standby current  
Inputs  
VIL  
VIH  
ILI  
LOW level input voltage  
HIGH level input voltage  
input leakage current  
input capacitance  
0
0.3VDD  
VDD  
+10  
V
0.7VDD  
10  
V
VI = 0 to VDD  
µA  
pF  
CI  
10  
Outputs  
VOL  
LOW level output voltage  
HIGH level output voltage  
load capacitance  
IOL = 4 mA  
0
0.4  
VDD  
30  
V
VOH  
IOH = 4 mA  
V
DD 0.4  
V
CL  
pF  
Inputs/outputs  
VIL  
VIH  
ILI  
LOW level input voltage  
0
0.3VDD  
VDD  
+10  
10  
V
HIGH level input voltage  
3-state leakage current  
input capacitance  
0.7VDD  
V
VI = 0 to VDD  
10  
µA  
pF  
V
CI  
VOL  
VOH  
CL  
LOW level output voltage  
HIGH level output voltage  
load capacitance  
IOL = 4 mA  
0
0.4  
IOH = 4 mA  
V
DD 0.4  
VDD  
30  
V
pF  
Clock input CLK24  
fi  
input frequency  
see Fig.19  
24.576  
7
7
MHz  
ns  
tr  
rise time  
fall time  
tf  
ns  
tcH  
tcL  
HIGH time  
LOW time  
10  
10  
ns  
ns  
Clock input FS256  
fi  
input frequency  
fs = 48 kHz  
fs = 44.1 kHz  
fs = 32 kHz  
12.288  
7
7
MHz  
MHz  
MHz  
ns  
11.2896  
8.192  
tr  
rise time  
fall time  
tf  
ns  
tcH  
tcL  
HIGH time  
LOW time  
35  
35  
ns  
ns  
May 1994  
21  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Inputs FSYNC, FRESET, FDIR, FDWS, L3MODEM, L3CLKM, L3DATAM and L3DATAC;  
referenced to CLK24 rising edge; see Fig.20; SLEEP = RESET = POR = logic 0  
tsu  
th  
tr  
set-up time  
hold time  
rise time  
fall time  
15  
20  
ns  
ns  
ns  
ns  
200  
200  
tf  
Inputs FDAI, FDCL, FDWS, FRESET and FDIR; referenced to FS256 rising edge;  
SLEEP = RESET = POR = logic 0  
tsu  
th  
tr  
set-up time  
hold time  
rise time  
fall time  
15  
20  
ns  
ns  
ns  
ns  
200  
200  
tf  
Output FDAO; referenced to FS256 rising edge; see Fig.21; SLEEP = RESET = POR = logic 0  
th  
hold time  
CL = 7.5 pF  
CL = 30 pF  
see Fig.22  
0
ns  
ns  
ns  
td  
delay time  
30  
td3  
output delay time after FDCL  
HIGH  
2Tc256 10(1)  
td4  
output delay time after FDCL  
HIGH  
see Fig.22  
3Tc256 + 60(1) ns  
Input FDCL; see Fig.22  
(1)  
Tc  
tcH  
tcL  
FDCL period  
280  
4Tc256  
ns  
ns  
ns  
FDCL HIGH time  
FDCL LOW time  
Tc256 + 35(1)  
Tc256 + 35(1)  
Inputs FDAI and FDWS; see Fig.22  
tsu1  
th1  
set-up time before FDCL HIGH  
hold time after FDCL HIGH  
3Tc256 + 60(1)  
Tc256 + 20(1)  
ns  
ns  
Input FRESET; see Fig.4  
tH  
FRESET HIGH time  
1280  
0
ns  
ns  
tsu  
FDIR set-up time before  
FRESET LOW  
210  
(2)  
th  
FDIR hold time after FRESET  
LOW  
9Tc24  
370  
ns  
SLEEP and RESET timing; see Fig.5; LOWPWR = logic 1  
(2)  
th  
RESET hold time after SLEEP  
LOW  
5Tc24  
210  
370  
ns  
ns  
(2)  
td  
CLK24 disable after SLEEP  
HIGH  
9Tc24  
May 1994  
22  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
L3 interface timing; microcontroller to SAA2013  
ADDRESS MODE; SEE FIG.16  
td1  
L3MODEM LOW to L3CLKM  
LOW  
190  
ns  
tcH  
tcL  
L3CLKM HIGH time  
L3CLKM LOW time  
250  
250  
190  
ns  
ns  
ns  
tsu1  
L3DATAM input set-up time  
before L3CLKM HIGH  
th1  
th2  
L3DATAM input hold time  
after L3CLKM HIGH  
30  
ns  
ns  
L3CLKM HIGH before  
L3MODEM HIGH  
190  
DATA MODE; SEE FIG.17  
td1  
L3MODEM HIGH to L3CLKM  
190  
ns  
LOW delay time  
tcH  
tcL  
L3CLKM HIGH time  
L3CLKM LOW time  
250  
250  
190  
ns  
ns  
ns  
tsu1  
L3DATAM input set-up time  
before L3CLKM HIGH  
th1  
th2  
td3  
th3  
td4  
L3DATAM input hold time  
after L3CLKM HIGH  
30  
ns  
ns  
ns  
ns  
L3CLKM HIGH before  
L3MODEM LOW  
190  
L3MODEM HIGH to L3DATAM  
output valid  
380  
L3DATAM output hold time  
after L3CLKM HIGH  
120  
L3CLKM HIGH to L3DATAM  
output valid delay time  
360  
530  
ns  
ns  
between bits 7  
and 8; no halt  
mode used  
td2  
td5  
L3MODEM HIGH to L3DATAM  
output enabled delay time  
0
0
50  
50  
ns  
ns  
L3MODEM LOW to L3DATAM  
output disabled delay time  
May 1994  
23  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
HALT MODE; SEE FIG.18  
tL  
L3MODEM LOW time  
190  
190  
ns  
td1  
L3MODEM HIGH to L3CLKM  
HIGH delay time  
ns  
ns  
ns  
ns  
th2  
td2  
td5  
L3CLKM HIGH before  
L3MODEM LOW  
190  
0
L3MODEM HIGH to L3DATAM  
output enabled delay time  
50  
50  
L3MODEM LOW to L3DATAM  
output disabled delay time  
0
L3 interface timing; SAA2013 to SAA2003  
ADDRESS MODE; SEE FIG.14  
td1  
L3MODEC LOW to L3CLKC  
LOW delay time  
190  
ns  
tcH  
tcL  
th2  
L3CLKC HIGH time  
L3CLKC LOW time  
210  
210  
190  
ns  
ns  
ns  
L3CLKC HIGH time before  
L3MODEC HIGH  
td3  
th1  
td4  
td2  
td5  
L3MODEC LOW to L3DATAC  
output valid delay time  
380  
ns  
ns  
ns  
ns  
ns  
L3DATAC output hold time  
after L3CLKC HIGH  
120  
L3CLKC HIGH to L3DATAC  
output valid delay time  
360  
50  
L3MODEC LOW to L3DATAC  
output enabled delay time  
0
L3MODEC HIGH to L3DATAC  
output disabled delay time  
0
50  
May 1994  
24  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
DATA MODE; SEE FIG.15  
td1  
L3MODEC HIGH to L3CLKC  
190  
ns  
LOW  
tcH  
tcL  
L3CLKC HIGH time  
L3CLKC LOW time  
210  
210  
100  
ns  
ns  
ns  
tsu1  
L3DATAC input set-up time  
before L3CLKC HIGH  
th1  
th2  
td3  
th3  
td4  
L3DATAC input hold time after  
L3CLKC HIGH  
30  
ns  
ns  
ns  
ns  
L3CLKC HIGH time before  
L3MODEC LOW  
190  
L3MODEC HIGH to L3DATAC  
output valid  
380  
L3DATAC output hold time  
after L3CLKC HIGH  
120  
L3CLKC HIGH to L3DATAC  
output valid  
360  
530  
ns  
ns  
between bits 7  
and 8; no halt  
mode used  
HALT MODE; SEE FIG.18  
tL  
L3MODEC LOW time  
190  
190  
ns  
ns  
td1  
L3MODEC HIGH to L3CLKC  
HIGH delay time  
th2  
L3CLKC HIGH time before  
L3MODEC LOW  
190  
ns  
L3 interface delays in bypassed mode; LOWPWR = logic 1  
tpd1  
propagation delay from  
L3MODEM to L3MODEC;  
L3DATAM to L3DATAC;  
L3CLKM to L3CLKC  
35  
ns  
tpd2  
propagation delay from  
L3DATAM to L3DATAC;  
L3CLKM to L3CLKC  
20  
20  
+4  
+4  
ns  
ns  
tpd3  
propagation delay from  
L3DATAM to L3DATAC;  
L3MODEM to L3MODEC  
Notes  
1. Tc256 is a clock period of FS256.  
2. Tc24 is a clock period of CLK24.  
May 1994  
25  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
PACKAGE OUTLINE  
seating  
plane  
S
0.1 S  
12.9  
12.3  
1.2  
0.8  
(4x)  
44  
34  
B
33  
1
pin 1 index  
0.8  
10.1 12.9  
9.9  
12.3  
0.40  
0.20  
11  
23  
12  
22  
1.2  
0.8  
(4x)  
0.40  
0.20  
0.15 M  
A
X
0.8  
10.1  
9.9  
A
0.85  
0.75  
1.85  
1.65  
2.10  
1.70  
0.25  
0.14  
0.25  
0.05  
o
0 to 10  
0.95  
0.55  
detail X  
MBB944 - 2  
Dimensions in mm.  
Fig.24 Plastic quad flat-pack, 44-pin (short) (QFP44SL).  
26  
May 1994  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
applied to the substrate by screen printing, stencilling or  
pressure-syringe dispensing before device placement.  
SOLDERING  
Plastic quad flat-packs  
BY WAVE  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt, infrared, and  
vapour-phase reflow. Dwell times vary between 50 and  
300 s according to method. Typical reflow temperatures  
range from 215 to 250 °C.  
During placement and before soldering, the component  
must be fixed with a droplet of adhesive. After curing the  
adhesive, the component can be soldered. The adhesive  
can be applied by screen printing, pin transfer or syringe  
dispensing.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 min at 45 °C.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder bath is  
10 s, if allowed to cool to less than 150 °C within 6 s.  
Typical dwell time is 4 s at 250 °C.  
REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING  
IRON OR PULSE-HEATED SOLDER TOOL)  
Fix the component by first soldering two, diagonally  
opposite, end pins. Apply the heating tool to the flat part of  
the pin only. Contact time must be limited to 10 s at up to  
300 °C. When using proper tools, all other pins can be  
soldered in one operation within 2 to 5 s at between 270  
and 320 °C. (Pulse-heated soldering is not recommended  
for SO packages.)  
A modified wave soldering technique is recommended  
using two solder waves (dual-wave), in which a turbulent  
wave with high upward pressure is followed by a smooth  
laminar wave. Using a mildly-activated flux eliminates the  
need for removal of corrosive residues in most  
applications.  
For pulse-heated solder tool (resistance) soldering of VSO  
packages, solder is applied to the substrate by dipping or  
by an extra thick tin/lead plating before package  
placement.  
BY SOLDER PASTE REFLOW  
Reflow soldering requires the solder paste (a suspension  
of fine solder particles, flux and binding agent) to be  
May 1994  
27  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
The Digital Compact Cassette logo is a registered trade mark of Philips Electronics N.V.  
May 1994  
28  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
NOTES  
May 1994  
29  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
NOTES  
May 1994  
30  
Philips Semiconductors  
Preliminary specification  
Adaptive allocation and scaling for PASC  
coding in DCC systems  
SAA2013  
NOTES  
May 1994  
31  
Philips Semiconductors – a worldwide company  
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)  
Norway: Box 1, Manglerud 0612, OSLO,  
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367  
Tel. (022)74 8000, Fax. (022)74 8341  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. (02)805 4455, Fax. (02)805 4466  
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,  
Pakistan: Philips Electrical Industries of Pakistan Ltd.,  
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,  
KARACHI 75600, Tel. (021)587 4641-49,  
Fax. (021)577035/5874546.  
Tel. (01)60 101-1236, Fax. (01)60 101-1211  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474  
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,  
Tel. (31)40 783 749, Fax. (31)40 788 399  
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil.  
P.O. Box 7383 (01064-970).  
Portugal: PHILIPS PORTUGUESA, S.A.,  
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,  
Apartado 300, 2795 LINDA-A-VELHA,  
Tel. (01)14163160/4163333, Fax. (01)14163174/4163366.  
Tel. (011)821-2327, Fax. (011)829-1849  
Canada: INTEGRATED CIRCUITS:  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (800)234-7381, Fax. (708)296-8556  
DISCRETE SEMICONDUCTORS: 601 Milner Ave,  
SCARBOROUGH, ONTARIO, M1B 1M8,  
Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477  
Tel. (65)350 2000, Fax. (65)251 6500  
South Africa: S.A. PHILIPS Pty Ltd., Components Division,  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430 Johannesburg 2000,  
Tel. (011)470-5911, Fax. (011)470-5494.  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03)301 6312, Fax. (03)301 42 43  
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,  
Tel. (0)8-632 2000, Fax. (0)8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Chile: Av. Santa Maria 0760, SANTIAGO,  
Tel. (02)773 816, Fax. (02)777 6730  
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,  
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,  
Fax. (571)217 4549  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. (032)88 2636, Fax. (031)57 1949  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (01)488 2211, Fax. (01)481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West  
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,  
TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.  
Tel. (9)0-50261, Fax. (9)0-520971  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong,  
Bangkok 10260, THAILAND,  
Tel. (662)398-0141, Fax. (662)398-3319.  
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (01)4099 6161, Fax. (01)4099 6427  
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H.,  
P.O. Box 10 63 23, 20043 HAMBURG,  
Tel. (040)3296-0, Fax. (040)3296 213.  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (0212)279 2770, Fax. (0212)269 3094  
Tel. (01)4894 339/4894 911, Fax. (01)4814 240  
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,  
Philips House, Torrington Place, LONDON, WC1E 7HD,  
Tel. (071)436 41 44, Fax. (071)323 03 42  
Hong Kong: PHILIPS HONG KONG Ltd., Components Div.,  
6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T.,  
Tel. (852)424 5121, Fax. (852)428 6729  
India: Philips INDIA Ltd, Components Dept,  
Shivsagar Estate, A Block ,  
Dr. Annie Besant Rd. Worli, Bombay 400 018  
Tel. (022)4938 541, Fax. (022)4938 722  
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,  
P.O. Box 4252, JAKARTA 12950,  
United States:INTEGRATED CIRCUITS:  
811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. (800)234-7381, Fax. (708)296-8556  
DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,  
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404,  
Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300  
Uruguay: Coronel Mora 433, MONTEVIDEO,  
Tel. (021)5201 122, Fax. (021)5205 189  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (02)70-4044, Fax. (02)92 0601  
For all other countries apply to: Philips Semiconductors,  
International Marketing and Sales, Building BAF-1,  
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,  
Telex 35000 phtcnl, Fax. +31-40-724825  
Tel. (01)640 000, Fax. (01)640 200  
Italy: PHILIPS COMPONENTS S.r.l.,  
Viale F. Testi, 327, 20162 MILANO,  
Tel. (02)6752.3302, Fax. (02)6752 3300.  
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,  
SCD31  
© Philips Electronics N.V. 1994  
Tel. (03)3740 5028, Fax. (03)3740 0580  
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880  
Mexico: Philips Components, 5900 Gateway East, Suite 200,  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556  
Printed in The Netherlands  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB  
Tel. (040)783749, Fax. (040)788399  
513061/1500/01/pp32  
Date of release: May 1994  
9397 731 90011  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. (09)849-4160, Fax. (09)849-7811  
Document order number:  
Philips Semiconductors  

相关型号:

SAA2013HB-S

Digital Audio Tape Circuit
ETC

SAA2022

Tape formatting and error correction for the DCC system
NXP

SAA2022GP

Tape formatting and error correction for the DCC system
NXP

SAA2023

Drive processor for DCC systems
NXP

SAA2023GP

Drive processor for DCC systems
NXP

SAA2023H

Drive processor for DCC systems
NXP

SAA2032

Digital equalization for the tape drive processing of the DCC system
NXP

SAA2032GP

Digital equalization for the tape drive processing of the DCC system
NXP

SAA2231001

RF SMA/SSMA Connector, 1 Contact(s), Female, Cable Mount, Crimp Terminal, Locking, Jack
SEMIPOWER

SAA2500

MPEG Audio Source Decoder
NXP

SAA2500GP

Video Processing/ENDEC for MPEG
ETC

SAA2500H

MPEG Audio Source Decoder
NXP