PCK351D,112 [NXP]

PCK351D;
PCK351D,112
型号: PCK351D,112
厂家: NXP    NXP
描述:

PCK351D

PC 驱动 光电二极管 逻辑集成电路
文件: 总18页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCK351  
1 : 10 clock distribution device with 3-state outputs  
Rev. 02 — 16 December 2005  
Product data sheet  
1. General description  
The PCK351 is a high-performance 3.3 V LVTTL clock distribution device. The PCK351  
enables a single clock input to be distributed to ten outputs with minimum output skew and  
pulse skew. The use of distributed VCC and GND pins in the PCK351 ensures reduced  
switching noise.  
The PCK351 is characterized for operation over the supply range 3.0 V to 3.6 V, and over  
the industrial temperature range 40 °C to +85 °C.  
2. Features  
1 : 10 LVTTL clock distribution  
Low output-to-output skew  
Low output pulse skew  
Overvoltage tolerant inputs and outputs  
LVTTL-compatible inputs and outputs  
Distributed VCC and ground pins reduce switching noise  
Balanced high-drive outputs (32 mA IOH, 32 mA IOL  
)
Reduced power dissipation due to the state-of-the-art QUBiC-LP process  
Supply range of +3.0 V to +3.6 V  
Package options include plastic small-outline (D) and shrink small-outline (DB)  
packages  
Industrial temperature range 40 °C to +85 °C  
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
3. Quick reference data  
Table 1:  
Quick reference data  
GND = 0 V; Tamb = 25 °C; tr = tf 3.0 ns.  
Symbol Parameter Conditions  
Min  
Typ  
Max Unit  
tPLH  
tPHL  
Ci  
LOW-to-HIGH  
propagation delay  
A input to Yn outputs;  
CL = 50 pF; VCC = 3.3 V  
3.1  
3.6  
4.1  
ns  
ns  
pF  
pF  
pF  
HIGH-to-LOW  
propagation delay  
A input to Yn outputs;  
CL = 50 pF; VCC = 3.3 V  
3.1  
3.6  
4
4.1  
input capacitance  
VCC = 3.3 V; VI = VCC or GND;  
f = 10 MHz  
-
-
-
-
-
-
Co  
output capacitance VCC = 3.3 V; VO = VCC or GND;  
f = 10 MHz  
6
CPD  
power dissipation  
capacitance[1]  
CL = 50 pF; f = 1 MHz  
48  
[1] CPD is used to determine the dynamic power dissipation (P in µW).  
P = CPD × VCC2 × fi + (CL × VCC2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
(CL × VCC2 × fo) = sum of outputs;  
CL = output load capacitance in pF;  
VCC = supply voltage in volts.  
4. Ordering information  
Table 2:  
Ordering information  
Tamb = 40 °C to +85 °C  
Type number  
Package  
Name  
Description  
Version  
PCK351D  
SO24  
plastic small outline package; 24 leads;  
body width 7.5 mm  
SOT137-1  
PCK351DB  
SSOP24  
plastic shrink small outline package; 24 leads;  
body width 5.3 mm  
SOT340-1  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
2 of 18  
 
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
5. Functional diagram  
5
OE  
23  
Y1  
21  
Y2  
19  
Y3  
18  
Y4  
6
A
16  
Y5  
14  
Y6  
11  
Y7  
9
Y8  
4
Y9  
2
Y10  
002aaa282  
Fig 1. Logic diagram of PCK351  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
3 of 18  
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
6. Pinning information  
6.1 Pinning  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
Y10  
GND  
Y1  
GND  
Y10  
GND  
Y1  
3
3
V
CC  
V
V
CC  
V
CC  
CC  
4
4
Y9  
Y2  
Y9  
Y2  
5
5
OE  
A
GND  
Y3  
OE  
A
GND  
Y3  
6
6
PCK351D  
PCK351DB  
7
7
GND  
GND  
Y8  
Y4  
GND  
GND  
Y8  
Y4  
8
8
GND  
Y5  
GND  
Y5  
9
9
10  
11  
12  
10  
11  
12  
V
CC  
V
V
CC  
V
CC  
CC  
Y7  
Y6  
Y7  
Y6  
GND  
GND  
GND  
GND  
002aaa280  
002aaa281  
Fig 2. Pin configuration for SO24  
Fig 3. Pin configuration for SSOP24  
6.2 Pin description  
Table 3:  
Symbol  
Pin description  
Pin  
Description  
ground (0 V)  
outputs  
GND  
Y10  
Y9  
1, 7, 8, 12, 13, 17, 20, 24  
2
4
Y8  
9
Y7  
11  
Y6  
14  
Y5  
16  
Y4  
18  
Y3  
19  
Y2  
21  
Y1  
23  
VCC  
OE  
A
3, 10, 15, 22  
supply voltage  
5
6
output enable input (active LOW)  
data input  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
4 of 18  
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
7. Functional description  
Refer to Figure 1 “Logic diagram of PCK351”.  
7.1 Function table  
Table 4:  
Function table  
H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state  
Inputs  
Outputs  
A
L
OE  
H
Yn  
Z
H
L
H
Z
L
L
H
L
H
7.2 Logic symbol  
5
6
EN  
OE  
23  
21  
19  
18  
16  
14  
11  
9
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
A
4
2
002aaa283  
Fig 4. Logic symbol  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
5 of 18  
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
8. Limiting values  
Table 5:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]  
Symbol  
VCC  
VI  
Parameter  
Conditions  
Min  
Max  
+4.6  
+7.0  
+3.6  
18  
50  
64  
Unit  
V
supply voltage  
0.5  
0.5[2]  
0.5[2]  
input voltage  
V
VO  
output voltage  
V
IIK  
input clamping current  
output clamping current  
output sink current  
quiescent supply current  
ground current  
VI < 0 V  
VI < 0 V  
-
mA  
mA  
mA  
mA  
mA  
°C  
IOK  
-
IO(sink)  
ICC  
-
-
±75  
±75  
+150  
IGND  
Tstg  
P
-
storage temperature  
power dissipation  
65  
Tamb = +55 °C  
SO package  
-
-
0.65  
1.7  
W
W
SSOP package  
[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal  
environment can create junction temperatures which are detrimental to reliability. The maximum junction  
temperature of this integrated circuit should not exceed 150 °C.  
[2] The input and output negative voltage ratings may be exceeded if the input and output clamping currents  
are observed.  
9. Recommended operating conditions  
Table 6:  
Recommended operating conditions  
Unused pins (input or I/O) must be held HIGH or LOW.  
Symbol Parameter  
Conditions  
Min  
3.0  
2.0  
0
Max  
3.6  
Unit  
V
VCC  
VIH  
VI  
supply voltage  
HIGH-state input voltage  
input voltage  
5.5  
V
0.8  
V
Tamb  
ambient temperature  
see Table 7 and Table 8  
per device  
40  
+85  
°C  
tr  
tf  
rise time  
fall time  
input; VCC = 3.3 ± 0.3 V  
input; VCC = 3.3 ± 0.3 V  
-
-
100  
100  
ns/V  
ns/V  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
6 of 18  
 
 
 
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
10. Characteristics  
Table 7:  
Static characteristics  
Over recommended operating conditions; voltages are referenced to GND (ground = 0 V). Tamb = 25 °C.  
Symbol Parameter  
Conditions  
VCC = 3.0 V; II = 18 mA  
Min  
Typ  
Max  
1.2  
-
Unit  
V
VIK  
VOH  
VOL  
ILI  
input clamping voltage  
-
-
-
-
-
-
-
HIGH-state output voltage VCC = 3.0 V; IOH = 32 mA  
LOW-state output voltage VCC = 3.0 V; IOL = 32 mA  
2.0  
V
-
0.5  
V
input leakage current  
output leakage current  
OFF-state output current  
quiescent supply current  
VCC = 3.6 V; VI = GND or 5.5 V  
VCC = 3.6 V; VO = 2.5 V  
3-state; VCC = 3.6 V; VO = 3 V  
VCC = 3.6 V; VI = VCC or GND; IO = 0 A  
outputs HIGH  
-
±1.0  
150  
±10  
µA  
mA  
µA  
ILO  
IOZ  
ICC  
15  
[1]  
-
-
-
-
-
-
0.3  
25  
0.3  
-
mA  
mA  
mA  
pF  
outputs LOW  
-
outputs disabled  
-
Ci  
input capacitance  
output capacitance  
VCC = 3.3 V; VI = VCC or GND;  
f = 10 MHz  
4
Co  
VCC = 3.3 V; VO = VCC or GND;  
f = 10 MHz  
-
6
-
pF  
[1] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
7 of 18  
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
Table 8:  
Dynamic characteristics  
GND = 0 V; tr = tf 2.5 ns.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCC = 3.3 V; Tamb = 25 °C; CL = 50 pF  
tPLH  
tPHL  
tPZH  
tPZL  
tPHZ  
tPLZ  
tsk(o)  
LOW-to-HIGH propagation delay  
HIGH-to-LOW propagation delay  
A to Yn; see Figure 5 and Figure 8  
A to Yn; see Figure 5 and Figure 8  
3.1  
3.1  
1.8  
1.8  
1.8  
1.8  
-
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
0.3  
4.1  
4.1  
5.5  
5.5  
5.9  
5.9  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OFF-state to HIGH propagation delay OE to Yn; see Figure 6 and Figure 8  
OFF-state to LOW propagation delay OE to Yn; see Figure 6 and Figure 8  
HIGH to OFF-state propagation delay OE to Yn; see Figure 6 and Figure 8  
LOW to OFF-state propagation delay OE to Yn; see Figure 6 and Figure 8  
output skew time  
A to Yn; output-to-output;  
see Figure 7 and Figure 8  
tsk(p)  
pulse skew time  
A to Yn; see Figure 7 and Figure 8  
-
-
0.2  
-
0.8  
1
ns  
ns  
tsk(pr)  
process skew time  
A to Yn; part-to-part;  
see Figure 7 and Figure 8  
tr  
tf  
rise time  
fall time  
A to Yn; see Figure 5 and Figure 8  
A to Yn; see Figure 5 and Figure 8  
0.3  
0.3  
-
-
2.0  
2.0  
ns  
ns  
VCC = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; CL = 50 pF  
tPLH  
tPHL  
tPZH  
tPZL  
tPHZ  
tPLZ  
tsk(o)  
LOW-to-HIGH propagation delay  
HIGH-to-LOW propagation delay  
A to Yn; see Figure 5 and Figure 8  
A to Yn; see Figure 5 and Figure 8  
2.5  
2.5  
1.3  
1.3  
1.7  
1.7  
-
3.3  
5.9  
5.9  
5.9  
5.9  
6.3  
6.3  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.3  
OFF-state to HIGH propagation delay OE to Yn; see Figure 6 and Figure 8  
OFF-state to LOW propagation delay OE to Yn; see Figure 6 and Figure 8  
HIGH to OFF-state propagation delay OE to Yn; see Figure 6 and Figure 8  
LOW to OFF-state propagation delay OE to Yn; see Figure 6 and Figure 8  
-
-
-
-
-
output skew time  
A to Yn; output-to-output;  
see Figure 7 and Figure 8  
tsk(p)  
pulse skew time  
A to Yn; see Figure 7 and Figure 8  
-
-
-
-
0.8  
1
ns  
ns  
tsk(pr)  
process skew time  
A to Yn; part-to-part;  
see Figure 7 and Figure 8  
tr  
tf  
rise time  
fall time  
A to Yn; see Figure 5 and Figure 8  
A to Yn; see Figure 5 and Figure 8  
0.3  
0.3  
-
-
2.0  
2.0  
ns  
ns  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
8 of 18  
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
Table 9:  
Switching characteristics  
Temperature and VCC coefficients over recommended operating free-air temperature and VCC range. [1]  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
[2]  
[3]  
[3]  
tPLH(T)  
tPHL(T)  
tPLH(V)  
tPHL(V)  
temperature coefficient of LOW-to-HIGH propagation delay  
A to Yn (average value)  
-
65  
ps/10 °C  
temperature coefficient of HIGH-to-LOW propagation delay  
A to Yn (average value)  
-
-
-
45  
ps/10 °C  
VCC coefficient of LOW-to-HIGH propagation delay A to Yn  
(average value)  
140  
120  
ps/100 mV  
ps/100 mV  
VCC coefficient of HIGH-to-LOW propagation delay A to Yn  
(average value)  
[1] These data were extracted from characterization material and are not tested at the factory.  
[2] tPLH(T) and tPHL(T) are virtually independent of VCC  
.
[3] tPLH(V) and tPHL(V) are virtually independent of temperature.  
10.1 AC waveforms  
3.0 V  
0 V  
A input  
1.5 V  
t
t
PLH  
PHL  
V
OH  
OL  
2 V  
Yn output  
1.5 V  
0.8 V  
V
t
t
f
r
002aaa289  
Fig 5. The input (A) to outputs (Yn) propagation delays and rise and fall times  
3 V  
OE input  
1.5 V  
0 V  
t
PZL  
t
PLZ  
V
CC  
output  
LOW-to-OFF  
OFF-to-LOW  
1.5 V  
V
+ 0.3 V  
OL  
V
V
V
OL  
t
t
PZH  
PHZ  
OH  
0.3 V  
OH  
output  
HIGH-to-OFF  
OFF-to-HIGH  
1.5 V  
GND  
outputs  
disabled  
outputs  
disabled  
outputs  
disabled  
002aaa290  
Fig 6. 3-state enable and disable times  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
9 of 18  
 
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
A input  
Y1 output  
Y2 output  
Y3 output  
Y4 output  
Y5 output  
Y6 output  
Y7 output  
Y8 output  
Y9 output  
Y10 output  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
PHL(A-Y1)  
PHL(A-Y2)  
PHL(A-Y3)  
PHL(A-Y4)  
PHL(A-Y5)  
PHL(A-Y6)  
PHL(A-Y7)  
PHL(A-Y8)  
PHL(A-Y9)  
PHL(A-Y10)  
PLH(A-Y1)  
PLH(A-Y2)  
PLH(A-Y3)  
PLH(A-Y4)  
PLH(A-Y5)  
PLH(A-Y6)  
PLH(A-Y7)  
PLH(A-Y8)  
PLH(A-Y9)  
PLH(A-Y10)  
002aaa286  
Output-to-output skew is the highest values of positive and negative edge skew:  
tsk(o) = tPLH(A-Yn)(max) tPLH(A-Yn)(min) and tsk(o) = tPHL(A-Yn)(max) tPHL(A-Yn)(min)  
.
Output pulse skew is the highest value of: tsk(p) = |tPLH(A-Yn) tPHL(A-Yn)|.  
Part-to-part skew tsk(pr) represents the positive and negative edge skew between outputs of  
several devices operating under identical conditions.  
Fig 7. Calculation of tsk(o), tsk(p), and tsk(pr)  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
10 of 18  
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
11. Test information  
6 V  
S1  
open  
GND  
V
R
L
500  
CC  
V
V
O
I
PULSE  
DUT  
GENERATOR  
C
50 pF  
R
L
500 Ω  
L
R
T
002aaa285  
Test data are given in Table 10.  
CL = load capacitance includes jig and probe capacitance.  
RL = load resistance.  
RT = termination resistance.  
Fig 8. Load circuitry for switching times  
Table 10: Test data  
Test  
Load  
CL  
Switch  
RL  
tPLH, tPHL  
tPLZ, tPZL  
tPHZ, tPZH  
50 pF  
50 pF  
50 pF  
500 Ω  
500 Ω  
500 Ω  
open  
6 V  
GND  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
11 of 18  
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
12. Package outline  
SO24: plastic small outline package; 24 leads; body width 7.5 mm  
SOT137-1  
D
E
A
X
c
H
v
M
A
E
y
Z
24  
13  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
12  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
15.6  
15.2  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
2.65  
0.1  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25  
0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.61  
0.014 0.009 0.60  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches  
0.055  
0.01  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT137-1  
075E05  
MS-013  
Fig 9. Package outline SOT137-1 (SO24)  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
12 of 18  
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm  
SOT340-1  
D
E
A
X
v
c
H
M
A
y
E
Z
24  
13  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
12  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.21  
0.05  
1.80  
1.65  
0.38  
0.25  
0.20  
0.09  
8.4  
8.0  
5.4  
5.2  
7.9  
7.6  
1.03  
0.63  
0.9  
0.7  
0.8  
0.4  
mm  
2
0.65  
1.25  
0.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT340-1  
MO-150  
Fig 10. Package outline SOT340-1 (SSOP24)  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
13 of 18  
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
13. Soldering  
13.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
14 of 18  
 
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
13.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
13.5 Package related soldering information  
Table 11: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
15 of 18  
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
14. Revision history  
Table 12: Revision history  
Document ID  
PCK351_2  
Release date Data sheet status  
20051216 Product data sheet  
Change notice Doc. number  
Supersedes  
-
-
PCK351-01  
Modifications:  
The format of this data sheet has been redesigned to comply with the new presentation and  
information standard of Philips Semiconductors.  
Section 2 “Features”: deleted (old) 12th bullet  
Table 2 “Ordering information”: changed “Temperature range = 65 °C to +150 °C” to  
“Tamb = 40 °C to +85 °C”  
Table 5 “Limiting values”:  
removed (old) Table note [1]; this is now presented in the Definitions section  
symbol “IO” changed to “IO(sink)  
row “ICC, IGND” split to 2 rows, and parameter for each revised  
Table 6 “Recommended operating conditions”:  
moved (old) Table note [1] to description below table title  
split row “tr, tf”  
Table 7 “Static characteristics”: changed parameter description of VIK from “input diode voltage”  
to “input clamping voltage”  
Table 8 “Dynamic characteristics”:  
in descriptive line below table title: changed “tr = tf = 3.0 ns” to “tr = tf = 2.5 ns”  
(VCC = 3.3 V) typical value for tPLH and tPHL (A to Yn) changed from 3.6 ns to 3.8 ns  
(VCC = 3.3 V) typical value for tPHZ and tPZH (OE to Yn) changed from 4.0 ns to 3.8 ns  
(VCC = 3.3 V) tr and tf minimum values changed from “-” to “0.3 ns”; maximum values  
changed from “-” to “2.0 ns”  
subheading “VCC = 3.3 to 3.6 V; Tamb = 0 °C to +70 °C” changed to  
“VCC = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C”  
(VCC = 3.0 V to 3.6 V) values for tPLH and tPHL (A to Yn) changed from “-” to “2.5 ns” (min),  
“3.3 ns” (typ), “5.9 ns” (max)  
(VCC = 3.0 V to 3.6 V) tr and tf minimum values changed from “-” to “0.3 ns”; maximum values  
changed from “-” to “2.0 ns”  
PCK351-01  
20020514  
Product data  
853-2344 28198 9397 750 09791  
-
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
16 of 18  
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
15. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
16. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
makes no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
18. Trademarks  
Notice — All referenced brands, product names, service names and  
17. Disclaimers  
trademarks are the property of their respective owners.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
19. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
PCK351_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 16 December 2005  
17 of 18  
 
 
 
 
 
PCK351  
Philips Semiconductors  
1 : 10 clock distribution device with 3-state outputs  
20. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
7.2  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Logic symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended operating conditions. . . . . . . . 6  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 11  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 12  
9
10  
10.1  
11  
12  
13  
13.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 14  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 14  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 15  
Package related soldering information . . . . . . 15  
13.2  
13.3  
13.4  
13.5  
14  
15  
16  
17  
18  
19  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 16  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 17  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Contact information . . . . . . . . . . . . . . . . . . . . 17  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 16 December 2005  
Document number: PCK351_2  
Published in The Netherlands  

相关型号:

NXP

PCK351DB

1:10 clock distribution device with 3-State outputs
NXP

PCK351DB,118

PCK351 - 1 : 10 clock distribution device with 3-state outputs SSOP2 24-Pin
NXP

PCK3807A

1:10 LVTTL clock distribution device
NXP

PCK3807AD

1:10 LVTTL clock distribution device
NXP

PCK3807AD,118

PCK3807A - 1:10 LVTTL clock distribution device SOP 20-Pin
NXP

PCK3807ADB

1:10 LVTTL clock distribution device
NXP

PCK3807ADB,112

PCK3807A - 1:10 LVTTL clock distribution device
NXP

PCK3807ADS

1:10 LVTTL clock distribution device
NXP

PCK3807ADS,112

暂无描述
NXP

PCK3807ADS,118

PCK3807A - 1:10 LVTTL clock distribution device SSOP2 20-Pin
NXP

PCK3807APW

1:10 LVTTL clock distribution device
NXP