PCF85134HL-1 [NXP]

Universal LCD driver for low multiplex rates; 低复用率的通用LCD驱动器
PCF85134HL-1
型号: PCF85134HL-1
厂家: NXP    NXP
描述:

Universal LCD driver for low multiplex rates
低复用率的通用LCD驱动器

驱动器 CD
文件: 总40页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF85134  
Universal LCD driver for low multiplex rates  
Rev. 01 — 17 December 2009  
Product data sheet  
1. General description  
The PCF85134 is a peripheral device which interfaces to almost any LCD1 with low  
multiplex rates. It generates the drive signals for any static or multiplexed LCD containing  
up to four backplanes and up to 60 segments. In addition, the PCF85134 can be easily  
cascaded for larger LCD applications. The PCF85134 is compatible with most  
microprocessors or microcontrollers and communicates via a two-line bidirectional  
I2C-bus. Communication overheads are minimized using display RAM with  
auto-incremented addressing, hardware subaddressing, and display memory switching  
(static and duplex drive modes).  
2. Features  
I Single-chip LCD controller and driver  
I Selectable backplane drive configurations: static, 2, 3, or 4 backplane multiplexing  
I 60 segment outputs allowing to drive:  
N 30 7-segment alphanumeric characters  
N 16 14-segment alphanumeric characters  
N Any graphics of up to 240 elements  
I Cascading supported for larger applications  
I 60 × 4-bit display data storage RAM  
I Wide LCD supply range: from 2.5 V for low threshold LCDs up to 6.5 V for guest-host  
LCDs and high threshold twisted nematic LCDs  
I Internal LCD bias generation with voltage follower buffers  
I Selectable display bias configurations: static, 12, or 13  
I Wide logic power supply range: from 1.8 V to 5.5 V  
I LCD and logic supplies may be separated  
I Low power consumption  
I 400 kHz I2C-bus interface  
I Compatible with any microprocessor or microcontroller  
I No external components required  
I Display memory bank switching in static and duplex drive mode  
I Auto-incremented display data loading  
I Versatile blink modes  
I Silicon gate CMOS process  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 17.  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Delivery form  
Version  
PCF85134HL/1  
LQFP80  
plastic low profile quad flat package;  
tape and reel  
SOT315-1  
80 leads; body 12 × 12 × 1.4 mm  
4. Marking  
Table 2.  
Marking codes  
Type number  
Marking code  
PCF85134HL  
PCF85134HL/1  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
2 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
5. Block diagram  
BP0 BP1 BP2 BP3  
S0 to S59  
60  
V
LCD  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
DISPLAY REGISTER  
LCD  
VOLTAGE  
SELECTOR  
OUTPUT BANK SELECT  
AND BLINK CONTROL  
DISPLAY  
CONTROL  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY  
RAM  
PCF85134  
CLK  
BLINKER  
CLOCK SELECT  
TIMEBASE  
AND TIMING  
SYNC  
COMMAND  
DECODE  
DATA POINTER AND  
AUTO INCREMENT  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
OSC  
OSCILLATOR  
SCL  
SDA  
2
SUBADDRESS  
COUNTER  
INPUT  
FILTERS  
I C-BUS  
CONTROLLER  
A0 A1 A2  
SA0  
V
DD  
013aaa204  
Fig 1. Block diagram of PCF85134  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
3 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6. Pinning information  
6.1 Pinning  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S10  
S9  
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PCF85134  
V
LCD  
V
SS  
SA0  
A2  
A1  
A0  
OSC  
SYNC  
V
DD  
013aaa205  
Top view. For mechanical details, see Figure 22.  
Fig 2. Pin configuration for SOT315-1 (PCF85134)  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
4 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.2 Pin description  
Table 3.  
Symbol  
S31 to S59  
BP0 to BP3  
n.c.  
Pin description  
Pin  
Description  
1 to 29  
30 to 33  
34 to 37  
38  
LCD segment output 31 to 59  
LCD backplane output 0 to 3  
not connected  
I2C-bus serial data input and output  
I2C-bus serial clock input  
SDA  
SCL  
39  
CLK  
40  
external clock input and internal clock output  
supply voltage  
VDD  
41  
SYNC  
OSC  
42  
cascade synchronization input and output (active LOW)  
enable input for internal oscillator  
subaddress counter input 0 to 2  
I2C-bus slave address input 0  
ground supply voltage  
43  
A0 to A2  
SA0  
44 to 46  
47  
VSS  
48  
VLCD  
49  
input of LCD supply voltage  
LCD segment output 0 to 30  
S0 to S30  
50 to 80  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
5 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7. Functional description  
The PCF85134 is a versatile peripheral device designed to interface any microprocessor  
or microcontroller to a wide variety of LCDs. It can directly drive any static or multiplexed  
LCD containing up to four backplanes and up to 60 segments.  
The display configurations possible with the PCF85134 depend on the number of active  
backplane outputs required. A selection of display configurations is shown in Table 4. All  
of these configurations can be implemented in the typical system shown in Figure 3.  
Table 4.  
Selection of display configurations  
7-segment alphanumeric  
Digits Indicator symbols  
30 30  
Number of  
14-segment alphanumeric  
Dot matrix  
Backplanes Elements  
Characters  
Indicator symbols  
4
3
2
1
240  
180  
120  
60  
16  
12  
8
16  
12  
8
240 (4 × 60)  
180 (3 × 60)  
120 (2 × 60)  
60 (1 × 60)  
22  
15  
7
26  
15  
11  
4
4
V
DD  
t
r
R
2C  
b
V
DD  
V
LCD  
60 segment drives  
SDA  
SCL  
HOST  
MICRO-  
LCD PANEL  
PROCESSOR/  
MICRO-  
CONTROLLER  
PCF85134  
(up to 240  
elements)  
4 backplanes  
OSC  
A0 A1 A2 SA0  
V
SS  
013aaa206  
V
SS  
Fig 3. Typical system configuration  
The host microprocessor or microcontroller maintains the 2-line I2C-bus communication  
channel with the PCF85134.  
Biasing voltages for the multiplexed LCD waveforms are generated internally, removing  
the need for an external bias generator. The internal oscillator is selected by connecting  
pin OSC to VSS. The only other connections required to complete the system are the  
power supplies (pins VDD, VSS and VLCD) and the LCD panel selected for the application.  
7.1 Power-On Reset (POR)  
At power-on, the PCF85134 resets to the following default starting conditions:  
All backplane outputs are set to VLCD  
All segment outputs are set to VLCD  
The selected drive mode is: 1:4 multiplex with 13 bias  
Blinking is switched off  
Input and output bank selectors are reset  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
6 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The I2C-bus interface is initialized  
The data pointer and the subaddress counter are cleared (set to logic 0)  
The display is disabled  
Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow the  
reset action to complete.  
7.2 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider of three  
series resistors connected between pins VLCD and VSS. The center resistor is bypassed  
by switch if the 12 bias voltage level for the 1:2 multiplex drive mode configuration is  
selected.  
7.3 LCD voltage selector  
The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by the  
mode-set command (see Table 10) from the command decoder. The biasing  
configurations that apply to the preferred modes of operation, together with the biasing  
characteristics as functions of VLCD and the resulting discrimination ratios (D) are given in  
Table 5.  
Table 5.  
Biasing characteristics  
Number of:  
LCD drive  
mode  
LCD bias  
configuration  
V off (RMS)  
V on(RMS)  
V on(RMS)  
--------------------------  
V LCD  
D = --------------------------  
V off (RMS)  
------------------------  
V LCD  
Backplanes Levels  
static  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
1:2 multiplex  
1:2 multiplex  
1:3 multiplex  
1:4 multiplex  
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
3
1
3
1
3
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode a suitable choice is VLCD > 3Vth.  
Multiplex drive modes of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1:  
a2 + 2a + n  
n × (1 + a)2  
Von(RMS) = V  
-----------------------------  
(1)  
LCD  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
7 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
where the values for n are  
n = 1 for static drive mode  
n = 2 for 1:2 multiplex drive mode  
n = 3 for 1:3 multiplex drive mode  
n = 4 for 1:4 multiplex drive mode  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 2:  
a2 2a + n  
n × (1 + a)2  
Voff (RMS) = V  
-----------------------------  
(2)  
(3)  
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from Equation 3:  
(a + 1)2 + (n 1)  
V on(RMS)  
D =  
=
-------------------------------------------  
------------------------  
(a 1)2 + (n 1)  
V off (RMS)  
Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with  
12 bias is 3 = 1.732 and the discrimination for an LCD drive mode of 1:4 multiplex with  
21  
12 bias is ---------- = 1.528 .  
3
The advantage of these LCD drive modes is a reduction of the LCD full scale voltage VLCD  
as follows:  
1:3 multiplex (12 bias):V LCD  
1:4 multiplex (12 bias):V LCD  
=
=
6 × V off (RMS) = 2.449V off (RMS)  
(4 × 3)  
= 2.309V off (RMS)  
---------------------  
3
These compare withV LCD = 3V off (RMS) when 13 bias is used.  
It should be noted that VLCD is sometimes referred as the LCD operating voltage.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
8 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4 LCD drive mode waveforms  
7.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 4.  
T
fr  
LCD segments  
V
LCD  
BP0  
Sn  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
V
SS  
V
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
0 V  
state 1  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa207  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = VLCD  
.
Vstate2(t) = V(Sn + 1)(t) VBP0(t).  
Voff(RMS) = 0 V.  
Fig 4. Static drive mode waveforms  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
9 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.2 1:2 Multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF85134 allows the use of 12 bias or 13 bias in this mode as shown in Figure 5 and  
Figure 6.  
T
fr  
V
LCD  
LCD segments  
V
V
/2  
/2  
BP0  
BP1  
Sn  
LCD  
SS  
state 1  
V
LCD  
state 2  
V
V
LCD  
SS  
V
LCD  
V
V
SS  
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
V
LCD  
/2  
LCD  
0 V  
V  
state 1  
/2  
LCD  
V  
LCD  
V
V
LCD  
/2  
LCD  
0 V  
state 2  
V  
/2  
LCD  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
013aaa208  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.791VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.354VLCD  
.
.
Fig 5. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
10 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
T
fr  
V
LCD  
LCD segments  
2V  
/3  
LCD  
BP0  
BP1  
Sn  
V
V
/3  
LCD  
SS  
state 1  
V
LCD  
state 2  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+1  
V
V
/3  
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 1  
/3  
LCD  
2V  
/3  
LCD  
V  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
/3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa209  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.745VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 6. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
11 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as  
shown in Figure 7.  
T
fr  
V
LCD  
LCD segments  
2V  
/3  
LCD  
BP0  
BP1  
BP2  
Sn  
V
V
/3  
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+1  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+2  
V
V
/3  
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V
LCD  
/3  
state 1  
0 V  
V  
/3  
LCD  
2V  
/3  
LCD  
V  
LCD  
V
LCD  
2V  
/3  
LCD  
V
LCD  
/3  
state 2  
0 V  
V  
/3  
LCD  
2V  
/3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa210  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.638VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 7. Waveforms for the 1:3 multiplex drive mode with 13 bias  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
12 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.4 1:4 Multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 8.  
T
fr  
V
LCD segments  
LCD  
2V  
/3  
LCD  
BP0  
BP1  
BP2  
V
V
/3  
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
BP3  
Sn  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+1  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+2  
Sn+3  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
state 1  
0 V  
V  
/3  
LCD  
2V  
/3  
LCD  
V  
LCD  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
/3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa211  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.577VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 8. Waveforms for the 1:4 multiplex drive mode with 13 bias  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
13 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.5 Oscillator  
The internal logic and the LCD drive signals of the PCF85134 are timed by the frequency  
fclk, which equals either the built-in oscillator frequency fosc or the external clock frequency  
fclk(ext). The clock frequency fclk determines the LCD frame frequency (ffr).  
7.5.1 Internal clock  
The internal oscillator is enabled by connecting pin OSC to pin VSS. In this case, the  
output from pin CLK is the clock signal for any cascaded PCF85134 in the system.  
7.5.2 External clock  
Connecting pin OSC to VDD enables an external clock source. Pin CLK becomes the  
external clock input.  
A clock signal must always be supplied to the device; removing the clock may freeze the  
LCD in a DC state, which is not suitable for the liquid crystal.  
7.6 Timing and frame frequency  
The timing of the PCF85134 organizes the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. In  
cascaded applications, the synchronization signal (SYNC) maintains the correct timing  
relationship between all the PCF85134 in the system. The timing also generates the LCD  
frame frequency which is derived as an integer division of the clock frequency  
(see Table 6). The frame frequency is a fixed division of the internal clock or of the  
frequency applied to pad CLK when an external clock is used.  
Table 6.  
LCD frame frequencies  
Frame frequency  
Nominal frame frequency (Hz)  
82  
f clk  
f fr  
=
---------  
24  
7.7 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display register, the  
LCD segment outputs, and one column of the display RAM.  
7.8 Segment outputs  
The LCD drive section includes 60 segment outputs (S0 to S59) which must be connected  
directly to the LCD. The segment output signals are generated based on the multiplexed  
backplane signals and with data resident in the display register. When less than  
60 segment outputs are required the unused segment outputs must be left open-circuit.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
14 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.9 Backplane outputs  
The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane  
output signals are generated based on the selected LCD drive mode.  
In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.  
If less than four backplane outputs are required the unused outputs can be left  
open-circuit.  
In 1:3 multiplex drive mode: BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In 1:2 multiplex drive mode: BP0 and BP2, BP1 and BP3 respectively carry the same  
signals and can also be paired to increase the drive capabilities.  
In static drive mode: The same signal is carried by all four backplane outputs; and  
they can be connected in parallel for very high drive requirements.  
7.10 Display RAM  
The display RAM is a static 60 × 4 bit RAM which stores LCD data. A logic 1 in the RAM  
bit map indicates the on-state of the corresponding LCD element; similarly, a logic 0  
indicates the off-state. There is a one-to-one correspondence between the RAM  
addresses and the segment outputs and between the individual bits of a RAM word and  
the backplane outputs. The display RAM bit map, Figure 9, shows rows 0 to 3 which  
correspond with the backplane outputs BP0 to BP3, and columns 0 to 59 which  
correspond with the segment outputs S0 to S59. In multiplexed LCD applications the  
segment data of the first, second, third, and fourth row of the display RAM are  
time-multiplexed with BP0, BP1, BP2, and BP3 respectively.  
columns  
display RAM addresses/segment outputs (S)  
0
1
2
3
4
55 56 57 58 59  
rows  
0
1
2
3
display RAM rows/  
backplane outputs  
(BP)  
013aaa212  
The display RAM bit map shows the direct relationship between the display RAM addresses and  
the segment outputs and between the bits in a RAM word and the backplane outputs.  
Fig 9. Display RAM bit map  
When display data is transmitted to the PCF85134, the received display bytes are stored  
in the display RAM in accordance with the selected LCD drive mode. The data is stored as  
it arrives and does not wait for the acknowledge cycle as with the commands. Depending  
on the current multiplex drive mode, data is stored singularly, in pairs, triples, or  
quadruples. To illustrate the filling order, an example of a 7-segment display showing all  
drive modes is given in Figure 10; the RAM filling organization depicted applies equally to  
other LCD types.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
15 of 40  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
columns  
display RAM address/segment outputs (s)  
byte1  
S
S
S
S
S
a
n+2  
n+3  
n+4  
n+5  
n+6  
b
BP0  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
S
f
n+1  
rows  
static  
display RAM  
rows/backplane  
outputs (BP)  
MSB  
LSB  
g
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
x
S
S
n
x
x
x
e
n+7  
c
b
a
f
g
e
d
DP  
c
x
d
DP  
x
columns  
display RAM address/segment outputs (s)  
byte1 byte2  
BP0  
a
S
S
n
1:2  
b
n
n + 1 n + 2 n + 3  
f
n+1  
rows  
MSB  
LSB  
DP  
display RAM  
rows/backplane  
outputs (BP)  
g
0
1
2
3
a
b
x
x
f
e
c
x
x
d
DP  
x
multiplex  
g
x
x
BP1  
a
b
f
g
e c d  
e
S
S
n+2  
n+3  
c
d
DP  
x
columns  
display RAM address/segment outputs (s)  
BP0  
BP1  
byte1  
byte2  
byte3  
S
S
n+1  
n+2  
a
1:3  
b
n
n + 1 n + 2  
S
f
n
rows  
MSB  
LSB  
e
display RAM  
rows/backplane  
outputs (BP)  
0
1
2
3
b
DP  
c
a
d
g
x
f
g
multiplex  
b
DP  
c
a
d
g
f
e
x
x
BP2  
e
c
d
DP  
x
columns  
display RAM address/segment outputs (s)  
byte2 byte3 byte4  
byte1  
byte5  
a
S
S
n
1:4  
b
BP2  
BP3  
n
n + 1  
BP0  
BP1  
f
rows  
display RAM  
rows/backplane  
outputs (BP)  
g
0
1
2
3
a
c
f
MSB  
LSB  
d
multiplex  
e
g
d
e
c
b
a
c
b
DP  
f
e
g
d
DP  
DP  
n+1  
001aaj646  
x = data bit unchanged.  
Fig 10. Relationship between LCD layout, drive mode, display RAM storage order and display data transmitted over the I2C-bus  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The following applies to Figure 10:  
In static drive mode the eight transmitted data bits are placed into row 0 of eight  
successive 4-bit RAM words.  
In 1:2 multiplex mode the eight transmitted data bits are placed in pairs into  
row 0 and 1 of four successive 4-bit RAM words.  
In 1:3 multiplex mode the eight bits are placed in triples into row 0, 1, and 2 of three  
successive 4-bit RAM words, with bit 3 of the third address left unchanged. It is not  
recommended to use this bit in a display because of the difficult addressing. This last  
bit may, if necessary, be controlled by an additional transfer to this address, but care  
should be taken to avoid overwriting adjacent data because always full bytes are  
transmitted.  
In the 1:4 multiplex mode the eight transmitted data bits are placed in quadruples into  
row 0, 1, 2, and 3 of two successive 4-bit RAM words.  
7.11 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load-data-pointer command (see Table 9). Following this command, an  
arriving data byte is stored at the display RAM address indicated by the data pointer. The  
filling order is shown in Figure 10. After each byte is stored, the content of the data pointer  
is automatically incremented by a value dependent on the selected LCD drive mode:  
In static drive mode by eight.  
In 1:2 multiplex drive mode by four.  
In 1:3 multiplex drive mode by three.  
In 1:4 multiplex drive mode by two.  
If an I2C-bus data access terminates early, the state of the data pointer is unknown.  
Consequently, the data pointer must be rewritten prior to further RAM accesses.  
7.12 Subaddress counter  
The storage of display data is conditioned by the content of the subaddress counter.  
Storage is allowed only when the content of the subaddress counter match with the  
hardware subaddress applied to A0, A1 and A2. The subaddress counter value is defined  
by the device-select command (see Table 12). If the content of the subaddress counter  
and the hardware subaddress do not match, then data storage is inhibited but the data  
pointer is incremented as if data storage had taken place. The subaddress counter is also  
incremented when the data pointer overflows.  
In cascaded applications each PCF85134 in the cascade must be addressed separately.  
Initially, the first PCF85134 is selected by sending the device-select command matching  
the first device's hardware subaddress. Then the data pointer is set to the preferred  
display RAM address by sending the load-data-pointer command.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
17 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Once the display RAM of the first PCF85134 has been written, the second PCF85134 is  
selected by sending the device-select command again. This time however the command  
matches the second device's hardware subaddress. Next the load-data-pointer command  
is sent to select the preferred display RAM address of the second PCF85134.  
This last step is very important because during writing data to the first PCF85134, the  
data pointer of the second PCF85134 is incremented. In addition, the hardware  
subaddress should not be changed whilst the device is being accessed on the I2C-bus  
interface.  
7.13 Output bank selector  
The output bank selector (see Table 13) selects one of the four rows per display RAM  
address for transfer to the display register. The actual row selected depends on the  
particular LCD drive mode in operation and on the instant in the multiplex sequence.  
In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by  
the contents of row 1, 2, and then 3  
In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially  
In 1:2 multiplex mode, rows 0 and 1 are selected  
In static mode, row 0 is selected  
The SYNC signal resets these sequences to the following starting points: bit 3 for  
1:4 multiplex, bit 2 for 1:3 multiplex, bit 1 for 1:2 multiplex, and bit 0 for static mode.  
The PCF85134 includes a RAM bank switching feature in the static and 1:2 multiplex drive  
modes. In the static drive mode, the bank-select command may request the contents of  
row 2 to be selected for display instead of the contents of row 0. In the 1:2 mode, the  
contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives the  
provision for preparing display information in an alternative bank and to be able to switch  
to it, once it is assembled.  
7.14 Input bank selector  
The input bank selector loads display data into the display RAM in accordance with the  
selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode  
or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command. The  
input bank selector functions independently to the output bank selector.  
7.15 Blinker  
The display blink capabilities of the PCF85134 are very versatile. The whole display can  
blink at frequencies selected by the blink-select command (see Table 14). The blink  
frequencies are fractions of the clock frequency. The ratios between the clock and blink  
frequencies depend on the blink mode selected (see Table 7).  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
18 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 7.  
Blink frequencies  
Blink mode Operating mode ratio Blink frequency with respect to fclk (typical)  
Unit  
fclk = 1.970 kHz  
blinking off  
2.5  
off  
1
-
Hz  
Hz  
f clk  
---------  
768  
2
3
1.3  
0.6  
Hz  
Hz  
f clk  
-----------  
1536  
f clk  
-----------  
3072  
An additional feature is for an arbitrary selection of LCD segments to blink. This applies to  
the static and 1:2 multiplex drive modes and can be implemented without any  
communication overheads. By means of the output bank selector, the displayed RAM  
banks are exchanged with alternate RAM banks at the blink frequency. This mode can  
also be specified by the blink-select command.  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD segments can blink by selectively changing the display RAM data at fixed time  
intervals.  
The entire display can blink at a frequency other then the nominal blink frequency. This  
can be effectively performed by resetting and setting the display enable bit E at the  
required rate using the mode-set command (see Table 10).  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
19 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8. Basic architecture  
8.1 Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial Data line (SDA) and a Serial Clock Line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer may be initiated only when the bus is not busy.  
8.1.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal. Bit transfer is illustrated in Figure 11.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 11. Bit transfer  
8.1.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy.  
A HIGH-to-LOW change of the data line, while the clock is HIGH, is defined as the START  
condition (S).  
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP  
condition (P).  
The START and STOP conditions are illustrated in Figure 12.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 12. Definition of START and STOP conditions  
8.1.2 System configuration  
A device generating a message is a transmitter, a device receiving a message is the  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves. The system configuration is shown in Figure 13.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
20 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 13. System configuration  
8.1.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
cycle.  
A slave receiver, which is addressed, must generate an acknowledge after the  
reception of each byte.  
A master receiver must generate an acknowledge after the reception of each byte that  
has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is illustrated in Figure 14.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 14. Acknowledgement of the I2C-bus  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
21 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.1.4 I2C-bus controller  
The PCF85134 acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF85134 are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, the transferred command data and the hardware subaddress.  
In single device applications, the hardware subaddress inputs A0, A1, and A2 are  
normally tied to VSS which defines the hardware subaddress 0. In multiple device  
applications A0, A1, and A2 are tied to VSS or VDD using a binary coding scheme, so that  
no two devices with a common I2C-bus slave address have the same hardware  
subaddress.  
8.1.5 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
8.2 I2C-bus protocol  
Two I2C-bus slave addresses (0111 000 and 0111 001) are reserved for the PCF85134.  
The least significant bit of the slave address is bit R/W. The PCF85134 is a write-only  
device. It will not respond to a read access, so this bit should always be logic 0. The  
second bit of the slave address is defined by the level tied at input SA0. Two displays  
controlled by PCF85134 can be recognized on the same I2C-bus which allows:  
Up to 16 PCF85134s on the same I2C-bus for very large LCD applications  
The use of two types of LCD multiplex drive mode on the same I2C-bus  
The I2C-bus protocol is shown in Figure 15. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the available PCF85134  
slave addresses. All PCF85134s with the same SA0 level acknowledge in parallel to the  
slave address. All PCF85134s with the alternative SA0 level ignore the whole I2C-bus  
transfer.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
22 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
R/W = 0  
slave address  
control byte  
RAM/command byte  
S
A
0
M
S
B
L
S
B
C
O
R
S
S
0
1
1
1
0
0
0
A
P
A
EXAMPLES  
a) transmit two bytes of RAM data  
S
S
0
1
1
1
0
0
A
0
0
A
0
1
1
0
RAM DATA  
COMMAND  
COMMAND  
RAM DATA  
A
A
A
A
A
A
P
A
A
A
b) transmit two command bytes  
S
S
0
1
1
1
0
0
A
0
0
A
0
0
0
1
COMMAND  
RAM DATA  
A
A
P
c) transmit one command byte and two RAM date bytes  
S
S
0
1
1
1
0
0
A
0
0
A
1
0
RAM DATA  
A
P
mgl752  
Fig 15. I2C-bus protocol  
After acknowledgement, the control byte is sent defining if the next byte is a RAM or  
command information. The control byte also defines if the next byte is a control byte or  
further RAM or command data (see Figure 16 and Table 8). In this way it is possible to  
configure the device and then fill the display RAM with little overhead.  
MSB  
LSB  
7
6
5
4
3
2
1
0
CO RS  
not relevant  
mgl753  
Fig 16. Control byte format  
Table 8.  
Control byte description  
Bit  
Symbol Value  
Description  
continue bit  
last control byte  
7
CO  
0
1
control bytes continue  
register selection  
command register  
data register  
6
RS  
0
1
5 to 0  
-
not relevant  
The command bytes and control bytes are also acknowledged by all addressed  
PCF85134s connected to the bus.  
The display bytes are stored in the display RAM at the address specified by the data  
pointer and the subaddress counter. Both data pointer and subaddress counter are  
automatically updated.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
23 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The acknowledgement after each byte is made only by the (A0, A1, and A2) addressed  
PCF85134. After the last display byte, the I2C-bus master issues a STOP condition (P).  
Alternatively a START may be issued to RESTART I2C-bus access.  
8.3 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. There are  
five commands:  
Table 9.  
Definition of commands  
Operation code  
Command  
Bit  
Reference  
7
1
0
1
1
1
6
5
4
3
2
1
0
Mode-set  
1
0
0
E
B
M[1:0]  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Load-data-pointer  
Device-select  
Bank-select  
Blink-select  
P[6:0]  
1
1
1
1
1
1
0
1
1
0
1
0
A[2:0]  
0
I
O
A
BF[1:0]  
Table 10. Mode-set command bit description  
Bit  
7 to 4  
3
Symbol Value  
Description  
fixed value  
-
1100  
E
display status  
0
1
disabled (blank)[1]  
enable  
2
B
LCD bias configuration  
13 bias  
12 bias  
0
1
1 to 0  
M[1:0]  
LCD drive mode selection  
static; 1 backplane  
01  
10  
11  
00  
1:2 multiplex; 2 backplanes  
1:3 multiplex; 3 backplanes  
1:4 multiplex; 4 backplanes  
[1] The possibility to disable the display allows implementation of blinking under external control.  
Table 11. Load-data-pointer command bit description  
See Section 7.11.  
Bit  
7
Symbol Value  
Description  
-
0
fixed value  
6 to 0  
P[6:0]  
0000000 to 7-bit binary value of 0 to 59  
0111011  
Table 12. Device-select command bit description  
See Section 7.12.  
Bit  
Symbol Value  
Description  
7 to 3  
2 to 0  
-
11100  
fixed value  
A[2:0]  
000 to 111 3-bit binary value of 0 to 7  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
24 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 13. Bank-select command bit description  
See Section 7.10, Section 7.11, Section 7.12, Section 7.13 and Section 7.14.  
Bit  
Symbol  
Value  
Description  
Static  
1:2 multiplex[1]  
7 to 2  
1
-
I
111110  
fixed value  
input bank selection: storage of arriving display data  
0
1
RAM row 0  
RAM row 2  
RAM rows 0 and 1  
RAM rows 2 and 3  
0
O
output bank selection: retrieval of LCD display data  
0
1
RAM row 0  
RAM row 2  
RAM rows 0 and 1  
RAM rows 2 and 3  
[1] The bank-select command has no effect in 1:3 or 1:4 multiplex drive modes.  
Table 14. Blink-select command bit description  
See Section 7.15.  
Bit  
7 to 3  
2
Symbol Value  
Description  
-
11110  
fixed value  
A
blink mode selection  
0
1
normal blinking[1]  
blinking by alternating display RAM banks  
1 to 0  
BF[1:0]  
blink frequency selection  
00  
01  
10  
11  
off  
1
2
3
[1] Normal blinking can only be selected in multiplex drive mode 1:3 or 1:4.  
[2] For the blink frequencies, see Table 7.  
8.4 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF85134 and coordinates their effects. The controller  
also loads display data into the display RAM as required by the storage order.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
25 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
9. Internal circuitry  
V
V
DD  
DD  
SA0  
CLK  
V
V
V
SS  
DD  
SS  
SCL  
V
V
SS  
DD  
V
SS  
OSC  
V
V
SS  
DD  
SDA  
SYNC  
V
V
V
SS  
SS  
DD  
A0, A1, A2  
V
LCD  
V
V
SS  
LCD  
V
SS  
BP0, BP1,  
BP2, BP3  
V
V
SS  
LCD  
S0 to S59  
V
001aah615  
SS  
Fig 17. Device protection diagram  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
26 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
10. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 15. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
0.5  
50  
0.5  
50  
50  
0.5  
10  
0.5  
0.5  
10  
-
Max  
+6.5  
+50  
Unit  
V
VDD  
IDD  
supply voltage  
supply current  
mA  
V
VLCD  
IDD(LCD)  
ISS  
LCD supply voltage  
LCD supply current  
ground supply current  
input voltage  
+7.5  
+50  
mA  
mA  
V
+50  
[2]  
[2]  
VI  
+6.5  
+10  
II  
input current  
mA  
V
[2]  
VO  
output voltage  
+6.5  
+7.5  
+10  
[3]  
V
[2][3]  
IO  
output current  
mA  
mW  
mW  
V
Ptot  
total power dissipation  
power dissipation per output  
electrostatic discharge voltage  
400  
P/out  
VESD  
-
100  
[4]  
[5]  
[6]  
[7]  
HBM  
MM  
-
±2500  
±200  
200  
-
V
Ilu  
latch-up current  
-
mA  
°C  
Tstg  
storage temperature  
65  
+150  
[1] Stresses above these values listed may cause permanent damage to the device.  
[2] Pins SDA, SCL, CLK, SYNC, SA0, OSC and A0 to A2.  
[3] Pins S0 to S59 and BP0 to BP3.  
[4] HBM: Human Body Model, according to Ref. 5 “JESD22-A114”.  
[5] MM: Machine Model, according to Ref. 6 “JESD22-A115”.  
[6] Pass level; latch-up testing according to Ref. 7 “JESD78” at maximum ambient temperature  
(Tamb(max) = +85 °C).  
[7] According to the NXP store and transport requirements (see Ref. 9 “NX3-00092”) the devices have to be  
stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long term storage products  
deviant conditions are described in that document.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
27 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11. Static characteristics  
Table 16. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Supplies  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
VLCD  
IDD  
supply voltage  
1.8  
2.5  
-
-
5.5  
6.5  
20  
V
LCD supply voltage  
supply current  
-
V
[1]  
[1]  
fclk(ext) = 1536 Hz  
fclk(ext) = 1536 Hz  
8
24  
µA  
µA  
IDD(LCD) LCD supply current  
-
60  
Logic  
VI  
input voltage  
VSS 0.5 -  
VDD + 0.5 V  
VIL  
LOW-level input voltage on pins CLK, SYNC, OSC, A0 to A2 and SA0  
HIGH-level input voltage on pins CLK, SYNC, OSC, A0 to A2 and SA0  
power-on reset voltage  
VSS  
0.7VDD  
1.0  
1
-
0.3VDD  
VDD  
1.6  
V
VIH  
VPOR  
IOL  
-
V
1.3  
-
V
LOW-level output current output sink current; VOL = 0.4 V;  
-
mA  
V
DD = 5 V; on pins CLK and SYNC  
output source current; VOH = 4.6 V;  
DD = 5 V; on pin CLK  
IOH  
IL  
HIGH-level output  
current  
1
-
-
-
mA  
V
leakage current  
VI = VDD or VSS; on pins SA0, A0 to A2 and  
CLK  
1  
+1  
µA  
VI = VDD; on pin OSC  
1  
-
-
+1  
7
µA  
[2]  
CI  
input capacitance  
-
pF  
I2C-bus; pins SDA and SCL  
VI  
input voltage  
VSS 0.5 -  
5.5  
V
VIL  
LOW-level input voltage pin SCL  
pin SDA  
VSS  
VSS  
0.7VDD  
3
-
-
-
-
0.3VDD  
0.2VDD  
5.5  
V
V
VIH  
IOL  
HIGH-level input voltage  
V
LOW-level output current output sink current; VOL = 0.4 V; VDD = 5 V;  
on pin SDA  
-
mA  
IL  
leakage current  
VI = VDD or VSS  
1  
-
-
+1  
7
µA  
[2]  
Ci  
input capacitance  
-
pF  
LCD outputs  
Output pins BP0 to BP3  
[3]  
[4]  
VBP  
RBP  
voltage on pin BP  
Cbpl = 35 nF  
VLCD = 5 V  
100  
-
+100  
10  
mV  
resistance on pin BP  
-
1.5  
kΩ  
Output pins S0 to S59  
[5]  
[4]  
VS  
RS  
voltage on pin S  
Csgm = 35 nF  
VLCD = 5 V  
100  
-
+100  
13.5  
mV  
resistance on pin S  
-
6.0  
kΩ  
[1] LCD outputs are open-circuit; inputs at VSS or VDD; external clock with 50 % duty factor; I2C-bus inactive.  
[2] Not tested, design specification only.  
[3] Cbpl = backplane capacitance.  
[4] Measured on sample basis only.  
[5] Csgm = segment capacitance.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
28 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
12. Dynamic characteristics  
Table 17. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Clock  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal: output pin CLK  
[1]  
fosc  
oscillator frequency  
VDD = 5 V  
VDD = 5 V  
1440  
1970  
2640  
Hz  
External: input pin CLK  
fclk(ext)  
tclk(H)  
tclk(L)  
external clock frequency  
800  
130  
130  
-
-
-
3600  
Hz  
µs  
µs  
HIGH-level clock time  
LOW-level clock time  
-
-
Synchronization: input pin SYNC  
tPD(SYNC_N) SYNC propagation delay  
-
30  
-
-
-
ns  
tSYNC_NL  
Outputs: pins BP0 to BP3 and S0 to S59  
tPD(drv) driver propagation delay  
SYNC LOW time  
1
µs  
VLCD = 5 V  
-
-
30  
µs  
I2C-bus: timing[2]  
Pin SCL  
fSCL  
SCL frequency  
-
-
-
-
400  
kHz  
µs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
-
-
tHIGH  
µs  
Pin SDA  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
100  
0
-
-
-
-
ns  
ns  
Pins SCL and SDA  
tBUF  
bus free time between a STOP and  
1.3  
-
-
µs  
START condition  
tSU;STO  
tHD;STA  
tSU;STA  
set-up time for STOP condition  
hold time (repeated) START condition  
0.6  
0.6  
0.6  
-
-
-
-
-
-
µs  
µs  
µs  
set-up time for a repeated START  
condition  
tr  
rise time of both SDA and SCL signals  
fall time of both SDA and SCL signals  
capacitive load for each bus line  
spike pulse width  
-
-
-
-
-
-
-
-
0.3  
0.3  
400  
50  
µs  
µs  
pF  
ns  
tf  
Cb  
tw(spike)  
[1] Typical output (duty cycle δ = 50 %).  
[2] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD  
.
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
29 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1 / f  
clk  
t
t
clk(L)  
clk(H)  
0.7V  
DD  
CLK  
0.3V  
DD  
0.7V  
DD  
DD  
SYNC  
0.3V  
t
t
PD(SYNC_N)  
PD(SYNC_N)  
t
SYNC_NL  
0.5 V  
(V  
BP0 to BP3,  
and S0 to S59  
= 5 V)  
DD  
0.5 V  
t
PD(drv)  
001aah618  
Fig 18. Driver timing waveforms  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 19. I2C-bus timing waveforms  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
30 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
13. Application information  
13.1 Cascaded operation  
Large display configurations of up to 16 PCF85134 can be recognized on the same  
I2C-bus by using the 3-bit hardware subaddress (A0, A1, and A2) and the programmable  
I2C-bus slave address (SA0).  
Table 18. Addressing cascaded PCF85134  
Cluster  
Bit SA0  
Pin A2  
Pin A1  
Pin A0  
Device  
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
1
8
9
10  
11  
12  
13  
14  
15  
When cascaded PCF85134 are synchronized, they can share the backplane signals from  
one of the devices in the cascade. Such an arrangement is cost-effective in large LCD  
applications since the backplane outputs of only one device need to be through-plated to  
the backplane electrodes of the display. The other PCF85134 of the cascade contribute  
additional segment outputs, but their backplane outputs are left open-circuit  
(see Figure 20).  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
31 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
V
LCD  
DD  
SDA  
SCL  
60 segment drives  
PCF85134  
SYNC  
CLK  
BP0 to BP3  
OSC  
(open-circuit)  
A0 A1 A2 SA0 V  
SS  
LCD PANEL  
V
LCD  
V
t
r
DD  
R
2C  
V
V
LCD  
b
DD  
60 segment drives  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
CONTROLLER  
SYNC  
CLK  
4 backplanes  
BP0 to BP3  
PCF85134  
OSC  
A0 A1 A2 SA0  
V
SS  
V
SS  
013aaa213  
Fig 20. Cascaded PCF85134 configuration  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCF85134. Synchronization is guaranteed after a power-on reset. The only time that  
SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments or by defining a multiplex drive mode when PCF85134  
with different SA0 levels are cascaded).  
SYNC is organized as an input/output pin. The output selection is realized as an  
open-drain driver with an internal pull-up resistor. A PCF85134 asserts the SYNC line at  
the onset of its last active backplane signal and monitors the SYNC line at all other times.  
If synchronization in the cascade is lost, it is restored by the first PCF85134 to assert  
SYNC. The timing relationship between the backplane waveforms and the SYNC signal  
for the various drive modes of the PCF85134 are shown in Figure 21.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
32 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
T
=
fr  
f
fr  
BP0  
SYNC  
(a) static drive mode.  
BP0  
(1/2 bias)  
BP0  
(1/3 bias)  
SYNC  
(b) 1:2 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(c) 1:3 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(d) 1:4 multiplex drive mode.  
mgl755  
Fig 21. Synchronization of the cascade for various PCF85134 drive modes  
The contact resistance between the SYNC pins of cascaded devices must be controlled. If  
the resistance is too high, the device will not be able to synchronize properly.  
Table 19 shows the maximum contact resistance values.  
Table 19. SYNC contact resistance  
Number of devices  
Maximum contact resistance  
2
6000 Ω  
2200 Ω  
1200 Ω  
700 Ω  
3 to 5  
6 to 10  
11 to 16  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
33 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
14. Package outline  
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm  
SOT315-1  
y
X
A
60  
41  
Z
61  
40  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
L
pin 1 index  
80  
21  
detail X  
1
20  
Z
D
v
M
A
e
w M  
b
p
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
D
E
p
D
E
max.  
7o  
0o  
0.16 1.5  
0.04 1.3  
0.27 0.18 12.1 12.1  
0.13 0.12 11.9 11.9  
14.15 14.15  
13.85 13.85  
0.75  
0.30  
1.45 1.45  
1.05 1.05  
mm  
1.6  
0.25  
0.5  
1
0.2 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT315-1  
136E15  
MS-026  
Fig 22. Package outline SOT315-1 (LQFP80)  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
34 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
15. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC61340-5 or equivalent  
standards.  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
35 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 23) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 20 and 21  
Table 20. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 21. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 23.  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
36 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 23. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
17. Abbreviations  
Table 22. Abbreviations  
Acronym  
CMOS  
ESD  
Description  
Complementary Metal-Oxide Semiconductor  
ElectroStatic Discharge  
Human Body Model  
HBM  
IC  
Integrated Circuit  
LCD  
Liquid Crystal Display  
MM  
Machine Model  
RAM  
Random Access Memory  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
37 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
18. References  
[1] AN10365 Surface mount reflow soldering description  
[2] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[3] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[4] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[5] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[6] JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model  
(MM)  
[7] JESD78 IC Latch-Up Test  
[8] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[9] NX3-00092 NXP store and transport requirements  
[10] SNV-FA-01-02 Marking Formats Integrated Circuits  
[11] UM10204 I2C-bus specification and user manual  
19. Revision history  
Table 23. Revision history  
Document ID  
Release date  
20091217  
Data sheet status  
Change notice  
Supersedes  
PCF85134_1  
Product data sheet  
-
-
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
38 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
20. Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
20.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
20.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
20.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
21. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF85134_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 17 December 2009  
39 of 40  
PCF85134  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
22. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
13.1  
14  
Cascaded operation. . . . . . . . . . . . . . . . . . . . 31  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 34  
Handling information . . . . . . . . . . . . . . . . . . . 35  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
15  
16  
Soldering of SMD packages . . . . . . . . . . . . . . 35  
Introduction to soldering. . . . . . . . . . . . . . . . . 35  
Wave and reflow soldering . . . . . . . . . . . . . . . 35  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 36  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 36  
16.1  
16.2  
16.3  
16.4  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
17  
18  
19  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 37  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 38  
7
7.1  
7.2  
7.3  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . 6  
LCD bias generator. . . . . . . . . . . . . . . . . . . . . . 7  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 7  
LCD drive mode waveforms . . . . . . . . . . . . . . . 9  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . . 9  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . 10  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 12  
1:4 Multiplex drive mode. . . . . . . . . . . . . . . . . 13  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Internal clock. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Timing and frame frequency. . . . . . . . . . . . . . 14  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 14  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 14  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 15  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Subaddress counter . . . . . . . . . . . . . . . . . . . . 17  
Output bank selector. . . . . . . . . . . . . . . . . . . . 18  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 18  
Blinker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
20  
Legal information . . . . . . . . . . . . . . . . . . . . . . 39  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 39  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.4  
20.1  
20.2  
20.3  
20.4  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
21  
22  
Contact information . . . . . . . . . . . . . . . . . . . . 39  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8
8.1  
Basic architecture . . . . . . . . . . . . . . . . . . . . . . 20  
Characteristics of the I2C-bus. . . . . . . . . . . . . 20  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
START and STOP conditions . . . . . . . . . . . . . 20  
System configuration . . . . . . . . . . . . . . . . . . . 20  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 21  
I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 22  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 22  
Command decoder . . . . . . . . . . . . . . . . . . . . . 24  
Display controller . . . . . . . . . . . . . . . . . . . . . . 25  
8.1.1  
8.1.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.2  
8.3  
8.4  
9
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 26  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 27  
Static characteristics. . . . . . . . . . . . . . . . . . . . 28  
Dynamic characteristics . . . . . . . . . . . . . . . . . 29  
Application information. . . . . . . . . . . . . . . . . . 31  
10  
11  
12  
13  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 17 December 2009  
Document identifier: PCF85134_1  

相关型号:

PCF85134HL/1,118

PCF85134 - Universal 60 x 4 LCD segment driver for multiplex rates up to 1:4 QFP 80-Pin
NXP

PCF85162

Universal LCD driver for low multiplex rates
NXP

PCF85162T

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
NXP

PCF85162T-1

Universal LCD driver for low multiplex rates
NXP

PCF85162T/1

IC LIQUID CRYSTAL DISPLAY DRIVER, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT362-1, TSSOP-48, Display Driver
NXP

PCF85163T

IC REAL TIME CLOCK, PDSO8, 3.90 MM WIDTH, PLASTIC, SOT96-1, MS-012, DSO-8, Timer or RTC
NXP

PCF85176

Universal LCD driver for low multiplex rates
NXP

PCF85176H

Universal LCD driver for low multiplex rates
NXP

PCF85176H/1,518

PCF85176 - 40 x 4 universal LCD driver for low multiplex rates QFP 64-Pin
NXP

PCF85176T

Universal LCD driver for low multiplex rates
NXP

PCF85176T/S430/1,1

IC IC,LCD DISPLAY DRIVER,40-SEG,4-BP,CMOS,TSSOP,56PIN,PLASTIC, Display Driver
NXP

PCF8522EP

EEPROM, 256X8, Serial, CMOS, PDIP8,
PHILIPS