PCF85134HL/1,118 [NXP]

PCF85134 - Universal 60 x 4 LCD segment driver for multiplex rates up to 1:4 QFP 80-Pin;
PCF85134HL/1,118
型号: PCF85134HL/1,118
厂家: NXP    NXP
描述:

PCF85134 - Universal 60 x 4 LCD segment driver for multiplex rates up to 1:4 QFP 80-Pin

PC 驱动 CD 接口集成电路
文件: 总51页 (文件大小:394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF85134  
Universal 60 x 4 LCD segment driver for multiplex rates up to  
1:4  
Rev. 4 — 11 May 2017  
Product data sheet  
1. General description  
The PCF85134 is a peripheral device which interfaces to almost any Liquid Crystal  
Display (LCD)1 with low multiplex rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up to 60 segments. It can be easily  
cascaded for larger LCD applications. The PCF85134 is compatible with most  
microcontrollers and communicates via the two-line bidirectional I2C-bus. Communication  
overheads are minimized by a display RAM with auto-incremented addressing, by  
hardware subaddressing, and by display memory switching (static and duplex drive  
modes).  
Although there is a small difference in typical frequency frame and ESD test condition  
PCF85134 can be used as drop-in replacement to PCF8534 without any system circuit or  
firmware change.  
For a selection of NXP LCD segment drivers, see Table 25 on page 45.  
2. Features and benefits  
Single-chip LCD controller and driver  
Selectable backplane drive configurations: static, 2, 3, or 4 backplane multiplexing  
60 segment outputs allowing to drive:  
30 7-segment alphanumeric characters  
15 14-segment alphanumeric characters  
Any graphics of up to 240 elements  
Cascading supported for larger applications  
60 4-bit display data storage RAM  
Wide LCD supply range: from 2.5 V for low threshold LCDs up to 6.5 V for high  
threshold twisted nematic LCDs  
Internal LCD bias generation with voltage follower buffers  
Selectable display bias configurations: static, 12, or 13  
Wide logic power supply range: from 1.8 V to 5.5 V  
LCD and logic supplies may be separated  
Low power consumption  
400 kHz I2C-bus interface  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 19.  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
No external components required  
Display memory bank switching in static and duplex drive mode  
Versatile blinking modes  
Silicon gate CMOS process  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Topside  
marking  
Package  
Name  
Description  
Version  
PCF85134  
PCF85134HL LQFP80  
plastic low profile quad flat package; 80 leads; body 12  
12 1.4 mm  
SOT315-1  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Orderable  
Package  
Packing method  
Minimum  
Temperature  
part number  
order quantity  
PCF85134HL/1 PCF85134HL/1,118 LQFP80  
REEL 13" Q1/T1  
*STANDARD MARK  
SMD  
1000  
Tamb = 40 C to +85 C  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
2 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
4. Block diagram  
6ꢃꢀWRꢀ6ꢇꢈ  
ꢆꢃ  
%3ꢃ %3ꢄ %3ꢁ %3ꢅ  
9
/&'  
%$&.3/$1(ꢀ  
2873876  
',63/$<ꢀ6(*0(17ꢀ2873876  
',63/$<ꢀ5(*,67(5  
/&'ꢀ  
92/7$*(ꢀ  
6(/(&725  
287387ꢀ%$1.ꢀ6(/(&7ꢀ  
$1'ꢀ%/,1.ꢀ&21752/  
',63/$<ꢀ  
&21752/  
/&'ꢀ%,$6ꢀ  
*(1(5$725  
9
66  
',63/$<ꢀ  
5$0  
3&)ꢀꢁꢂꢃꢄ  
&/.  
%/,1.(5ꢀ  
7,0(%$6(  
&/2&.ꢀ6(/(&7ꢀ  
$1'ꢀ7,0,1*  
6<1&  
&200$1'ꢀ  
'(&2'(  
'$7$ꢀ32,17(5ꢀ$1'ꢀ  
$872ꢀ,1&5(0(17  
:5,7(ꢀ'$7$ꢀ  
&21752/  
32:(5ꢂ21ꢀ  
5(6(7  
26&  
26&,//$725  
6&/  
6'$  
68%$''5(66ꢀ  
&2817(5  
,1387ꢀ  
),/7(56  
, &ꢂ%86ꢀ  
&21752//(5  
$ꢃ $ꢄ $ꢁ  
6$ꢃ  
9
''  
ꢀꢁꢂDDDꢃꢀꢄ  
Fig 1. Block diagram of PCF85134  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
3 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
5. Pinning information  
5.1 Pinning  
ꢆꢃ  
ꢇꢈ  
ꢇꢉ  
ꢇꢋ  
ꢇꢆ  
ꢇꢇ  
ꢇꢊ  
ꢇꢅ  
ꢇꢁ  
ꢇꢄ  
ꢇꢃ  
ꢊꢈ  
ꢊꢉ  
ꢊꢋ  
ꢊꢆ  
ꢊꢇ  
ꢊꢊ  
ꢊꢅ  
ꢊꢁ  
ꢊꢄ  
6ꢅꢄ  
6ꢅꢁ  
6ꢅꢅ  
6ꢅꢊ  
6ꢅꢇ  
6ꢅꢆ  
6ꢅꢋ  
6ꢅꢉ  
6ꢅꢈ  
6ꢊꢃ  
6ꢊꢄ  
6ꢊꢁ  
6ꢊꢅ  
6ꢊꢊ  
6ꢊꢇ  
6ꢊꢆ  
6ꢊꢋ  
6ꢊꢉ  
6ꢊꢈ  
6ꢇꢃ  
6ꢄꢃ  
6ꢈ  
6ꢉ  
6ꢋ  
6ꢆ  
6ꢇ  
6ꢊ  
6ꢅ  
6ꢁ  
6ꢄ  
6ꢃ  
ꢄꢃ  
ꢄꢄ  
ꢄꢁ  
ꢄꢅ  
ꢄꢊ  
ꢄꢇ  
ꢄꢆ  
ꢄꢋ  
ꢄꢉ  
ꢄꢈ  
ꢁꢃ  
3&)ꢀꢁꢂꢃꢄ  
9
9
/&'  
66  
6$ꢃ  
$ꢁ  
$ꢄ  
$ꢃ  
26&  
6<1&  
9
''  
ꢀꢁꢂDDDꢃꢀꢅ  
Top view. For mechanical details, see Figure 24.  
Fig 2. Pin configuration for SOT315-1 (PCF85134)  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
4 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
5.2 Pin description  
Table 3.  
Pin description  
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.  
Symbol  
S31 to S59  
BP0 to BP3  
n.c.  
Pin  
Type  
output  
output  
-
Description  
1 to 29  
30 to 33  
34 to 37  
LCD segment output 31 to 59  
LCD backplane output 0 to 3  
not connected; do not connect and do not use as  
feed through  
SDA  
SCL  
CLK  
VDD  
38  
39  
40  
41  
42  
input/output  
input  
I2C-bus serial data input and output  
I2C-bus serial clock input  
input/output  
supply  
external clock input and internal clock output  
supply voltage  
SYNC  
input/output  
cascade synchronization input and output (active  
LOW)  
OSC  
43  
input  
enable input for internal oscillator  
subaddress counter input 0 to 2  
I2C-bus slave address input 0  
ground supply voltage  
A0 to A2  
SA0  
44 to 46  
47  
input  
input  
VSS  
48  
supply  
supply  
output  
VLCD  
49  
input of LCD supply voltage  
LCD segment output 0 to 30  
S0 to S30  
50 to 80  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
5 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6. Functional description  
The PCF85134 is a versatile peripheral device designed to interface between any  
microcontroller to a wide variety of LCD segment or dot matrix displays (see Figure 3). It  
can directly drive any static or multiplexed LCD containing up to four backplanes and up to  
60 segments.  
The display configurations possible with the PCF85134 depend on the required number of  
active backplane outputs. A selection of display configurations is given in Table 4.  
All of the display configurations given in Table 4 can be implemented in a typical system  
as shown in Figure 4.  
GRWꢀPDWUL[  
ꢋꢂVHJPHQWꢀZLWKꢀGRW  
ꢄꢊꢂVHJPHQWꢀZLWKꢀGRWꢀDQGꢀDFFHQW  
ꢀꢁꢂDDDꢂꢁꢃ  
Fig 3. Example of displays suitable for PCF85134  
Table 4.  
Selection of possible display configurations  
Number of  
Backplanes  
Icons  
Digits/Characters  
7-segment[1]  
Dot matrix/  
Elements  
14-segment[2]  
4
3
2
1
240  
180  
120  
60  
30  
22  
15  
7
15  
11  
7
240 (4 60)  
180 (3 60)  
120 (2 60)  
60 (1 60)  
3
[1] 7-segment display has eight elements including the decimal point.  
[2] 14-segment display has 16 elements including decimal point and accent dot.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
6 of 51  
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
9
''  
9
/&'  
W
U
5ꢀ”  
ꢁ&  
E
9
9
/&'  
''  
ꢆꢃꢀVHJPHQWꢀGULYHV  
ꢊꢀEDFNSODQHV  
6'$  
6&/  
26&  
/&'ꢀ3$1(/  
ꢍXSꢀWRꢀꢁꢊꢃ  
HOHPHQWVꢎ  
+267  
0,&52ꢂ  
&21752//(5  
3&)ꢀꢁꢂꢃꢄ  
$ꢃ  
$ꢄ $ꢁ 6$ꢃ  
9
66  
9
66  
ꢀꢁꢂDDDꢃꢀꢆ  
Fig 4. Typical system configuration  
The host microcontroller maintains the 2-line I2C-bus communication channel with the  
PCF85134.  
Biasing voltages for the multiplexed LCD waveforms are generated internally, removing  
the need for an external bias generator. The internal oscillator is selected by connecting  
pin OSC to VSS. The only other connections required to complete the system are the  
power supplies (pins VDD, VSS, and VLCD) and the LCD panel selected for the application.  
6.1 Power-On Reset (POR)  
At power-on the PCF85134 resets to the following starting conditions:  
All backplane and segment outputs are set to VLCD  
The selected drive mode is: 1:4 multiplex with 13 bias  
Blinking is switched off  
Input and output bank selectors are reset  
The I2C-bus interface is initialized  
The data pointer and the subaddress counter are cleared (set to logic 0)  
The display is disabled (bit E = 0, see Table 11)  
Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow  
the reset action to complete.  
6.2 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider consisting of  
three impedances connected in series between VLCD and VSS. If the 12 bias voltage level  
for the 1:2 multiplex drive mode configuration is selected, the center impedance is  
bypassed by switch. The LCD voltage can be temperature compensated externally, using  
the supply to pin VLCD  
.
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
7 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6.3 LCD voltage selector  
The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by the  
mode-set command from the command decoder. The biasing configurations that apply to  
the preferred modes of operation, together with the biasing characteristics as functions of  
V
LCD and the resulting discrimination ratios (D) are given in Table 5.  
Discrimination is a term which is defined as the ratio of the on and off RMS voltage across  
a segment. It can be thought of as a measurement of contrast.  
Table 5.  
Biasing characteristics  
Number of:  
LCD drive  
mode  
LCD bias  
configuration  
VoffRMSVonRMS  
------------------------ ----------------------- D = ------------------------  
VLCD VLCD VoffRMS  
VonRMS  
Backplanes Levels  
static  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
1:2 multiplex  
1:2 multiplex  
1:3 multiplex  
1:4 multiplex  
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
3
1
3
1
3
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth(off)), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode, a suitable choice is VLCD > 3Vth(off)  
.
Multiplex drive modes of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1:  
a2 + 2a + n  
n  1 + a2  
VonRMS  
=
-----------------------------  
(1)  
V
LCD  
where the values for n are  
n = 1 for static drive mode  
n = 2 for 1:2 multiplex drive mode  
n = 3 for 1:3 multiplex drive mode  
n = 4 for 1:4 multiplex drive mode  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 2:  
a2 2a + n  
n  1 + a2  
VoffRMS  
=
-----------------------------  
(2)  
V
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from Equation 3:  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
8 of 51  
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
a2 + 2a + n  
a2 2a + n  
VonRMS  
----------------------  
VoffRMS  
D =  
=
---------------------------  
(3)  
Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with  
12 bias is 3 = 1.732 and the discrimination for an LCD drive mode of 1:4 multiplex with  
21  
12 bias is ---------- = 1.528 .  
3
The advantage of these LCD drive modes is a reduction of the LCD full scale voltage VLCD  
as follows:  
1:3 multiplex (12 bias): VLCD  
1:4 multiplex (12 bias): VLCD  
=
=
6 VoffRMS= 2.449VoffRMS  
4 3  
---------------------  
= 2.309VoffRMS  
3
These compare with VLCD = 3VoffRMSwhen 13 bias is used.  
LCD is sometimes referred as the LCD operating voltage.  
V
6.3.1 Electro-optical performance  
Suitable values for Von(RMS) and Voff(RMS) are dependent on the LCD liquid used. The  
RMS voltage, at which a pixel is switched on or off, determines the transmissibility of the  
pixel.  
For any given liquid, there are two threshold values defined. One point is at 10 % relative  
transmission (at Vth(off)) and the other at 90 % relative transmission (at Vth(on)), see  
Figure 5. For a good contrast performance, the following rules should be followed:  
V
V
onRMSVthon  
offRMSVthoff  
(4)  
(5)  
Von(RMS) and Voff(RMS) are properties of the display driver and are affected by the selection  
of a, n (see Equation 1 to Equation 3) and the VLCD voltage.  
Vth(off) and Vth(on) are properties of the LCD liquid and can be provided by the module  
manufacturer. Vth(off) is sometimes just named Vth. Vth(on) is sometimes named saturation  
voltage Vsat  
.
It is important to match the module properties to those of the driver in order to achieve  
optimum performance.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
9 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
ꢄꢃꢃꢀꢏ  
ꢈꢃꢀꢏ  
ꢄꢃꢀꢏ  
9
ꢀ>9@  
506  
9
9
WKꢍRQꢎ  
WKꢍRIIꢎ  
2))  
6(*0(17  
*5(<  
6(*0(17  
21  
6(*0(17  
ꢀꢁꢂDDDꢄꢇꢄ  
Fig 5. Electro-optical characteristic: relative transmission curve of the liquid  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
10 of 51  
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6.4 LCD drive mode waveforms  
6.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 6.  
7
IU  
/&'ꢀVHJPHQWV  
9
/&'  
%3ꢃ  
6Q  
9
66  
VWDWHꢀꢄꢀ  
ꢍRQꢎ  
VWDWHꢀꢁꢀ  
ꢍRIIꢎ  
9
/&'  
9
66  
9
/&'  
6Qꢐꢄ  
9
66  
ꢍDꢎꢀ:DYHIRUPVꢀDWꢀGULYHUꢌ  
9
/&'  
ꢃꢀ9  
VWDWHꢀꢄ  
 9  
9
/&'  
/&'  
VWDWHꢀꢁ  
ꢃꢀ9  
 9  
/&'  
ꢍEꢎꢀ5HVXOWDQWꢀZDYHIRUPVꢀ  
DWꢀ/&'ꢀVHJPHQWꢌ  
ꢀꢁꢂDDDꢃꢀꢈ  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = VLCD  
.
Vstate2(t) = V(Sn + 1)(t) VBP0(t).  
Voff(RMS) = 0 V.  
Fig 6. Static drive mode waveforms  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
11 of 51  
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6.4.2 1:2 Multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF85134 allows the use of 12 bias or 13 bias in this mode as shown in Figure 7 and  
Figure 8.  
7
IU  
9
/&'  
/&'ꢀVHJPHQWV  
9
9
ꢑꢁ  
%3ꢃ  
%3ꢄ  
6Q  
/&'  
66  
VWDWHꢀꢄ  
9
/&'  
VWDWHꢀꢁ  
9
9
ꢑꢁ  
/&'  
66  
9
/&'  
9
9
66  
/&'  
6Qꢐꢄ  
9
66  
ꢍDꢎꢀ:DYHIRUPVꢀDWꢀGULYHUꢌ  
9
9
/&'  
/&'  
ꢑꢁ  
ꢃꢀ9  
 9  
VWDWHꢀꢄ  
ꢑꢁ  
/&'  
 9  
/&'  
9
9
/&'  
ꢑꢁ  
/&'  
ꢃꢀ9  
VWDWHꢀꢁ  
 9  
ꢑꢁ  
/&'  
/&'  
 9  
ꢍEꢎꢀ5HVXOWDQWꢀZDYHIRUPVꢀ  
DWꢀ/&'ꢀVHJPHQWꢌ  
ꢀꢁꢂDDDꢃꢀꢉ  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.791VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.354VLCD  
.
.
Fig 7. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
12 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
7
IU  
9
ꢁ9  
/&'  
/&'ꢀVHJPHQWV  
ꢑꢅ  
/&'  
%3ꢃ  
%3ꢄ  
6Q  
9
9
ꢑꢅ  
/&'  
66  
VWDWHꢀꢄ  
9
ꢁ9  
9
9
/&'  
VWDWHꢀꢁ  
ꢑꢅ  
/&'  
ꢑꢅ  
/&'  
66  
9
ꢁ9  
9
9
/&'  
ꢑꢅ  
/&'  
ꢑꢅ  
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
6Qꢐꢄ  
9
9
/&'  
66  
ꢍDꢎꢀ:DYHIRUPVꢀDWꢀGULYHUꢌ  
9
/&'  
ꢁ9  
ꢑꢅ  
/&'  
9
ꢑꢅ  
/&'  
VWDWHꢀꢄ  
VWDWHꢀꢁ  
ꢃꢀ9  
 9  
ꢑꢅ  
ꢑꢅ  
/&'  
 ꢁ9  
/&'  
 9  
/&'  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
9
/&'  
ꢃꢀ9  
 9  
ꢑꢅ  
/&'  
 ꢁ9  
ꢑꢅ  
/&'  
 9  
/&'  
ꢍEꢎꢀ5HVXOWDQWꢀZDYHIRUPVꢀ  
DWꢀ/&'ꢀVHJPHQWꢌ  
ꢀꢁꢂDDDꢃꢀꢇ  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.745VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 8. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
13 of 51  
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as  
shown in Figure 9.  
7
IU  
9
ꢁ9  
/&'  
/&'ꢀVHJPHQWV  
ꢑꢅ  
/&'  
%3ꢃ  
%3ꢄ  
%3ꢁ  
6Q  
9
9
ꢑꢅ  
/&'  
66  
VWDWHꢀꢄ  
VWDWHꢀꢁ  
9
ꢁ9  
9
9
/&'  
ꢑꢅ  
/&'  
ꢑꢅ  
/&'  
66  
9
ꢁ9  
9
9
/&'  
ꢑꢅ  
/&'  
ꢑꢅ  
/&'  
66  
9
ꢁ9  
9
9
/&'  
ꢑꢅ  
/&'  
ꢑꢅ  
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
6Qꢐꢄ  
9
9
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
6Qꢐꢁ  
9
9
/&'  
66  
ꢍDꢎꢀ:DYHIRUPVꢀDWꢀGULYHUꢌ  
9
/&'  
ꢁ9  
ꢑꢅ  
/&'  
9
ꢑꢅ  
/&'  
VWDWHꢀꢄ  
ꢃꢀ9  
 9  
ꢑꢅ  
/&'  
 ꢁ9  
/&'  
ꢑꢅ  
/&'  
 9  
9
/&'  
ꢁ9  
ꢑꢅ  
/&'  
9
ꢑꢅ  
/&'  
VWDWHꢀꢁ  
ꢃꢀ9  
 9  
ꢑꢅ  
/&'  
 ꢁ9  
ꢑꢅ  
/&'  
 9  
/&'  
ꢍEꢎꢀ5HVXOWDQWꢀZDYHIRUPVꢀ  
DWꢀ/&'ꢀVHJPHQWꢌ  
ꢀꢁꢂDDDꢃꢁꢀ  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.638VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 9. Waveforms for the 1:3 multiplex drive mode with 13 bias  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
14 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6.4.4 1:4 Multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 10.  
7
IU  
9
ꢁ9  
/&'ꢀVHJPHQWV  
/&'  
/&'  
ꢑꢅ  
%3ꢃ  
%3ꢄ  
%3ꢁ  
9
9
ꢑꢅ  
/&'  
66  
VWDWHꢀꢄ  
VWDWHꢀꢁ  
9
ꢁ9  
9
9
/&'  
ꢑꢅ  
/&'  
ꢑꢅ  
/&'  
66  
9
ꢁ9  
9
9
/&'  
ꢑꢅ  
/&'  
ꢑꢅ  
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
%3ꢅ  
6Q  
9
9
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
/&'  
9
9
ꢑꢅ  
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
6Qꢐꢄ  
9
9
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
6Qꢐꢁ  
6Qꢐꢅ  
9
9
/&'  
66  
9
/&'  
ꢁ9  
ꢑꢅ  
/&'  
9
9
ꢑꢅ  
/&'  
66  
ꢍDꢎꢀ:DYHIRUPVꢀDWꢀGULYHUꢌ  
9
/&'  
ꢁ9  
/&'  
ꢑꢅ  
/&'  
ꢑꢅ  
9
VWDWHꢀꢄ  
VWDWHꢀꢁ  
ꢃꢀ9  
/&'  
ꢂ9  
ꢑꢅ  
ꢑꢅ  
ꢂꢁ9  
/&'  
ꢂ9  
/&'  
9
/&'  
ꢁ9  
ꢑꢅ  
ꢑꢅ  
/&'  
9
/&'  
ꢃꢀ9  
ꢂ9  
ꢑꢅ  
/&'  
ꢂꢁ9  
/&'  
ꢑꢅ  
/&'  
ꢂ9  
ꢍEꢎꢀ5HVXOWDQWꢀZDYHIRUPV  
DWꢀ/&'ꢀVHJPHQWꢌ  
ꢀꢁꢂDDDꢃꢁꢁ  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.577VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 10. Waveforms for the 1:4 multiplex drive mode with 13 bias  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
15 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6.5 Oscillator  
The internal logic and the LCD drive signals of the PCF85134 are timed by the frequency  
fclk. It equals either the built-in oscillator frequency fosc or the external clock frequency  
fclk(ext). The clock frequency fclk determines the LCD frame frequency (ffr).  
6.5.1 Internal clock  
The internal oscillator is enabled by connecting pin OSC to pin VSS. In this case, the  
output from pin CLK is the clock signal for any cascaded PCF85134 in the system.  
6.5.2 External clock  
Pin CLK is enabled as an external clock input by connecting pin OSC to VDD  
.
Remark: A clock signal must always be supplied to the device. Removing the clock may  
freeze the LCD in a DC state, which is not suitable for the liquid crystal.  
6.6 Timing and frame frequency  
The PCF85134 timing controls the internal data flow of the device. This includes the  
transfer of display data from the display RAM to the display segment outputs. In cascaded  
applications, the correct timing relationship between each PCF85134 in the system is  
maintained by the synchronization signal at pin SYNC. The timing also generates the LCD  
frame signal whose frequency is derived from the clock frequency. The frame signal  
frequency is a fixed division of the clock frequency from either the internal or an external  
clock.  
Table 6.  
LCD frame frequencies  
Operating mode ratio  
Frame frequency with respect to fclk (typical)  
fclk = 1970 Hz  
Unit  
fclk  
82  
Hz  
ffr  
=
-------  
24  
6.7 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated.  
6.8 Segment outputs  
The LCD drive section includes 60 segment outputs (S0 to S59) which should be  
connected directly to the LCD. The segment output signals are generated based on the  
multiplexed backplane signals and with data resident in the display register. When less  
than 60 segment outputs are required, the unused segment outputs must be left  
open-circuit.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
16 of 51  
 
 
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6.9 Backplane outputs  
The LCD drive section includes four backplane outputs BP0 to BP3 which must be  
connected directly to the LCD. The backplane output signals are generated in accordance  
with the selected LCD drive mode.  
In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.  
If less than four backplane outputs are required, the unused outputs can be left  
open-circuit.  
In 1:3 multiplex drive mode BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In 1:2 multiplex drive mode BP0 and BP2, respectively, BP1 and BP3 carry the same  
signals and can also be paired to increase the drive capabilities.  
In static drive mode, the same signal is carried by all four backplane outputs and they  
can be connected in parallel for very high drive requirements.  
6.10 Display RAM  
The display RAM is a static 60 4-bit RAM which stores LCD data. A logic 1 in the RAM  
bit map indicates the on-state (Von(RMS)) of the corresponding LCD element. Similarly, a  
logic 0 indicates the off-state (Voff(RMS)). For more information on Von(RMS) and Voff(RMS)  
see Section 6.3.  
,
There is a one-to-one correspondence between  
the bits in the RAM bitmap and the LCD elements  
the RAM columns and the segment outputs  
the RAM rows and the backplane outputs.  
The display RAM bit map, Figure 11, shows row 0 to row 3 which correspond with the  
backplane outputs BP0 to BP3, and column 0 to column 59 which correspond with the  
segment outputs S0 to S59. In multiplexed LCD applications, the data of each row of the  
display RAM is time-multiplexed with the corresponding backplane (row 0 with BP0, row 1  
with BP1, and so on).  
FROXPQV  
GLVSOD\ꢀ5$0ꢀDGGUHVVHVꢑVHJPHQWꢀRXWSXWVꢀꢍ6ꢎ  
ꢇꢇ ꢇꢆ ꢇꢋ ꢇꢉ ꢇꢈ  
URZV  
GLVSOD\ꢀ5$0ꢀURZVꢑꢀ  
EDFNSODQHꢀRXWSXWVꢀ  
ꢍ%3ꢎ  
ꢀꢁꢂDDDꢃꢁꢃ  
The display RAM bit map shows the direct relationship between the display RAM addresses and  
the segment outputs and between the bits in a RAM word and the backplane outputs.  
Fig 11. Display RAM bit map  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
17 of 51  
 
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
GULYHꢀPRGH  
/&'ꢀVHJPHQWV  
/&'ꢀEDFNSODQHV  
GLVSOD\ꢀ5$0ꢀILOOLQJꢀRUGHU  
WUDQVPLWWHGꢀGLVSOD\ꢀE\WH  
FROXPQVꢀ  
GLVSOD\ꢀ5$0ꢀDGGUHVVꢑVHJPHQWꢀRXWSXWVꢀꢍVꢎ  
E\WHꢄ  
D
6
Qꢐꢁ  
6
Qꢐꢅ  
6
Qꢐꢊ  
6
Qꢐꢇ  
6
Qꢐꢆ  
E
%3ꢃ  
Q
Qꢀꢐꢀꢄ Qꢀꢐꢀꢁ Qꢀꢐꢀꢅ Qꢀꢐꢀꢊ Qꢀꢐꢀꢇ Qꢀꢐꢀꢆ Qꢀꢐꢀꢋ  
6
I
Qꢐꢄ  
URZVꢀ  
VWDWLF  
GLVSOD\ꢀ5$0ꢀ  
06%  
/6%  
J
F
[
[
[
E
[
[
[
D
[
[
[
I
J
[
[
[
H
[
[
[
G
[
[
[
'3  
[
[
URZVꢑEDFNSODQHꢀ  
RXWSXWVꢀꢍ%3ꢎ  
6
6
Q
Qꢐꢋ  
[
[
[
H
F
E
D
I
J
H
G
'3  
F
G
'3  
[
FROXPQVꢀ  
GLVSOD\ꢀ5$0ꢀDGGUHVVꢑVHJPHQWꢀRXWSXWVꢀꢍVꢎ  
%3ꢃ  
E\WHꢄ  
E\WHꢁ  
D
6
6
Q
ꢄꢒꢁ  
E
Q
Qꢀꢐꢀꢄ Qꢀꢐꢀꢁ Qꢀꢐꢀꢅ  
I
Qꢐꢄ  
URZVꢀ  
06%  
/6%  
'3  
GLVSOD\ꢀ5$0ꢀ  
J
D
E
[
[
I
H
F
[
[
G
'3  
[
URZVꢑEDFNSODQHꢀ  
RXWSXWVꢀꢍ%3ꢎ  
PXOWLSOH[  
J
[
[
%3ꢄ  
D
E
I
J
H F G  
H
6
6
Qꢐꢁ  
F
G
'3  
[
Qꢐꢅ  
FROXPQVꢀ  
GLVSOD\ꢀ5$0ꢀDGGUHVVꢑVHJPHQWꢀRXWSXWVꢀꢍVꢎ  
%3ꢃ  
%3ꢄ  
E\WHꢄ  
E\WHꢁ  
E\WHꢅ  
6
6
D
Qꢐꢄ  
ꢄꢒꢅ  
E
Q
Qꢀꢐꢀꢄ Qꢀꢐꢀꢁ  
6
I
Qꢐꢁ  
Q
URZVꢀ  
06%  
/6%  
H
GLVSOD\ꢀ5$0ꢀ  
E
'3  
F
D
G
J
[
I
J
URZVꢑEDFNSODQHꢀ  
RXWSXWVꢀꢍ%3ꢎ  
PXOWLSOH[  
E
'3  
F
D
G
J
I
H
[
[
%3ꢁ  
H
F
G
'3  
[
FROXPQVꢀ  
GLVSOD\ꢀ5$0ꢀDGGUHVVꢑVHJPHQWꢀRXWSXWVꢀꢍVꢎ  
E\WHꢄ  
E\WHꢁ  
E\WHꢅ  
E\WHꢊ  
E\WHꢇ  
D
6
6
Q
ꢄꢒꢊ  
E
%3ꢁ  
%3ꢅ  
Q
Qꢀꢐꢀꢄ  
%3ꢃ  
%3ꢄ  
I
URZVꢀ  
GLVSOD\ꢀ5$0ꢀ  
J
D
F
E
I
06%  
/6%  
G
URZVꢑEDFNSODQHꢀ  
RXWSXWVꢀꢍ%3ꢎ  
PXOWLSOH[  
H
J
G
H
F
D
F
E
'3  
I
H
J
G
'3  
'3  
Qꢐꢄ  
ꢀꢀꢁDDMꢆꢄꢆ  
x = data bit unchanged.  
Fig 12. Relationship between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
When display data is transmitted to the PCF85134, the display bytes received are stored  
in the display RAM in accordance with the selected LCD multiplex drive mode. The data is  
stored as it arrives and depending on the current multiplex drive mode, data is stored  
singularly, in pairs, triples, or quadruples. To illustrate the filling order, an example of a  
7-segment display showing all drive modes is given in Figure 12. The RAM filling  
organization depicted applies equally to other LCD types.  
The following applies to Figure 12:  
In static drive mode the eight transmitted data bits are placed into row 0 as one byte.  
In 1:2 multiplex drive mode the eight transmitted data bits are placed in pairs into  
row 0 and row 1 as four successive 2-bit RAM words.  
In 1:3 multiplex drive mode the eight bits are placed in triples into row 0, row  
1, and row 2 as three successive 3-bit RAM words, with bit 3 of the third address left  
unchanged. It is not recommended to use this bit in a display because of the difficult  
addressing. This last bit may, if necessary, be controlled by an additional transfer to  
this address. But care should be taken to avoid overwriting adjacent data because  
always full bytes are transmitted (see Section 6.10.3).  
In 1:4 multiplex drive mode, the eight transmitted data bits are placed in quadruples  
into row 0, row 1, row 2, and row 3 as two successive 4-bit RAM words.  
6.10.1 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load-data-pointer command (see Table 10). Following this command,  
an arriving data byte is stored at the display RAM address indicated by the data pointer.  
The filling order is shown in Figure 12. After each byte is stored, the content of the data  
pointer is automatically incremented by a value dependent on the selected LCD drive  
mode:  
In static drive mode by eight.  
In 1:2 multiplex drive mode by four.  
In 1:3 multiplex drive mode by three.  
In 1:4 multiplex drive mode by two.  
If an I2C-bus data access terminates early, then the state of the data pointer is unknown.  
Consequently, the data pointer must be rewritten before further RAM accesses.  
6.10.2 Subaddress counter  
The storage of display data is determined by the content of the subaddress counter.  
Storage is allowed only when the content of the subaddress counter matches with the  
hardware subaddress applied to A0, A1, and A2. The subaddress counter value is defined  
by the device-select command (see Table 13). If the content of the subaddress counter  
and the hardware subaddress do not match, then data storage is inhibited but the data  
pointer is incremented as if data storage had taken place. The subaddress counter is also  
incremented when the data pointer overflows.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
19 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
In cascaded applications each PCF85134 in the cascade must be addressed separately.  
Initially, the first PCF85134 is selected by sending the device-select command matching  
the first hardware subaddress. Then the data pointer is set to the preferred display RAM  
address by sending the load-data-pointer command.  
Once the display RAM of the first PCF85134 has been written, the second PCF85134 is  
selected by sending the device-select command again. This time however the command  
matches the hardware subaddress of the second device. Next the load-data-pointer  
command is sent to select the preferred display RAM address of the second PCF85134.  
This last step is very important because during writing data to the first PCF85134, the data  
pointer of the second PCF85134 is incremented. In addition, the hardware subaddress  
should not be changed while the device is being accessed on the I2C-bus interface.  
6.10.3 RAM writing in 1:3 multiplex drive mode  
In 1:3 multiplex drive mode, the RAM is written as shown in Table 7 (see Figure 12 as  
well).  
Table 7.  
Standard RAM filling in 1:3 multiplex drive mode  
Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are not connected to any elements on the display.  
Display RAM  
bits (rows)/  
backplane  
Display RAM addresses (columns)/segment outputs (Sn)  
0
1
2
3
4
5
6
7
8
9
:
outputs (BPn)  
0
1
2
3
a7  
a6  
a5  
-
a4  
a3  
a2  
-
a1  
a0  
-
b7  
b6  
b5  
-
b4  
b3  
b2  
-
b1  
b0  
-
c7  
c6  
c5  
-
c4  
c3  
c2  
-
c1  
c0  
-
d7  
d6  
d5  
-
:
:
:
:
-
-
-
If the bit at position BP2/S2 would be written by a second byte transmitted, then the  
mapping of the segment bits would change as illustrated in Table 8.  
Table 8.  
Entire RAM filling by rewriting in 1:3 multiplex drive mode  
Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are connected to elements on the display.  
Display RAM  
bits (rows)/  
backplane  
Display RAM addresses (columns)/segment outputs (Sn)  
0
1
2
3
4
5
6
7
8
9
:
outputs (BPn)  
0
1
2
3
a7  
a6  
a5  
-
a4  
a3  
a2  
-
a1/b7 b4  
a0/b6 b3  
b1/c7 c4  
b0/c6 c3  
c1/d7 d4  
c0/d6 d3  
d1/e7 e4  
d0/e6 e3  
:
:
:
:
b5  
-
b2  
-
c5  
-
c2  
-
d5  
-
d2  
-
e5  
-
e2  
-
In the case described in Table 8 the RAM has to be written entirely and BP2/S2, BP2/S5,  
BP2/S8, and so on, have to be connected to elements on the display. This can be  
achieved by a combination of writing and rewriting the RAM like follows:  
In the first write to the RAM, bits a7 to a0 are written.  
In the second write, bits b7 to b0 are written, overwriting bits a1 and a0 with bits b7  
and b6.  
In the third write, bits c7 to c0 are written, overwriting bits b1 and b0 with bits c7 and  
c6.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
20 of 51  
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Depending on the method of writing to the RAM (standard or entire filling by rewriting),  
some elements remain unused or can be used. But it has to be considered in the module  
layout process as well as in the driver software design.  
6.10.4 Bank selector  
6.10.4.1 Output bank selector  
The output bank selector (see Table 14) selects one of the four rows per display RAM  
address for transfer to the display register. The actual row selected depends on the  
particular LCD drive mode in operation and on the instant in the multiplex sequence.  
In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by  
the contents of row 1, 2, and then 3  
In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially  
In 1:2 multiplex mode, rows 0 and 1 are selected  
In static mode, row 0 is selected  
The SYNC signal resets these sequences to the following starting points:  
row 3 for 1:4 multiplex  
row 2 for 1:3 multiplex  
row 1 for 1:2 multiplex  
row 0 for static mode  
The PCF85134 includes a RAM bank switching feature in the static and 1:2 multiplex drive  
modes. In the static drive mode, the bank-select command may request the contents of  
row 2 to be selected for display instead of the contents of row 0. In the 1:2 multiplex mode,  
the contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives the  
provision for preparing display information in an alternative bank and to be able to switch  
to it once it is assembled.  
6.10.4.2 Input bank selector  
The input bank selector loads display data into the display data in accordance with the  
selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode  
or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command (see  
Table 14). The input bank selector functions independently to the output bank selector.  
6.11 Blinking  
The display blinking capabilities of the PCF85134 are very versatile. The whole display  
can blink at frequencies selected by the blink-select command (see Table 15). The blink  
frequencies are derived from the clock frequency. The ratio between the clock and blink  
frequency depends on the blink mode selected (see Table 9).  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
21 of 51  
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Table 9.  
Blink frequencies  
Blink mode Operating mode ratio Blink frequency with respect to fclk (typical)  
Unit  
fclk = 1970 Hz  
off  
1
-
blinking off  
Hz  
Hz  
fclk  
--------  
768  
2.5  
1.3  
0.6  
fblink  
=
=
=
fclk  
2
3
Hz  
Hz  
fblink  
-----------  
1536  
fclk  
fblink  
-----------  
3072  
An additional feature is for an arbitrary selection of LCD segments to blink. This applies to  
the static and 1:2 multiplex drive modes and can be implemented without any  
communication overheads. With the output bank selector, the displayed RAM banks are  
exchanged with alternate RAM banks at the blink frequency. This mode can also be  
specified by the blink-select command.  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD elements can blink by selectively changing the display RAM data at fixed time  
intervals.  
The entire display can blink at a frequency other than the nominal blink frequency. This  
can be effectively performed by resetting and setting the display enable bit E at the  
required rate using the mode-set command (see Table 11).  
6.12 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. There are  
five commands:  
Table 10. Definition of commands  
Command  
Bit  
Operation code  
Reference  
7
1
0
1
1
1
6
5
4
3
2
1
0
mode-set  
1
0
0
E
B
M[1:0]  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
load-data-pointer  
device-select  
bank-select  
blink-select  
P[6:0]  
1
1
1
1
1
1
0
1
1
0
1
0
A[2:0]  
0
I
O
AB  
BF[1:0]  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
22 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Table 11. Mode-set command bit description  
Bit  
7 to 4  
3
Symbol  
Value  
Description  
-
1100  
fixed value  
display status[1]  
E
0[2]  
1
disabled (blank)[3]  
enable  
2
B
LCD bias configuration[4]  
13 bias  
12 bias  
0[2]  
1
1 to 0 M[1:0]  
LCD drive mode selection  
static; one backplane  
1:2 multiplex; two backplanes  
1:3 multiplex; three backplanes  
1:4 multiplex; four backplanes  
01  
10  
11  
00[2]  
[1] The possibility to disable the display allows implementation of blinking under external control.  
[2] Default value.  
[3] The display is disabled by setting all backplane and segment outputs to VLCD  
.
[4] Not applicable for static drive mode.  
Table 12. Load-data-pointer command bit description  
See Section 6.10.1 on page 19.  
Bit  
Symbol  
Value  
Description  
7
-
0
fixed value  
6 to 0 P[6:0]  
0000000[1] to 7-bit binary value, 0 to 59; transferred to the  
0111011  
data pointer to define one of 60 display RAM  
addresses  
[1] Default value.  
Table 13. Device-select command bit description  
See Section 6.10.2 on page 19.  
Bit  
Symbol  
Value  
Description  
7 to 3  
-
11100  
fixed value  
2 to 0 A[2:0]  
000[1] to 111  
3-bit binary value, 0 to 7; transferred to the  
subaddress counter to define one of eight  
hardware subaddresses  
[1] Default value.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
23 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Table 14. Bank-select command bit description  
See Section 6.10.4 on page 21.  
Bit  
Symbol  
Value  
Description  
Static  
1:2 multiplex[1]  
7 to 2  
1
-
I
111110  
fixed value  
input bank selection: storage of arriving  
display data  
0[2]  
1
RAM row 0  
RAM row 2  
RAM rows 0 and 1  
RAM rows 2 and 3  
0
O
output bank selection: retrieval of LCD display  
data  
0[2]  
1
RAM row 0  
RAM row 2  
RAM rows 0 and 1  
RAM rows 2 and 3  
[1] The bank-select command has no effect in 1:3 or 1:4 multiplex drive modes.  
[2] Default value.  
Table 15. Blink-select command bit description  
See Section 6.11 on page 21.  
Bit  
7 to 3  
2
Symbol  
Value  
Description  
-
11110  
fixed value  
AB  
blink mode selection  
normal blinking[2]  
alternate RAM bank blinking[3]  
0[1]  
1
1 to 0 BF[1:0]  
blink frequency selection[4]  
00[1]  
01  
off  
1
10  
2
11  
3
[1] Default value.  
[2] Normal blinking is assumed when the LCD multiplex drive modes 1:3 or 1:4 are selected.  
[3] Alternate RAM bank blinking does not apply in 1:3 and 1:4 multiplex drive modes.  
[4] For the blink frequencies, see Table 9.  
6.13 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF85134 and coordinates their effects. The display  
controller is also responsible for loading display data into the display RAM in the correct  
filling order.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
24 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
7. Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer may be initiated only when the bus is not busy.  
7.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal. Bit transfer is illustrated in Figure 13.  
6'$  
6&/  
GDWDꢀOLQHꢀ  
VWDEOHꢓꢀ  
FKDQJHꢀ  
RIꢀGDWDꢀ  
DOORZHG  
GDWDꢀYDOLG  
PEDꢆꢀꢈ  
Fig 13. Bit transfer  
7.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy.  
A HIGH-to-LOW change of the data line, while the clock is HIGH, is defined as the START  
condition (S).  
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP  
condition (P).  
The START and STOP conditions are illustrated in Figure 14.  
6'$  
6&/  
6'$  
6&/  
6
3
67$57ꢀFRQGLWLRQ  
6723ꢀFRQGLWLRQ  
PEFꢃꢃ  
Fig 14. Definition of START and STOP conditions  
7.2 System configuration  
A device generating a message is a transmitter, a device receiving a message is the  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves. The system configuration is shown in Figure 15.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
25 of 51  
 
 
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
0$67(5ꢀ  
75$160,77(5ꢑꢀ  
5(&(,9(5  
0$67(5ꢀ  
75$160,77(5ꢑꢀ  
5(&(,9(5  
6/$9(ꢀ  
75$160,77(5ꢑꢀ  
5(&(,9(5  
6/$9(ꢀ  
5(&(,9(5  
0$67(5ꢀ  
75$160,77(5  
6'$  
6&/  
PJDꢉꢀꢈ  
Fig 15. System configuration  
7.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge  
cycle.  
A slave receiver, which is addressed, must generate an acknowledge after the  
reception of each byte.  
A master receiver must generate an acknowledge after the reception of each byte that  
has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is illustrated in Figure 16.  
GDWDꢀRXWSXWꢀ  
E\ꢀWUDQVPLWWHU  
QRWꢀDFNQRZOHGJH  
GDWDꢀRXWSXWꢀ  
E\ꢀUHFHLYHU  
DFNQRZOHGJH  
6&/ꢀIURPꢀ  
PDVWHU  
6
FORFNꢀSXOVHꢀIRUꢀ  
67$57ꢀ  
FRQGLWLRQ  
DFNQRZOHGJHPHQW  
PEFꢆꢀꢃ  
Fig 16. Acknowledgement of the I2C-bus  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
26 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
7.4 I2C-bus controller  
The PCF85134 acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF85134 are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, on the transferred command data and on the hardware  
subaddress.  
In single device applications, the hardware subaddress inputs A0, A1, and A2 are  
normally tied to VSS which defines the hardware subaddress 0. In multiple device  
applications A0, A1, and A2 are tied to VSS or VDD using a binary coding scheme, so that  
no two devices with a common I2C-bus slave address have the same hardware  
subaddress.  
7.5 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
7.6 I2C-bus protocol  
Two I2C-bus slave addresses (0111 000 and 0111 001) are used to address the  
PCF85134. The entire I2C-bus slave address byte is shown in Table 16.  
Table 16. I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
0
1
1
1
0
0
SA0  
The PCF85134 is a write-only device and does not respond to a read access, therefore  
bit 0 should always be logic 0. Bit 1 of the slave address byte, that a PCF85134 will  
respond to, is defined by the level tied to its SA0 input (VSS for logic 0 and VDD for logic 1).  
Having two reserved slave addresses allows the following on the same I2C-bus:  
Up to 16 PCF85134 for very large LCD applications  
The use of two types of LCD multiplex drive  
The I2C-bus protocol is shown in Figure 17. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the available PCF85134  
slave addresses. All PCF85134 with the same SA0 level acknowledge in parallel to the  
slave address. All PCF85134 with the alternative SA0 level ignore the whole I2C-bus  
transfer.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
27 of 51  
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
5ꢑ:ꢀ ꢀꢃ  
VODYHꢀDGGUHVV  
FRQWUROꢀE\WH  
5$0ꢑFRPPDQGꢀE\WH  
6ꢀ  
$ꢀ   
0ꢀ  
6ꢀ  
%
/ꢀ  
6ꢀ  
%
&ꢀ 5ꢀ  
2ꢀ 6ꢀ  
$
6
3
$
(;$03/(6ꢀ  
DꢎꢀWUDQVPLWꢀWZRꢀE\WHVꢀRIꢀ5$0ꢀGDWD  
6ꢀ  
$
6
$ꢀ   
5$0ꢀ'$7$  
&200$1'  
&200$1'  
$
$
$
5$0ꢀ'$7$  
$
$
$
3
$
$
$
EꢎꢀWUDQVPLWꢀWZRꢀFRPPDQGꢀE\WHV  
6ꢀ  
$
6
$ꢀ  
&200$1'  
5$0ꢀ'$7$  
$
$
3
FꢎꢀWUDQVPLWꢀRQHꢀFRPPDQGꢀE\WHꢀDQGꢀWZRꢀ5$0ꢀGDWHꢀE\WHV  
6ꢀ  
$
6
$ꢀ   
5$0ꢀ'$7$  
$ 3  
PJOꢈꢅꢃ  
Fig 17. I2C-bus protocol  
After acknowledgement, the control byte is sent defining if the next byte is a RAM or  
command information. The control byte also defines if the next byte is a control byte or  
further RAM or command data (see Figure 18 and Table 17). In this way, it is possible to  
configure the device and then fill the display RAM with little overhead.  
06%  
/6%  
&2 56  
QRWꢀUHOHYDQW  
PJOꢈꢅꢂ  
Fig 18. Control byte format  
Table 17. Control byte description  
Bit  
Symbol Value  
Description  
7
CO  
continue bit  
last control byte  
0
1
control bytes continue  
register selection  
command register  
data register  
6
RS  
0
1
5 to 0  
-
unused  
The command bytes and control bytes are also acknowledged by all addressed  
PCF85134 connected to the bus.  
The display bytes are stored in the display RAM at the address specified by the data  
pointer and the subaddress counter. Both data pointer and subaddress counter are  
automatically updated.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
28 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
The acknowledgement, after each byte, is made only by the A0, A1, and A2 addressed  
PCF85134. After the last display byte, the I2C-bus master issues a STOP condition (P).  
Alternatively a START may be issued to RESTART I2C-bus access.  
8. Internal circuitry  
9
9
9
''  
''  
6$ꢃ  
&/.  
9
9
66  
''  
66  
6&/  
9
9
66  
''  
9
66  
26&  
9
9
66  
''  
6'$  
6<1&  
9
9
9
66  
66  
''  
$ꢃꢔꢀ$ꢄꢔꢀ$ꢁ  
9
/&'  
9
9
66  
/&'  
9
66  
%3ꢃꢔꢀ%3ꢄꢔꢀ  
%3ꢁꢔꢀ%3ꢅꢀ  
9
9
66  
/&'  
6ꢃꢀWRꢀ6ꢇꢈ  
9
ꢀꢀꢁDDKꢆꢁꢅ  
66  
Fig 19. Device protection diagram  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
29 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
9. Safety notes  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling  
electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or  
equivalent standards.  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
30 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
10. Limiting values  
Table 18. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD  
IDD  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
50  
50  
0.5  
10  
0.5  
0.5  
10  
-
Max  
+6.5  
+50  
+7.5  
+50  
+50  
+6.5  
+10  
+6.5  
+7.5  
+10  
400  
100  
Unit  
V
supply voltage  
supply current  
LCD supply voltage  
LCD supply current  
ground supply current  
input voltage  
mA  
V
VLCD  
IDD(LCD)  
ISS  
mA  
mA  
V
[2]  
[2]  
VI  
II  
input current  
mA  
V
[2]  
VO  
output voltage  
[3]  
V
[2][3]  
IO  
output current  
mA  
mW  
mW  
Ptot  
P/out  
total power dissipation  
power dissipation per  
output  
-
[4]  
[5]  
[6]  
[7]  
VESD  
electrostatic  
discharge voltage  
HBM  
-
2500  
1000  
200  
V
CDM  
-
V
Ilu  
latch-up current  
Vlu = 11.5 V  
-
mA  
C  
C  
Tstg  
Tamb  
storage temperature  
65  
40  
+150  
+85  
ambient temperature operating device  
[1] Stresses above these values listed may cause permanent damage to the device.  
[2] Pins SDA, SCL, CLK, SYNC, SA0, OSC, and A0 to A2.  
[3] Pins S0 to S59 and BP0 to BP3.  
[4] Pass level; Human Body Model (HBM), according to Ref. 8 “JESD22-A114”.  
[5] Pass level; Charged-Device Model (CDM), according to Ref. 9 “JESD22-C101”.  
[6] Pass level; latch-up testing according to Ref. 10 “JESD78” at maximum ambient temperature (Tamb(max)).  
[7] According to the store and transport requirements (see Ref. 13 “UM10569”) the devices have to be stored at a temperature of +8 C to  
+45 C and a humidity of 25 % to 75 %.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
31 of 51  
 
 
 
 
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
11. Static characteristics  
Table 19. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
1.8  
2.5  
-
-
5.5  
6.5  
20  
V
VLCD  
IDD  
LCD supply voltage  
supply current  
-
V
[1]  
[1]  
fclk(ext) = 1536 Hz  
fclk(ext) = 1536 Hz  
8
24  
A  
A  
IDD(LCD)  
Logic  
VI  
LCD supply current  
-
60  
input voltage  
VSS 0.5  
-
-
VDD + 0.5  
0.3VDD  
V
V
VIL  
LOW-level input  
voltage  
on pins CLK, SYNC, OSC, A0 to  
A2 and SA0  
VSS  
VIH  
HIGH-level input  
voltage  
on pins CLK, SYNC, OSC, A0 to  
A2 and SA0  
0.7VDD  
1.0  
-
VDD  
1.6  
-
V
VPOR  
IOL  
power-on reset  
voltage  
1.3  
-
V
LOW-level output  
current  
output sink current; VOL = 0.4 V;  
VDD = 5 V; on pins CLK and  
SYNC  
1
mA  
IOH  
HIGH-level output  
current  
output source current; VOH = 4.6  
V;  
VDD = 5 V; on pin CLK  
1
-
-
-
mA  
IL  
leakage current  
VI = VDD or VSS; on pins SA0, A0  
to A2 and CLK  
1  
+1  
A  
VI = VDD; on pin OSC  
1  
-
-
+1  
7
A  
[2]  
CI  
input capacitance  
-
pF  
I2C-bus; pins SDA and SCL[3]  
VI  
input voltage  
VSS 0.5  
VSS  
-
-
-
-
5.5  
V
V
V
V
VIL  
LOW-level input  
voltage  
pin SCL  
pin SDA  
0.3VDD  
0.2VDD  
5.5  
VSS  
VIH  
IOL  
HIGH-level input  
voltage  
0.7VDD  
LOW-level output  
current  
output sink current; VOL = 0.4 V;  
VDD = 5 V; on pin SDA  
3
-
-
mA  
IL  
leakage current  
VI = VDD or VSS  
1  
-
-
+1  
7
A  
[2]  
Ci  
input capacitance  
-
pF  
LCD outputs  
Output pins BP0 to BP3  
[4]  
[5]  
VBP  
RBP  
voltage on pin BP  
Cbpl = 35 nF  
100  
-
+100  
10  
mV  
resistance on pin BP VLCD = 5 V  
-
1.5  
k  
Output pins S0 to S59  
[6]  
[5]  
VS  
RS  
voltage on pin S  
resistance on pin S  
Csgm = 35 nF  
VLCD = 5 V  
100  
-
+100  
13.5  
mV  
-
6.0  
k  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
32 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
[1] LCD outputs are open-circuit; inputs at VSS or VDD; external clock with 50 % duty factor; I2C-bus inactive.  
[2] Not tested, design specification only.  
[3] The I2C-bus interface of PCF85134 is 5 V tolerant.  
[4]  
Cbpl = backplane capacitance.  
[5] Measured on sample basis only.  
[6] Csgm = segment capacitance.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
33 of 51  
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
12. Dynamic characteristics  
Table 20. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Clock  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal: output pin CLK  
[1]  
fosc  
oscillator frequency  
VDD = 5 V  
VDD = 5 V  
1440  
800  
1970  
-
2640  
3600  
Hz  
Hz  
External: input pin CLK  
fclk(ext)  
external clock  
frequency  
tclk(H)  
tclk(L)  
HIGH-level clock time  
LOW-level clock time  
130  
130  
-
-
-
-
s  
s  
Synchronization: input pin SYNC  
tPD(SYNC_N) SYNC propagation  
delay  
-
30  
-
-
-
ns  
tSYNC_NL  
SYNC LOW time  
1
s  
Outputs: pins BP0 to BP3 and S0 to S59  
tPD(drv)  
driver propagation  
delay  
VLCD = 5 V  
-
-
30  
s  
I2C-bus: timing[2]  
Pin SCL  
fSCL  
SCL frequency  
-
-
-
400  
-
kHz  
tLOW  
LOW period of the  
SCL clock  
1.3  
s  
tHIGH  
HIGH period of the  
SCL clock  
0.6  
-
-
s  
Pin SDA  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
100  
0
-
-
-
-
ns  
ns  
Pins SCL and SDA  
tBUF  
bus free time between  
1.3  
-
-
s  
a STOP and START  
condition  
tSU;STO  
tHD;STA  
tSU;STA  
set-up time for STOP  
condition  
0.6  
0.6  
0.6  
-
-
-
-
-
-
s  
s  
s  
hold time (repeated)  
START condition  
set-up time for a  
repeated START  
condition  
tr  
rise time of both SDA  
and SCL signals  
-
-
0.3  
s  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
34 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Table 20. Dynamic characteristics …continued  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf  
fall time of both SDA  
and SCL signals  
-
-
0.3  
s  
Cb  
capacitive load for  
each bus line  
-
-
-
-
400  
50  
pF  
ns  
tw(spike)  
spike pulse width  
[1] Typical output (duty cycle = 50 %).  
[2] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD  
.
ꢄꢀꢑꢀI  
FON  
W
W
FONꢍ/ꢎ  
FONꢍ+ꢎ  
ꢃꢌꢋ9  
''  
&/.  
ꢃꢌꢅ9  
''  
ꢃꢌꢋ9  
''  
6<1&  
ꢃꢌꢅ9  
''  
W
W
3'ꢍ6<1&B1ꢎ  
3'ꢍ6<1&B1ꢎ  
W
6<1&B1/  
ꢃꢌꢇꢀ9  
%3ꢃꢀWRꢀ%3ꢅꢔꢀ  
DQGꢀ6ꢃꢀWRꢀ6ꢇꢈ  
ꢍ9 ꢀ ꢀꢇꢀ9ꢎ  
''  
ꢃꢌꢇꢀ9  
W
3'ꢍGUYꢎ  
ꢀꢀꢁDDKꢆꢁꢉ  
Fig 20. Driver timing waveforms  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
35 of 51  
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
6'$  
W
W
W
I
%8)  
/2:  
6&/ꢀꢀ  
6'$ꢀꢀ  
W
+'ꢓ67$  
W
U
W
W
68ꢓ'$7  
+'ꢓ'$7  
W
+,*+  
W
68ꢓ67$  
W
68ꢓ672  
PJDꢈꢃꢉ  
Fig 21. I2C-bus timing waveforms  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
36 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
13. Application information  
13.1 Cascaded operation  
Large display configurations of up to 16 PCF85134s can be recognized on the same  
I2C-bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable  
I2C-bus slave address (SA0).  
Table 21. Addressing cascaded PCF85134  
Cluster  
Bit SA0  
Pin A2  
Pin A1  
Pin A0  
Device  
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
1
8
9
10  
11  
12  
13  
14  
15  
When cascaded PCF85134 are synchronized, they can share the backplane signals from  
one of the devices in the cascade. Such an arrangement is cost-effective in large LCD  
applications since the backplane outputs of only one device need to be through-plated to  
the backplane electrodes of the display. The other PCF85134 of the cascade contribute  
additional segment outputs. The backplanes can either be connected together to enhance  
the drive capability or some can be left open-circuit (such as the ones from the slave  
in Figure 22) or just some of the master and some of the slave will be taken to facilitate the  
layout of the display.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
37 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
9
9
/&'  
''  
6'$  
6&/  
ꢆꢃꢀVHJPHQWꢀGULYHV  
3&)ꢀꢁꢂꢃꢄ  
6<1&  
&/.  
ꢍꢁꢎ  
%3ꢃꢀWRꢀ%3ꢅꢀ  
ꢍRSHQꢂFLUFXLWꢎ  
26&  
$ꢃ $ꢄ $ꢁ 6$ꢃ  
9
66  
/&'ꢀ3$1(/  
9
/&'  
9
W
U
ꢁ&  
''  
”
5
9
9
/&'  
E
''  
ꢆꢃꢀVHJPHQWꢀGULYHV  
6'$  
6&/  
+267  
0,&52ꢂ  
352&(6625ꢑ  
0,&52ꢂ  
&21752//(5  
6<1&  
&/.  
ꢊꢀEDFNSODQHV  
%3ꢃꢀWRꢀ%3ꢅ  
3&)ꢀꢁꢂꢃꢄ  
ꢍꢄꢎ  
26&  
$ꢃ $ꢄ $ꢁ 6$ꢃ  
9
66  
9
66  
ꢀꢁꢂDDDꢃꢁꢂꢊ  
(1) Is master (OSC connected to VSS).  
(2) Is slave (OSC connected to VDD).  
Fig 22. Cascaded PCF85134 configuration  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCF85134. Synchronization is guaranteed after a power-on reset. The only time that  
SYNC is likely to be needed is if synchronization is accidentally lost (for example, by noise  
in adverse electrical environments or by defining a multiplex drive mode when PCF85134  
with different SA0 levels are cascaded).  
SYNC is organized as an input/output pin. The output selection is realized as an  
open-drain driver with an internal pull-up resistor. A PCF85134 asserts the SYNC line at  
the onset of its last active backplane signal and monitors the SYNC line at all other times.  
If synchronization in the cascade is lost, it is restored by the first PCF85134 to assert  
SYNC. The timing relationship between the backplane waveforms and the SYNC signal  
for the various drive modes of the PCF85134 are shown in Figure 23.  
The contact resistance between the SYNC on each cascaded device must be controlled.  
If the resistance is too high, the device is not able to synchronize properly; this is  
applicable to chip-on-glass applications. The maximum SYNC contact resistance allowed  
for the number of devices in cascade is given in Table 22.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
38 of 51  
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Table 22. SYNC contact resistance  
Number of devices  
Maximum contact resistance  
2
6000   
2200   
1200   
700   
3 to 5  
6 to 10  
11 to 16  
The PCF85134 can always be cascaded with other devices of the same type or  
conditionally with other devices of the same family. This allows optimal drive selection for  
a given number of pixels to display. Figure 21 and Figure 23 show the timing of the  
synchronization signals.  
IU  
7
 
IU  
I
%3ꢃ  
6<1&  
ꢍDꢎꢀVWDWLFꢀGULYHꢀPRGHꢌ  
%3ꢃꢀ  
ꢍꢄꢑꢁꢀELDVꢎꢀ  
%3ꢃꢀ  
ꢍꢄꢑꢅꢀELDVꢎꢀ  
6<1&  
ꢍEꢎꢀꢄꢒꢁꢀPXOWLSOH[ꢀGULYHꢀPRGHꢌ  
%3ꢃꢀ  
ꢍꢄꢑꢅꢀELDVꢎ  
6<1&  
ꢍFꢎꢀꢄꢒꢅꢀPXOWLSOH[ꢀGULYHꢀPRGHꢌ  
ꢍGꢎꢀꢄꢒꢊꢀPXOWLSOH[ꢀGULYHꢀPRGHꢌ  
%3ꢃꢀ  
ꢍꢄꢑꢅꢀELDVꢎ  
6<1&  
PJOꢈꢅꢅ  
Fig 23. Synchronization of the cascade for various PCF85134 drive modes  
Only one master but multiple slaves are allowed in a cascade. All devices in the cascade  
have to use the same clock whether it is supplied externally or provided by the master.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
39 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
If an external clock source is used, all PCF85134 in the cascade must be configured such  
as to receive the clock from that external source (pin OSC connected to VDD). It must be  
ensured that the clock tree is designed such that on all PCF85134 the clock propagation  
delay from the clock source to all PCF85134 in the cascade is as equal as possible since  
otherwise synchronization artifacts may occur.  
In mixed cascading configurations, care has to be taken that the specifications of the  
individual cascaded devices are met at all times.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
40 of 51  
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
14. Package outline  
/4)3ꢀꢊꢋꢅSODVWLFꢅORZꢅSURILOHꢅTXDGꢅIODWꢅSDFNDJHꢌꢅꢀꢊꢅOHDGVꢌꢅERG\ꢅꢂꢇꢅ[ꢅꢂꢇꢅ[ꢅꢂꢆꢄꢅPPꢅ  
627ꢃꢂꢁꢍꢂꢅ  
\ꢀ  
;ꢀ  
$ꢀ  
ꢆꢃꢀ  
ꢊꢄꢀ  
=ꢀ  
ꢆꢄꢀ  
ꢊꢃꢀ  
(ꢀ  
Hꢀ  
+ꢀ  
$ꢀ  
ꢁꢀ  
(ꢀ  
(ꢀ  
$ꢀ  
ꢍ$ꢀꢀꢎꢀ  
ꢅꢀ  
$ꢀ  
ꢄꢀ  
Z0ꢀ  
șꢀ  
Eꢀ  
Sꢀ  
/ꢀ  
Sꢀ  
/ꢀ  
SLQꢀꢄꢀꢀLQGH[ꢀ  
ꢉꢃꢀ  
ꢁꢄꢀ  
GHWDLOꢀ;ꢀ  
ꢄꢀ  
ꢁꢃꢀ  
=ꢀ  
'ꢀ  
Yꢀ 0ꢀ  
$ꢀ  
Hꢀ  
Z0ꢀ  
Eꢀ  
Sꢀ  
'ꢀ  
+ꢀ  
%ꢀ  
Yꢀ 0ꢀ  
%ꢀ  
'ꢀ  
ꢃꢀ  
ꢇꢀ  
VFDOHꢀ  
ꢄꢃꢀPPꢀ  
',0(16,216ꢅꢈPPꢅDUHꢅWKHꢅRULJLQDOꢅGLPHQVLRQVꢉꢅ  
$ꢅ  
ꢈꢂꢉꢅ  
ꢈꢂꢉꢅ  
ꢈꢂꢉꢅ  
ꢈꢂꢉꢅ  
81,7ꢅ  
$ꢅ  
ꢂꢅ  
$ꢅ  
ꢇꢅ  
$ꢅ  
ꢃꢅ  
Eꢅ  
Sꢅ  
Fꢅ  
'ꢅ  
(ꢅ  
Hꢅ  
ꢃꢌꢇꢀ  
+ꢅ  
+ꢅ  
/ꢅ  
/ꢅ  
Yꢅ  
Zꢅ  
\ꢅ =ꢅ  
=ꢅ  
(ꢅ  
șꢀ  
'ꢅ  
(ꢅ  
Sꢅ  
'ꢅ  
PD[ꢆꢅ  
Rꢀ  
ꢃꢌꢄꢆꢀ ꢄꢌꢇꢀ  
ꢃꢌꢃꢊꢀ ꢄꢌꢅꢀ  
ꢃꢌꢁꢋꢀ ꢃꢌꢄꢉꢀ ꢄꢁꢌꢄꢀ ꢄꢁꢌꢄꢀ  
ꢃꢌꢄꢅꢀ ꢃꢌꢄꢁꢀ ꢄꢄꢌꢈꢀ ꢄꢄꢌꢈꢀ  
ꢄꢊꢌꢄꢇꢀ ꢄꢊꢌꢄꢇꢀ  
ꢄꢅꢌꢉꢇꢀ ꢄꢅꢌꢉꢇꢀ  
ꢃꢌꢋꢇꢀ  
ꢃꢌꢅꢃꢀ  
ꢄꢌꢊꢇꢀ ꢄꢌꢊꢇꢀ  
ꢄꢌꢃꢇꢀ ꢄꢌꢃꢇꢀ  
ꢋꢀ  
ꢄꢌꢆꢀ  
PPꢀ  
ꢄꢀ  
ꢃꢌꢁꢀ ꢃꢌꢄꢇꢀ ꢃꢌꢄꢀ  
ꢃꢌꢁꢇꢀ  
Rꢀ  
ꢃꢀ  
1RWHꢅ  
ꢄꢌꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢃꢌꢁꢇꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢌꢀꢀ  
ꢅ5()(5(1&(6ꢅ  
ꢅ-('(&ꢅ ꢅ-(,7$ꢅ  
06ꢂꢃꢁꢆꢀ  
287/,1(ꢅ  
9(56,21ꢅ  
(8523($1ꢅ  
352-(&7,21ꢅ  
,668(ꢅ'$7(ꢅ  
ꢅ,(&ꢅ  
ꢃꢃꢂꢃꢄꢂꢄꢈꢀ  
ꢃꢅꢂꢃꢁꢂꢁꢇꢀ  
ꢀ627ꢅꢄꢇꢂꢄꢀ  
ꢄꢅꢆ(ꢄꢇꢀ  
Fig 24. Package outline SOT315-1 (LQFP80)  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
41 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
15. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
16. Packing information  
For tape and reel packing information, please see Ref. 12 “SOT315-1_118” on page 48.  
17. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
17.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
17.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
42 of 51  
 
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
17.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
17.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 25) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 23 and 24  
Table 23. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 24. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 25.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
43 of 51  
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 25. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
44 of 51  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
18. Appendix  
18.1 LCD segment driver selection  
Table 25. Selection of LCD segment drivers  
Type name  
Number of elements at MUX  
VDD (V)  
VLCD (V) ffr (Hz)  
VLCD (V) VLCD (V)  
Tamb (C) Interface Package AEC-  
charge temperature  
Q100  
1:1 1:2 1:3 1:4 1:6 1:8 1:9  
pump  
N
N
N
Y
compensat.  
PCA8553DTT  
PCA8546ATT  
PCA8546BTT  
PCA8547AHT  
PCA8547BHT  
PCF85134HL  
PCA85134H  
PCA8543AHL  
PCF8545ATT  
PCF8545BTT  
PCF8536AT  
PCF8536BT  
PCA8536AT  
PCA8536BT  
PCF8537AH  
PCF8537BH  
PCA8537AH  
PCA8537BH  
PCA9620H  
40 80 120 160 -  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.8 to 5.5 1.8 to 5.5 32 to 256[1]  
N
N
N
Y
Y
N
N
Y
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
N
N
N
N
N
40 to 105 I2C / SPI TSSOP56  
Y
Y
Y
Y
Y
N
Y
Y
N
N
N
N
Y
Y
N
N
Y
Y
Y
Y
N
N
Y
N
Y
-
-
-
-
-
-
-
-
176 -  
176 -  
176 -  
176 -  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
40 to 95 I2C  
40 to 95 SPI  
40 to 95 I2C  
40 to 95 SPI  
40 to 85 I2C  
40 to 95 I2C  
40 to 105 I2C  
40 to 85 I2C  
40 to 85 SPI  
40 to 85 I2C  
40 to 85 SPI  
40 to 95 I2C  
40 to 95 SPI  
40 to 85 I2C  
40 to 85 SPI  
40 to 95 I2C  
40 to 95 SPI  
40 to 105 I2C  
40 to 105 I2C  
40 to 85 I2C  
40 to 85 I2C  
40 to 105 I2C  
40 to 85 I2C  
40 to 95 I2C  
TSSOP56  
TSSOP56  
TQFP64  
TQFP64  
LQFP80  
LQFP80  
LQFP80  
TSSOP56  
TSSOP56  
TSSOP56  
TSSOP56  
TSSOP56  
TSSOP56  
TQFP64  
TQFP64  
TQFP64  
TQFP64  
LQFP80  
Bare die  
Bare die  
Bare die  
Bare die  
Bare die  
Bare die  
44 88  
44 88  
Y
60 120 180 240 -  
60 120 180 240 -  
1.8 to 5.5 2.5 to 6.5 82  
N
N
Y
1.8 to 5.5 2.5 to 8  
82  
60 120 -  
240 -  
2.5 to 5.5 2.5 to 9  
60 to 300[1]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
176 252 320 -  
176 252 320 -  
176 252 320 -  
176 252 320 -  
176 252 320 -  
176 252 320 -  
176 276 352 -  
176 276 352 -  
176 276 352 -  
176 276 352 -  
240 320 480 -  
240 320 480 -  
1.8 to 5.5 2.5 to 5.5 60 to 300[1]  
1.8 to 5.5 2.5 to 5.5 60 to 300[1]  
N
N
N
N
N
N
Y
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
1.8 to 5.5 2.5 to 9  
2.5 to 5.5 2.5 to 9  
2.5 to 5.5 2.5 to 9  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
60 to 300[1]  
44 88  
44 88  
44 88  
44 88  
Y
Y
Y
60 120 -  
60 120 -  
Y
PCA9620U  
Y
PCF8576DU  
PCF8576EUG  
PCA8576FUG  
PCF85133U  
PCA85133U  
40 80 120 160 -  
40 80 120 160 -  
40 80 120 160 -  
80 160 240 320 -  
80 160 240 320 -  
-
-
-
-
-
-
-
-
-
-
1.8 to 5.5 2.5 to 6.5 77  
1.8 to 5.5 2.5 to 6.5 77  
N
N
N
N
N
1.8 to 5.5 2.5 to 8  
200  
1.8 to 5.5 2.5 to 6.5 82, 110[2]  
1.8 to 5.5 2.5 to 8  
82, 110[2]  
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 25. Selection of LCD segment drivers …continued  
Type name  
Number of elements at MUX  
VDD (V)  
VLCD (V) ffr (Hz)  
VLCD (V) VLCD (V)  
Tamb (C) Interface Package AEC-  
charge temperature  
Q100  
1:1 1:2 1:3 1:4 1:6 1:8 1:9  
pump  
compensat.  
PCA85233UG  
PCF85132U  
80 160 240 320 -  
160 320 480 640 -  
-
-
-
-
-
-
-
-
-
-
1.8 to 5.5 2.5 to 8  
1.8 to 5.5 1.8 to 8  
2.5 to 5.5 4 to 12  
1.8 to 5.5 1.8 to 8  
1.8 to 5.5 1.8 to 8  
150, 220[2]  
60 to 90[1]  
45 to 300[1]  
60 to 90[1]  
117 to 176[1]  
45 to 300[1]  
45 to 300[1]  
N
N
Y
N
N
Y
Y
N
N
Y
N
N
Y
Y
40 to 105 I2C  
40 to 85 I2C  
40 to 105 I2C / SPI Bare die  
40 to 95 I2C  
40 to 95 I2C  
40 to 85 I2C / SPI Bare die  
40 to 105 I2C / SPI Bare die  
Bare die  
Bare die  
Y
N
Y
Y
Y
N
Y
PCA8530DUG 102 204 -  
408 -  
PCA85132U  
PCA85232U  
PCF8538UG  
PCA8538UG  
160 320 480 640 -  
160 320 480 640 -  
Bare die  
Bare die  
102 204 -  
102 204 -  
408 612 816 918 2.5 to 5.5 4 to 12  
408 612 816 918 2.5 to 5.5 4 to 12  
[1] Software programmable.  
[2] Hardware selectable.  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
19. Abbreviations  
Table 26. Abbreviations  
Acronym  
CDM  
CMOS  
DC  
Description  
Charged-Device Model  
Complementary Metal-Oxide Semiconductor  
Direct Current  
EMC  
ESD  
HBM  
I2C  
ElectroMagnetic Compatibility  
ElectroStatic Discharge  
Human Body Model  
Inter-Integrated Circuit bus  
Integrated Circuit  
IC  
LCD  
LSB  
Liquid Crystal Display  
Least Significant Bit  
MOS  
MSB  
MSL  
POR  
RC  
Metal-Oxide Semiconductor  
Most Significant Bit  
Moisture Sensitivity Level  
Power-On Reset  
Resistance-Capacitance  
Random Access Memory  
Root Mean Square  
RAM  
RMS  
RTC  
SCL  
SDA  
SMD  
Real-Time Clock  
Serial CLock line  
Serial DAta line  
Surface-Mount Device  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
47 of 51  
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
20. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10853 ESD and EMC sensitivity of IC  
[3] AN11267 EMC and system level ESD design guidelines for LCD drivers  
[4] AN11494 Cascading NXP LCD segment drivers  
[5] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[6] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[7] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[8] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[9] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[10] JESD78 IC Latch-Up Test  
[11] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[12] SOT315-1_118 LQFP80; Reel pack; SMD, 13", packing information  
[13] UM10569 Store and transport requirements  
[14] UM10204 I2C-bus specification and user manual  
21. Revision history  
Table 27. Revision history  
Document ID  
PCF85134 v.4  
Modifications:  
Release date  
20170511  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF85134 v.3  
Section 1 “General description”: Added paragraph regarding drop-in replacement  
Section 3 “Ordering information”: Updated table format  
PCF85134 v.3  
Modifications:  
20140512  
Product data sheet  
-
PCF85134 v.2  
Improved description of bit E  
Added ordering information (Section 3.1)  
Updated store and transport requirements (Table 18)  
Adjusted Vlu value (Table 18)  
Enhanced description about cascading (Section 13.1)  
Added Section 16  
Fixed typos  
PCF85134 v.2  
PCF85134_1  
20110725  
Product data sheet  
Product data sheet  
-
-
PCF85134_1  
-
20091217  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
48 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
22. Legal information  
22.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
22.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
22.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
49 of 51  
 
 
 
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
22.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
23. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF85134  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 4 — 11 May 2017  
50 of 51  
 
 
PCF85134  
NXP Semiconductors  
Universal 60 x 4 LCD segment driver for low multiplex rates  
24. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
11  
Static characteristics . . . . . . . . . . . . . . . . . . . 32  
Dynamic characteristics. . . . . . . . . . . . . . . . . 34  
Application information . . . . . . . . . . . . . . . . . 37  
Cascaded operation. . . . . . . . . . . . . . . . . . . . 37  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 41  
Handling information . . . . . . . . . . . . . . . . . . . 42  
Packing information . . . . . . . . . . . . . . . . . . . . 42  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
12  
13  
13.1  
14  
15  
16  
3
3.1  
4
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
17  
Soldering of SMD packages. . . . . . . . . . . . . . 42  
Introduction to soldering. . . . . . . . . . . . . . . . . 42  
Wave and reflow soldering. . . . . . . . . . . . . . . 42  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 43  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 43  
6
6.1  
6.2  
6.3  
6.3.1  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
6.5.1  
6.5.2  
6.6  
6.7  
6.8  
6.9  
6.10  
6.10.1  
6.10.2  
6.10.3  
6.10.4  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . 7  
LCD bias generator . . . . . . . . . . . . . . . . . . . . . 7  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 8  
Electro-optical performance . . . . . . . . . . . . . . . 9  
LCD drive mode waveforms . . . . . . . . . . . . . . 11  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 11  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . 12  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 14  
1:4 Multiplex drive mode. . . . . . . . . . . . . . . . . 15  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 16  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Timing and frame frequency. . . . . . . . . . . . . . 16  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 16  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 16  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 17  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Subaddress counter . . . . . . . . . . . . . . . . . . . . 19  
RAM writing in 1:3 multiplex drive mode. . . . . 20  
Bank selector . . . . . . . . . . . . . . . . . . . . . . . . . 21  
17.1  
17.2  
17.3  
17.4  
18  
18.1  
19  
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
LCD segment driver selection . . . . . . . . . . . . 45  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 47  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 48  
20  
21  
22  
Legal information . . . . . . . . . . . . . . . . . . . . . . 49  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 49  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
22.1  
22.2  
22.3  
22.4  
23  
24  
Contact information . . . . . . . . . . . . . . . . . . . . 50  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.10.4.1 Output bank selector . . . . . . . . . . . . . . . . . . . 21  
6.10.4.2 Input bank selector . . . . . . . . . . . . . . . . . . . . . 21  
6.11  
6.12  
6.13  
Blinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Command decoder. . . . . . . . . . . . . . . . . . . . . 22  
Display controller . . . . . . . . . . . . . . . . . . . . . . 24  
7
Characteristics of the I2C-bus . . . . . . . . . . . . 25  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
START and STOP conditions . . . . . . . . . . . . . 25  
System configuration . . . . . . . . . . . . . . . . . . . 25  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 26  
I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 27  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 27  
7.1  
7.1.1  
7.2  
7.3  
7.4  
7.5  
7.6  
8
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 29  
Safety notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 31  
9
10  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2017.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 11 May 2017  
Document identifier: PCF85134  
 

相关型号:

PCF85162

Universal LCD driver for low multiplex rates
NXP

PCF85162T

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
NXP

PCF85162T-1

Universal LCD driver for low multiplex rates
NXP

PCF85162T/1

IC LIQUID CRYSTAL DISPLAY DRIVER, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT362-1, TSSOP-48, Display Driver
NXP

PCF85163T

IC REAL TIME CLOCK, PDSO8, 3.90 MM WIDTH, PLASTIC, SOT96-1, MS-012, DSO-8, Timer or RTC
NXP

PCF85176

Universal LCD driver for low multiplex rates
NXP

PCF85176H

Universal LCD driver for low multiplex rates
NXP

PCF85176H/1,518

PCF85176 - 40 x 4 universal LCD driver for low multiplex rates QFP 64-Pin
NXP

PCF85176T

Universal LCD driver for low multiplex rates
NXP

PCF85176T/S430/1,1

IC IC,LCD DISPLAY DRIVER,40-SEG,4-BP,CMOS,TSSOP,56PIN,PLASTIC, Display Driver
NXP

PCF8522EP

EEPROM, 256X8, Serial, CMOS, PDIP8,
PHILIPS

PCF8522ET

I2C Serial EEPROM
ETC