MCF5480CZP166 [NXP]

32-BIT, 166.66MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, 1 MM PITCH, MS-034AAL-1, PBGA-388;
MCF5480CZP166
型号: MCF5480CZP166
厂家: NXP    NXP
描述:

32-BIT, 166.66MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, 1 MM PITCH, MS-034AAL-1, PBGA-388

时钟 外围集成电路
文件: 总34页 (文件大小:537K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet  
Document Number: MCF5485EC  
Rev. 4, 12/2007  
MCF548x  
MCF548x ColdFire®  
Microprocessor  
TEPBGA–388  
27 mm x 27 mm  
Supports MCF5480, MCF5481,  
MCF5482, MCF5483, MCF5484, and  
MCF5485  
Features list:  
• ColdFire V4e Core  
endpoints, interrupt, bulk, or isochronous  
– 4-Kbytes of shared endpoint FIFO RAM and 1 Kbyte  
of endpoint descriptor RAM  
– Limited superscalar V4 ColdFire processor core  
– Up to 200MHz peak internal core frequency (308 MIPS  
[Dhrystone 2.1] @ 200 MHz)  
– Harvard architecture  
– 32-Kbyte instruction cache  
– Integrated physical layer interface  
– Up to four programmable serial controllers (PSCs) each  
with separate 512-byte receive and transmit FIFOs for  
UART, USART, modem, codec, and IrDA 1.1 interfaces  
2
– I C peripheral interface  
– 32-Kbyte data cache  
– Two FlexCAN controller area network 2.0B controllers  
each with 16 message buffers  
– DMA Serial Peripheral Interface (DSPI)  
• Optional Cryptography accelerator module  
– Execution units for:  
– Memory Management Unit (MMU)  
– Separate, 32-entry, fully-associative instruction and  
data translation lookahead buffers  
– Floating point unit (FPU)  
– Double-precision conforms to IEE-754 standard  
– Eight floating point registers  
– DES/3DES block cipher  
– AES block cipher  
– RC4 stream cipher  
– MD5/SHA-1/SHA-256/HMAC hashing  
– Random Number Generator  
• Internal master bus (XLB) arbiter  
– High performance split address and data transactions  
– Support for various parking modes  
• 32-bit double data rate (DDR) synchronous DRAM  
(SDRAM) controller  
• 32-Kbyte system SRAM  
– Arbitration mechanism shares bandwidth between  
internal bus masters  
– 66–133 MHz operation  
– Supports DDR and SDR DRAM  
• System integration unit (SIU)  
– Interrupt controller  
– Built-in initialization and refresh  
– Up to four chip selects enabling up to one GB of external  
memory  
– Watchdog timer  
– Two 32-bit slice timers alarm and interrupt generation  
– Up to four 32-bit general-purpose timers, compare, and  
PWM capability  
Version 2.2 peripheral component interconnect (PCI) bus  
– 32-bit target and initiator operation  
– Support for up to five external PCI masters  
– 33–66 MHz operation with PCI bus to XLB divider  
ratios of 1:1, 1:2, and 1:4  
– GPIO ports multiplexed with peripheral pins  
• Debug and test features  
– ColdFire background debug mode (BDM) port  
– JTAG/ IEEE 1149.1 test access port  
• PLL and clock generator  
• Flexible multi-function external bus (FlexBus)  
– Provides a glueless interface to boot flash/ROM,  
SRAM, and peripheral devices  
– 30 to 66.67 MHz input frequency range  
• Operating Voltages  
– Up to six chip selects  
– 33 – 66 MHz operation  
– 1.5V internal logic  
• Communications I/O subsystem  
– 2.5V DDR SDRAM bus I/O  
– 3.3V PCI, FlexBus, and all other I/O  
• Estimated power consumption  
– Less than 1.5W (388 PBGA)  
– Intelligent 16 channel DMA controller  
– Up to two 10/100 Mbps fast Ethernet controllers (FECs)  
each with separate 2-Kbyte receive and transmit FIFOs  
– Universal serial bus (USB) version 2.0 device controller  
– Support for one control and six programmable  
© Freescale Semiconductor, Inc., 2007. All rights reserved.  
Table of Contents  
1
2
Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Figure 15.DDR Clock Timing Diagram. . . . . . . . . . . . . . . . . . . . 18  
Figure 16.DDR Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 17.DDR Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 18.PCI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 19.MII Receive Signal Timing Diagram. . . . . . . . . . . . . . 23  
Figure 20.MII Transmit Signal Timing Diagram . . . . . . . . . . . . . 23  
Figure 21.MII Async Inputs Timing Diagram . . . . . . . . . . . . . . . 24  
Figure 22.MII Serial Management Channel TIming Diagram. . . 24  
Figure 23.I2C Input/Output Timings . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 24.Test Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 25.Boundary Scan (JTAG) Timing . . . . . . . . . . . . . . . . . 27  
Figure 26.Test Access Port Timing . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 27.TRST Timing Debug AC Timing Specifications . . . . . 27  
Figure 28.Real-Time Trace AC Timing. . . . . . . . . . . . . . . . . . . . 28  
Figure 29.BDM Serial Port AC Timing . . . . . . . . . . . . . . . . . . . . 28  
Figure 30.DSPI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 31.388-pin BGA Case Outline. . . . . . . . . . . . . . . . . . . . . 31  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.1 Operating Temperatures . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.2 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . . .6  
4.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
4.2 Supply Voltage Sequencing and Separation Cautions . .6  
4.3 General USB Layout Guidelines . . . . . . . . . . . . . . . . . . .8  
4.4 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Output Driver Capability and Loading. . . . . . . . . . . . . . . . . . .10  
PLL Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Reset Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .12  
FlexBus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
8.1 FlexBus AC Timing Characteristics. . . . . . . . . . . . . . . .13  
SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
9.1 SDR SDRAM AC Timing Characteristics . . . . . . . . . . .15  
9.2 DDR SDRAM AC Timing Characteristics . . . . . . . . . . .18  
3
4
5
6
7
8
9
List of Tables  
10 PCI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
11 Fast Ethernet AC Timing Specifications . . . . . . . . . . . . . . . . .22  
11.1 MII/7-WIRE Interface Timing Specs . . . . . . . . . . . . . . .22  
11.2 MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . .23  
11.3 MII Async Inputs Signal Timing (CRS, COL) . . . . . . . .24  
11.4 MII Serial Management Channel Timing (MDIO,MDC).24  
12 General Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . .25  
13 I2C Input/Output Timing Specifications. . . . . . . . . . . . . . . . . .25  
14 JTAG and Boundary Scan Timing. . . . . . . . . . . . . . . . . . . . . .26  
15 DSPI Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . .29  
16 Timer Module AC Timing Specifications. . . . . . . . . . . . . . . . .29  
17 Case Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
18 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 1. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Operating Temperatures . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 3. Thermal Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 4. DC Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . 5  
Table 5. USB Filter Circuit Values . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 6. I/O Driver Capability . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 7. Clock Timing Specifications. . . . . . . . . . . . . . . . . . . . . 11  
Table 8. MCF548x Divide Ratio Encodings. . . . . . . . . . . . . . . . 11  
Table 9. Reset Timing Specifications . . . . . . . . . . . . . . . . . . . . 12  
Table 10.FlexBus AC Timing Specifications. . . . . . . . . . . . . . . . 13  
Table 11.SDR Timing Specifications . . . . . . . . . . . . . . . . . . . . . 16  
Table 12.DDR Clock Crossover Specifications . . . . . . . . . . . . . 18  
Table 13.DDR Timing Specifications . . . . . . . . . . . . . . . . . . . . . 18  
Table 14.PCI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 21  
Table 15.MII Receive Signal Timing. . . . . . . . . . . . . . . . . . . . . . 23  
Table 16.MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . 23  
Table 17.MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . 24  
Table 18.MII Serial Management Channel Signal Timing . . . . . 24  
Table 19.General AC Timing Specifications. . . . . . . . . . . . . . . . 25  
Table 20.I2C Input Timing Specifications between  
List of Figures  
Figure 1.MCF548X Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2.System PLL VDD Power Filter . . . . . . . . . . . . . . . . . . . . 6  
Figure 3.Supply Voltage Sequencing and Separation Cautions . 7  
Figure 4.Preferred VBUS Connections . . . . . . . . . . . . . . . . . . . . 8  
Figure 5.Alternate VBUS Connections . . . . . . . . . . . . . . . . . . . . 8  
Figure 6.USB VDD Power Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 7.USBRBIAS Connection. . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 8.Input Clock Timing Diagram . . . . . . . . . . . . . . . . . . . . 11  
Figure 9.CLKIN, Internal Bus, and Core Clock Ratios . . . . . . . 11  
Figure 10.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 11.FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 12.FlexBus Write Timing . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 13.SDR Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 14.SDR Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 21. I2C Output Timing Specifications between  
SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 22.JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 26  
Table 23.Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 28  
Table 24.DSPI Modules AC Timing Specifications. . . . . . . . . . . 29  
Table 25.Timer Module AC Timing Specifications . . . . . . . . . . . 29  
MCF548x ColdFire® Microprocessor, Rev. 4  
2
Freescale Semiconductor  
DDR SDRAM  
Interface  
FlexBus  
Interface  
ColdFire V4e Core  
FPU, MMU  
PLL  
EMAC  
32K D-cache  
32K I-Cache  
XL Bus  
Arbiter  
Memory  
Controller  
FlexBus  
Controller  
XL  
Bus  
Master/Slave  
Interface  
Interrupt  
Controller  
PCI 2.2  
Controller  
Watchdog  
Timer  
Cryptography  
Accelerator***  
Slice  
Timers x 2  
32K System  
SRAM  
XL Bus  
Read/Write  
GP  
Timers x 4  
Multi-Channel DMA  
Master Bus Interface & FIFOs  
PCI Interface  
& FIFOs  
FlexCAN  
x 2  
CommBus  
USB 2.0  
DSPI  
I2C  
PSC x 4  
FEC1  
FEC2**  
DEVICE*  
USB 2.0  
PHY*  
Perpheral Communications I/O Interface & Ports  
Figure 1. MCF548X Block Diagram  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
3
Maximum Ratings  
1
Maximum Ratings  
Table 1 lists maximum and minimum ratings for supply and operating voltages and storage temperature. Operating outside of  
these ranges may cause erratic behavior or damage to the processor.  
Table 1. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Units  
External (I/O pads) supply voltage (3.3-V power pins)  
Internal logic supply voltage  
EVDD  
IVDD  
–0.3 to +4.0  
–0.5 to +2.0  
V
V
V
Memory (I/O pads) supply voltage (2.5-V power pins)  
SD VDD  
–0.3 to +4.0 SDR Memory  
–0.3 to +2.8 DDR Memory  
PLL supply voltage  
PLL VDD  
Vin  
–0.5 to +2.0  
–0.5 to +3.6  
–55 to +150  
V
V
Internal logic supply voltage, input voltage level  
Storage temperature range  
Tstg  
oC  
2
Thermal Characteristics  
2.1  
Operating Temperatures  
Table 2 lists junction and ambient operating temperatures.  
Table 2. Operating Temperatures  
Characteristic  
Symbol  
Value  
Units  
Maximum operating junction temperature  
Tj  
105  
<851  
–40  
oC  
oC  
oC  
Maximum operating ambient temperature  
Minimum operating ambient temperature  
TAmax  
TAmin  
1
This published maximum operating ambient temperature should be used only as a system design guideline. All device  
operating parameters are guaranteed only when the junction temperature lies within the specified range.  
MCF548x ColdFire® Microprocessor, Rev. 4  
4
Freescale Semiconductor  
 
 
 
DC Electrical Specifications  
2.2  
Thermal Resistance  
Table 3 lists thermal resistance values.  
Table 3. Thermal Resistance  
Characteristic  
Symbol  
Value  
Unit  
324 pin TEPBGA — Junction to ambient, natural Four layer board (2s2p)  
convection  
θJMA  
20–221,2  
°C/W  
388 pin TEPBGA — Junction to ambient, natural Four layer board (2s2p)  
convection  
θJMA  
191,2  
°C/W  
Junction to ambient (@200 ft/min)  
Junction to board  
Four layer board (2s2p)  
θJMA  
θJB  
θJC  
Ψjt  
161,2  
113  
74  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to case  
Junction to top of package  
Natural convection  
21,5  
1
θ
JA and Ψjt parameters are simulated in accordance with EIA/JESD Standard 51-2 for natural convection. Freescale  
recommends the use of θJA and power dissipation specifications in the system design to prevent device junction  
temperatures from exceeding the rated specification. System designers should be aware that device junction  
temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device  
junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt  
parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
4
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
3
DC Electrical Specifications  
Table 4 lists DC electrical operating temperatures. This table is based on an operating voltage of EV = 3.3 V ± 0.3 V  
DD  
DC  
DC  
and IV of 1.5 ± 0.07 V  
.
DC  
DD  
Table 4. DC Electrical Specifications  
Symbol  
Characteristic  
Min  
Max  
Units  
External (I/O pads) operation voltage range  
Memory (I/O pads) operation voltage range (DDR Memory)  
Internal logic operation voltage range1  
PLL Analog operation voltage range1  
EVDD  
SD VDD  
3.0  
2.30  
1.43  
1.43  
3.0  
3.6  
2.70  
1.58  
1.58  
3.6  
V
V
V
V
V
V
V
V
IVDD  
PLL VDD  
USB oscillator operation voltage range  
USB digital logic operation voltage range  
USB PHY operation voltage range  
USB_OSVDD  
USBVDD  
3.0  
3.6  
USB_PHYVDD  
USB_OSCAVDD  
3.0  
3.6  
USB oscillator analog operation voltage range  
1.43  
1.58  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
5
 
 
 
 
Hardware Design Considerations  
Table 4. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Units  
USB PLL operation voltage range  
Input high voltage SSTL 3.3V/2.5V2  
Input low voltage SSTL 3.3V/2.5V2  
Input high voltage 3.3V I/O pins  
USB_PLLVDD  
1.43  
VREF + 0.3  
VSS - 0.3  
0.7 x EVDD  
VSS - 0.3  
2.4  
1.58  
SD VDD + 0.3  
VREF - 0.3  
EVDD + 0.3  
0.35 x EVDD  
V
V
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
CIN  
Iin  
V
V
Input low voltage 3.3V I/O pins  
V
Output high voltage IOH = 8 mA, 16 mA,24 mA  
Output low voltage IOL = 8 mA, 16 mA,24 mA5  
Capacitance 3, Vin = 0 V, f = 1 MHz  
Input leakage current  
V
0.5  
V
TBD  
pF  
μA  
–1.0  
1.0  
1
IVDD and PLL VDD should be at the same voltage. PLL VDD should have a filtered input. Please see Figure 2 for an  
example circuit. There are three PLL VDD inputs. A filter circuit should used on each PLL VDD input.  
2
3
This specification is guaranteed by design and is not 100% tested.  
Capacitance CIN is periodically sampled rather than 100% tested.  
4
Hardware Design Considerations  
4.1  
PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins. The filter shown in  
DD  
Figure 2 should be connected between the board V and the PLL V pins. The resistor and capacitors should be placed as  
DD  
DD  
close to the dedicated PLL V pin as possible.  
DD  
10 Ω  
Board VDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 2. System PLL V Power Filter  
DD  
4.2  
Supply Voltage Sequencing and Separation Cautions  
Figure 3 shows situations in sequencing the I/O V (EV ), SDRAM V (SD V ), PLL V (PLL V ), and Core V  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
(IV ).  
DD  
MCF548x ColdFire® Microprocessor, Rev. 4  
6
Freescale Semiconductor  
 
 
Hardware Design Considerations  
EVDD, SD VDD (3.3V)  
SD VDD (2.5V)  
3.3V  
2.5V  
Supplies Stable  
IVDD, PLL VDD  
1.5V  
1
2
0
NOTES:  
Time  
1. IVDD should not exceed EVDD or SD VDD by more than 0.4V  
at any time, including power-up.  
2. Recommended that IVDD/PLL VDD should track EVDD/SD VDD up to  
0.9V, then separate for completion of ramps.  
3. Input voltage must not be greater than the supply voltage (EVDD, SD VDD,  
IVDD, or PLL VDD) by more than 0.5V at any time, including during power-up.  
4. Use 1 microsecond or slower rise time for all supplies.  
Figure 3. Supply Voltage Sequencing and Separation Cautions  
The relationship between SD V and EV is non-critical during power-up and power-down sequences. SD V (2.5V or  
DD  
DD  
DD  
3.3V) and EV are specified relative to IV  
.
DD  
DD  
4.2.1  
Power Up Sequence  
If EV /SD V are powered up with the IV at 0V, the sense circuits in the I/O pads cause all pad output drivers connected  
DD  
DD  
DD  
to the EV /SD V to be in a high impedance state. There is no limit to how long after EV /SD V powers up before IV  
DD  
DD  
DD  
DD  
DD  
must power up. IV should not lead the EV , SD V , or PLL V by more than 0.4V during power ramp up or there is  
DD  
DD  
DD  
DD  
high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond  
to avoid turning on the internal ESD protection clamp diodes.  
The recommended power up sequence is as follows:  
1. Use 1 microsecond or slower rise time for all supplies.  
2. IV /PLL V and EV /SD V should track up to 0.9V, then separate for the completion of ramps with EV /SD  
DD  
DD  
DD  
DD  
DD  
V
going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.  
DD  
4.2.2  
Power Down Sequence  
If IV PLL V are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.  
DD  
DD  
There is no limit on how long after IV and PLL V power down before EV or SD V must power down. IV should  
DD  
DD  
DD  
DD  
DD  
not lag EV , SD V , or PLL V going low by more than 0.4V during power down or there is undesired high current in the  
DD  
DD  
DD  
ESD protection diodes. There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLL V to 0V  
DD  
DD  
2. Drop EV /SD V supplies  
DD  
DD  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
7
 
Hardware Design Considerations  
4.3  
General USB Layout Guidelines  
4.3.1  
USB D+ and D- High-Speed Traces  
1. High speed clock and the USBD+ and USBD- differential pair should be routed first.  
2. Route USBD+ and USBD- signals on the top layer of the board.  
3. The trace width and spacing of the USBD+ and USBD- signals should be such that the differential impedance is 90Ω.  
4. Route traces over continuous planes (power and ground)—they should not pass over any power/ground plane slots or  
anti-etch. When placing connectors, make sure the ground plane clear-outs around each pin have ground continuity  
between all pins.  
5. Maintain the parallelism (skew matched) between USBD+ and USBD-. These traces should be the same overall length.  
6. Do not route USBD+ and USBD- traces under oscillators or parallel to clock traces and/or data buses. Minimize the  
lengths of high speed signals that run parallel to the USBD+ and USBD- pair. Maintain a minimum 50mil spacing to  
clock signals.  
7. Keep USBD+ and USBD- traces as short as possible.  
8. Route USBD+, USBD-, and USBVBUS signals with a minimum amount of vias and corners. Use 45° turns.  
9. Stubs should be avoided as much as possible. If they cannot be avoided, stubs should be no greater than 200mils.  
4.3.2  
USB VBUS Traces  
Connecting the USBVBUS pin directly to the 5V VBUS signal from the USB connector can cause long-term reliability  
problems in the ESD network of the processor. Therefore, use of an external voltage divider for VBUS is recommended.  
Figure 4 and Figure 5 depict possible connections for VBUS. Point A, marked in each figure, is where a 5V version of VBUS  
should connect. Point B, marked in each figure, is where a 3.3V version of VBUS should connect to the USBVBUS pin on the  
device.  
MCF548x  
(5V)  
A
(3.3V)  
B
8.2k  
50k  
20k  
50k  
Figure 4. Preferred VBUS Connections  
MCF548x  
(5V)  
A
(3.3V)  
B
50k  
50k  
50k  
Figure 5. Alternate VBUS Connections  
4.3.3  
USB Receptacle Connections  
It is recommended to connect the shield and the ground pin of the B USB receptacle for upstream ports to the board ground  
plane. The ground pin of the A USB receptacles for downstream ports should also be connected to the board ground plane, but  
industry practice varies widely on the connection of the shield of the A USB receptacles to other system grounds. Take  
precautions for control of ground loops between hosts and self-powered USB devices through the cable shield.  
MCF548x ColdFire® Microprocessor, Rev. 4  
8
Freescale Semiconductor  
 
 
 
Hardware Design Considerations  
4.4  
USB Power Filtering  
To minimize noise, an external filter is required for each of the USB power pins. The filter shown in Figure 6 should be  
connected between the board EV or IV and each of the USB V pins.  
DD  
DD  
DD  
The resistor and capacitors should be placed as close to the dedicated USB V pin as possible.  
DD  
A separate filter circuit should be included for each USB V pin, a total of five circuits.  
DD  
All traces should be as low impedance as possible, especially ground pins to the ground plane.  
The filter for USB_PHYVDD to VSS should be connected to the power and ground planes, respectively, not fingers  
of the planes.  
In addition to keeping the filter components for the USB_PLLVDD as close as practical to the body of the processor  
as previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital  
switching noise onto the portion of that supply between the filter and the processor.  
The capacitors for C2 in the table below should be rated X5R or better due to temperature performance.  
R1  
Board EVDD/IVDD  
USB VDD Pin  
C1  
C2  
GND  
Figure 6. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel  
with those shown.  
Table 5 lists the resistor values and supply voltages to be used in the circuit for each of the USB V pins.  
DD  
Table 5. USB Filter Circuit Values  
USB VDD Pin  
Nominal Voltage  
R1 (Ω)  
C1 (μF)  
C2 (μF)  
USBVDD  
3.3V  
10  
10  
0.1  
(Bias generator supply)  
USB_PHYVDD  
(Main transceiver supply)  
3.3V  
1.5V  
3.3V  
1.5V  
0
10  
0
10  
1
0.1  
0.1  
0.1  
0.1  
USB_PLLVDD  
(PLL supply)  
USB_OSCVDD  
(Oscillator supply)  
10  
10  
USB_OSCAVDD  
0
(Oscillator analog supply)  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
9
 
 
Output Driver Capability and Loading  
4.4.1  
Bias Resistor  
The USBRBIAS resistor should be placed as close to the dedicated USB 2.0 pins as possible. The tolerance should be ±1%.  
USBRBIAS  
9.1kΩ  
Figure 7. USBRBIAS Connection  
5
Output Driver Capability and Loading  
Table 6 lists values for drive capability and output loading.  
1
Table 6. I/O Driver Capability  
Drive  
Output  
Signal  
Capability Load (CL)  
SDRAMC (SDADDR[12:0], SDDATA[31:0], RAS, CAS, SDDM[3:0],  
SDWE, SDBA[1:0]  
24 mA  
24 mA  
15 pF  
15 pF  
SDRAMC DQS and clocks (SDDQS[3:0], SDRDQS, SDCLK[1:0],  
SDCLK[1:0], SDCKE)  
SDRAMC chip selects (SDCS[3:0])  
24 mA  
16 mA  
8 mA  
15 pF  
30 pF  
15 pF  
50 pF  
30 pF  
30 pF  
30 pF  
50 pF  
50 pF  
FlexBus (AD[31:0], FBCS[5:0], ALE, R/W, BE/BWE[3:0], OE)  
FEC (EnMDIO, EnMDC, EnTXEN, EnTXD[3:0], EnTXER  
Timer (TOUT[3:0])  
8 mA  
FlexCAN (CANTX)  
8 mA  
DACK[1:0]  
8 mA  
PSC (PSCnTXD[3:0], PSCnRTS/PSCnFSYNC,  
DSPI (DSPISOUT, DSPICS0/SS, DSPICS[2:3], DSPICS5/PCSS)  
8 mA  
24 mA  
16 mA  
PCI (PCIAD[31:0], PCIBG[4:1], PCIBG0/PCIREQOUT, PCIDEVSEL,  
PCICXBE[3:0], PCIFRM, PCIPERR, PCIRESET, PCISERR, PCISTOP,  
PCIPAR, PCITRDY, PCIIRDY  
I2C (SCL, SDA)  
8 mA  
8 mA  
8 mA  
50 pF  
25 pF  
50 pF  
BDM (PSTCLK, PSTDDATA[7:0], DSO/TDO,  
RSTO  
1
The device’s pads have balanced sink and source current. The drive capability is the same as  
the sink capability.  
MCF548x ColdFire® Microprocessor, Rev. 4  
10  
Freescale Semiconductor  
 
PLL Timing Specifications  
6
PLL Timing Specifications  
The specifications in Table 7 are for the CLKIN pin.  
Table 7. Clock Timing Specifications  
Num  
Characteristic  
Min  
Max  
Units  
C1 Cycle time  
20  
40  
40  
2
ns  
ns  
ns  
%
C2 Rise time (20% of Vdd to 80% of vdd)  
C3 Fall time (80% of Vdd to 20% of Vdd)  
C4 Duty cycle (at 50% of Vdd)  
2
60  
C1  
CLKIN  
C4  
C4  
C2  
C3  
Figure 8. Input Clock Timing Diagram  
Table 8 shows the supported PLL encodings.  
Table 8. MCF548x Divide Ratio Encodings  
Internal XLB, SDRAM Bus,  
CLKIN—PCI and FlexBus  
Clock  
Ratio  
Core Frequency Range  
(MHz)  
AD[12:8]1  
and PSTCLK Frequency  
Frequency Range (MHz)  
Range (MHz)  
00011  
00101  
01111  
1:2  
1:2  
1:4  
41.67–50.0  
25.0–41.67  
25.0  
83.33–100  
50.0–83.332  
100  
166.66–200  
100.0–166.66  
200  
1
2
All other values of AD[12:8] are reserved.  
DDR memories typically have a minimum speed of 83 MHz. Some vendors specifiy down to 75 MHz. Check with the  
memory component specifications to verify.  
Figure 9 correlates CLKIN, internal bus, and core clock frequencies for the 1x–4x multipliers.  
CLKIN  
Internal Clock  
Core Clock  
2x  
2x  
2x  
4x  
50.0  
100.0  
25.0 50.0  
25.0  
100.0  
100.0  
200.0  
200.0  
25 40 50 60 70  
CLKIN (MHz)  
30 40 50 60 70 80 90 100  
Internal Clock (MHz)  
60 70 80 90 100110120130140150160170180190200  
Core Clock (MHz)  
Figure 9. CLKIN, Internal Bus, and Core Clock Ratios  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
11  
 
 
 
Reset Timing Specifications  
7
Reset Timing Specifications  
Table 9 lists specifications for the reset timing parameters shown in Figure 10  
Table 9. Reset Timing Specifications  
50 MHz CLKIN  
Num  
Characteristic  
Units  
Min  
Max  
R11  
R2  
Valid to CLKIN (setup)  
CLKIN to invalid (hold)  
RSTI to invalid (hold)  
RSTI pulse duration  
8
ns  
1.0  
1.0  
5
ns  
ns  
R3  
CLKIN cycles  
1
RSTI and FlexBus data lines are synchronized internally. Setup and hold  
times must be met only if recognition on a particular clock is required.  
Figure 10 shows reset timing for the values in Table 9.  
CLKIN  
R1  
RSTI  
R2  
Mode Select  
FlexBus  
R1  
R3  
NOTE:  
Mode selects are registered on the rising clock edge before  
the cycle in which RSTI is recognized as being negated.  
Figure 10. Reset Timing  
8
FlexBus  
A multi-function external bus interface called FlexBus is provided on the MCF5482 with basic functionality to interface to  
slave-only devices up to a maximum bus frequency of 66 MHz. It can be directly connected to asynchronous or synchronous  
devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no  
additional circuitry. For asynchronous devices, a simple chip-select based interface can be used. The FlexBus interface has six  
general purpose chip-selects (FBCS[5:0]). Chip-select FBCS0 can be dedicated to boot ROM access and can be programmed  
to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common ROM / flash  
memories.  
MCF548x ColdFire® Microprocessor, Rev. 4  
12  
Freescale Semiconductor  
 
 
FlexBus  
8.1  
FlexBus AC Timing Characteristics  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.  
Table 10. FlexBus AC Timing Specifications  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
1
Frequency of Operation  
FB1 Clock Period (CLKIN)  
25  
20  
50  
40  
Mhz  
ns  
2
3
FB2 Address, Data, and Control Output Valid (AD[31:0], FBCS[5:0],  
R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST)  
7.0  
ns  
3, 4  
FB3 Address, Data, and Control Output Hold ((AD[31:0], FBCS[5:0],  
R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST)  
1
ns  
FB4 Data Input Setup  
3.5  
0
7.0  
ns  
ns  
ns  
ns  
ns  
ns  
FB5 Data Input Hold  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
FB8 Address Output Valid (PCIAD[31:0])  
FB9 Address Output Hold (PCIAD[31:0])  
4
0
5
5
0
1
The frequency of operation is the same as the PCI frequency of operation. The MCF548X supports a single  
external reference clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI.  
2
3
Max cycle rate is determined by CLKIN and how the user has the system PLL configured.  
Timing for chip selects only applies to the FBCS[5:0] signals. Please see Section 9.2, “DDR SDRAM AC Timing  
Characteristics” for SDCS[3:0] timing.  
4
5
The FlexBus supports programming an extension of the address hold. Please consult the MCF548X  
specification manual for more information.  
These specs are used when the PCIAD[31:0] signals are configured as 32-bit, non-muxed FlexBus address  
signals.  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
13  
 
 
 
FlexBus  
CLKIN  
FB1  
FB3  
AD[X:0]  
A[X:0]  
FB2  
FB5  
AD[31:Y]  
A[31:Y]  
DATA  
R/W  
FB4  
ALE  
TSIZ[1:0]  
TSIZ[1:0]  
FBCSn, BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 11. FlexBus Read Timing  
MCF548x ColdFire® Microprocessor, Rev. 4  
14  
Freescale Semiconductor  
SDRAM Bus  
CLKIN  
FB1  
FB3  
FB3  
AD[X:0]  
A[X:0]  
FB2  
AD[31:Y]  
A[31:Y]  
DATA  
R/W  
ALE  
TSIZ[1:0]  
TSIZ[1:0]  
FBCSn, BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 12. FlexBus Write Timing  
9
SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or  
double data rate (DDR) SDRAM, but it does not support both at the same time. The SDRAM controller uses SSTL2 and SSTL3  
I/O drivers. Both SSTL drive modes are programmable for Class I or Class II drive strength.  
9.1  
SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock,  
when operating in SDR mode on write cycles and relative to SDR_DQS on read cycles. The MCF548x SDRAM controller is a  
DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must be supplied to the MCF548x  
for each data beat of an SDR read. The MCF548x accomplishes this by asserting a signal called SDR_DQS during read cycles.  
Care must be taken during board design to adhere to the following guidelines and specs with regard to the SDR_DQS signal  
and its usage.  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
15  
SDRAM Bus  
Symbol  
Table 11. SDR Timing Specifications  
Characteristic  
Frequency of Operation  
Clock Period (tCK  
Clock Skew (tSK  
Pulse Width High (tCKH  
Pulse Width Low (tCKL  
Min  
Max  
Unit  
Notes  
1
0
133  
12  
Mhz  
ns  
2
SD1  
SD2  
SD3  
SD4  
SD5  
)
7.52  
)
TBD  
0.55  
0.55  
3
4
)
0.45  
0.45  
SDCLK  
SDCLK  
ns  
)
Address, CKE, CAS, RAS, WE, BA, CS - Output Valid (tCMV  
)
)
0.5 × SDCLK +  
1.0ns  
SD6  
SD7  
SD8  
SD9  
SD10  
Address, CKE, CAS, RAS, WE, BA, CS - Output Hold (tCMH  
2.0  
ns  
ns  
ns  
5
6
7
8
SDRDQS Output Valid (tDQSOV  
SDDQS[3:0] input setup relative to SDCLK (tDQSIS  
SDDQS[3:0] input hold relative to SDCLK (tDQSIH  
Data Input Setup relative to SDCLK (reference only) (tDIS  
)
Self timed  
)
0.25 × SDCLK 0.40 × SDCLK  
)
Does not apply. 0.5 SDCLK fixed width.  
)
0.25 × SDCLK  
ns  
SD11  
SD12  
Data Input Hold relative to SDCLK (reference only) (tDIH  
)
1.0  
ns  
ns  
Data and Data Mask Output Valid (tDV  
)
0.75 × SDCLK  
+0.500ns  
SD13  
Data and Data Mask Output Hold (tDH  
)
1.5  
ns  
1
The frequency of operation is 2x or 4x the CLKIN frequency of operation. The MCF548X supports a single external reference  
clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI, but SDRAM clock operates at the same  
frequency as the internal bus clock. Please see the PLL chapter of the MCF548X Reference Manual for more information on  
setting the SDRAM clock rate.  
2
3
4
5
SDCLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.  
6
7
8
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.  
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge  
does not affect the memory controller.  
Because a read cycle in SDR mode uses the DQS circuit within the MCF548X, it is most critical that the data valid window  
be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup  
spec is provided as guidance.  
MCF548x ColdFire® Microprocessor, Rev. 4  
16  
Freescale Semiconductor  
SDRAM Bus  
SD1  
SD3  
SD2  
SDCLK0  
SDCLK1  
SD2  
SD4  
SD6  
SDCSn,SDWE,  
RAS, CAS  
CMD  
SD5  
SDADDR,  
SDBA[1:0]  
ROW  
COL  
SD12  
SDDM  
SD13  
WD2  
SDDATA  
WD1  
WD3  
WD4  
Figure 13. SDR Write Timing  
SD1  
SD2  
SDCLK0  
SDCLK1  
SD2  
SD6  
SDCSn,SDWE,  
RAS, CAS  
CMD  
ROW  
3/4 MCLK  
Reference  
SD5  
SDADDR,  
SDBA[1:0]  
COL  
tDQS  
SDDM  
SD7  
SDRQS (Measured at Output Pin)  
SDDQS (Measured at Input Pin)  
Board Delay  
Board Delay  
SD9  
SD8  
Delayed  
SDCLK  
SD10  
SDDATA  
form  
Memories  
WD1  
WD2  
WD3  
WD4  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD11  
Figure 14. SDR Read Timing  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
17  
SDRAM Bus  
9.2  
DDR SDRAM AC Timing Characteristics  
When using the DDR SDRAM controller, the following timing numbers must be followed to properly latch or drive data onto  
the memory bus. All timing numbers are relative to the four DQS byte lanes.  
Table 12shows the DDR clock crossover specifications.  
Table 12. DDR Clock Crossover Specifications  
Symbol  
Characteristic  
Clock output mid-point voltage  
Min  
Max  
Unit  
VMP  
1.05  
–0.3  
0.7  
1.45  
V
V
V
V
VOUT Clock output voltage level  
SD_VDD + 0.3  
SD_VDD + 0.6  
1.45  
VID  
VIX  
Clock output differential voltage (peak to peak swing)  
Clock crossing point voltage1  
1.05  
1
The clock crossover voltage is only guaranteed when using the highest drive strength option for the SDCLK[1:0]  
and SDCLK[1:0] signals.  
SDCLK  
VIX  
VID  
VMP  
VIX  
SDCLK  
Figure 15. DDR Clock Timing Diagram  
Table 13. DDR Timing Specifications  
Symbol  
Characteristic  
Min  
Max  
Unit  
Notes  
2
Frequency of Operation  
501  
7.52  
0.45  
0.45  
133  
12  
MHz  
ns  
3
4
5
6
DD1 Clock Period (tCK  
DD2 Pulse Width High (tCKH  
DD3 Pulse Width Low (tCKL  
DD4 Address, SDCKE, CAS, RAS, WE, SDBA, SDCS—Output  
Valid (tCMV  
DD5 Address, SDCKE, CAS, RAS, WE, SDBA, SDCS—Output Hold  
(tCMH  
DD6 Write Command to first DQS Latching Transition (tDQSS  
DD7 Data and Data Mask Output Setup (DQ−>DQS) Relative to  
DQS (DDR Write Mode) (tQS  
DD8 Data and Data Mask Output Hold (DQS−>DQ) Relative to DQS  
(DDR Write Mode) (tQH  
)
)
0.55  
0.55  
SDCLK  
SDCLK  
ns  
)
0.5 × SDCLK  
+ 1.0 ns  
)
2.0  
ns  
)
)
1.25  
SDCLK  
ns  
7
8
1.0  
)
9
1.0  
ns  
)
10  
11  
DD9 Input Data Skew Relative to DQS (Input Setup) (tIS)  
DD10 Input Data Hold Relative to DQS (tIH)  
1
ns  
ns  
0.25 × SDCLK  
+ 0.5ns  
DD11 DQS falling edge to SDCLK rising (output setup time) (tDSS  
)
0.5  
0.5  
ns  
ns  
DD12 DQS falling edge from SDCLK rising (output hold time) (tDSH  
)
MCF548x ColdFire® Microprocessor, Rev. 4  
18  
Freescale Semiconductor  
 
SDRAM Bus  
Table 13. DDR Timing Specifications (continued)  
Symbol  
DD13 DQS input read preamble width (tRPRE  
DD14 DQS input read postamble width (tRPST  
DD15 DQS output write preamble width (tWPRE  
DD16 DQS output write postamble width (tWPST  
Characteristic  
Min  
Max  
Unit  
Notes  
)
0.9  
0.4  
1.1  
0.6  
SDCLK  
SDCLK  
SDCLK  
SDCLK  
)
)
0.25  
0.4  
)
0.6  
1
2
DDR memories typically have a minimum speed specification of 83 MHz. Check memory component specifications to verify.  
The frequency of operation is 2x or 4x the CLKIN frequency of operation. The MCF548X supports a single external  
reference clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI, but SDRAM clock operates at  
the same frequency as the internal bus clock. Please see the reset configuration signals description in the “Signal  
Descriptions” chapter within the MCF548x Reference Manual.  
3
4
5
6
SDCLK is one memory clock in (ns).  
Pulse width high plus pulse width low cannot exceed max clock period.  
Pulse width high plus pulse width low cannot exceed max clock period.  
Command output valid should be 1/2 the memory bus clock (SDCLK) plus some minor adjustments for process,  
temperature, and voltage variations.  
7
8
9
This specification relates to the required input setup time of today’s DDR memories. SDDATA[31:24] is relative to SDDQS3,  
SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative SDDQS0.  
The first data beat is valid before the first rising edge of SDDQS and after the SDDQS write preamble. The remaining data  
beats is valid for each subsequent SDDQS edge.  
This specification relates to the required hold time of today’s DDR memories. SDDATA[31:24] is relative to SDDQS3,  
SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative SDDQS0.  
10 Data input skew is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the last data  
line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing  
or other factors).  
11 Data input hold is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the first data  
line becomes invalid.  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
19  
SDRAM Bus  
DD1  
DD2  
SDCLK0  
SDCLK1  
SDCLK0  
SDCLK1  
DD3  
DD5  
SDCSn,SDWE,  
RAS, CAS  
CMD  
ROW  
DD4  
DD6  
SDADDR,  
SDBA[1:0]  
COL  
DD7  
SDDM  
SDDQS  
SDDATA  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 16. DDR Write Timing  
MCF548x ColdFire® Microprocessor, Rev. 4  
20  
Freescale Semiconductor  
PCI Bus  
DD1  
DD2  
SDCLK0  
SDCLK1  
SDCLK0  
SDCLK1  
DD3  
DD5  
CL=2  
SDCSn,SDWE,  
RAS, CAS  
CMD  
ROW  
DD4  
CL=2.5  
SDADDR,  
SDBA[1:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SDDQS  
SDDATA  
SDDQS  
SDDATA  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
WD1 WD2 WD3 WD4  
Figure 17. DDR Read Timing  
10 PCI Bus  
The PCI bus on the MCF548x is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Please  
refer to the PCI 2.2 spec for a more detailed timing analysis.  
Table 14. PCI Timing Specifications  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
1
Frequency of Operation  
Clock Period (tCK  
25  
20  
3.0  
7.0  
0
50  
40  
MHz  
ns  
2
P1  
P2  
P3  
P4  
P5  
P6  
)
Address, Data, and Command (33< PCI 50 Mhz)—Input Setup (tIS)  
Address, Data, and Command (0 < PCI 33 Mhz)—Input Setup (tIS)  
ns  
ns  
3
4
Address, Data, and Command (33–50 Mhz)—Output Valid (tDV  
Address, Data, and Command (0–33 Mhz) - Output Valid (tDV  
PCI signals (0–50 Mhz) - Output Hold (tDH  
)
6.0  
11.0  
ns  
)
ns  
)
ns  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
21  
 
Fast Ethernet AC Timing Specifications  
Table 14. PCI Timing Specifications (continued)  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
5
P7  
P8  
P9  
PCI signals (0–50 Mhz) - Input Hold (tIH)  
0
6
ns  
ns  
ns  
ns  
ns  
ns  
6
PCI REQ/GNT (33 < PCI 50Mhz) - Output valid (tDV  
)
12  
10  
PCI REQ/GNT (0 < PCI 33Mhz) - Output valid (tDV  
)
12  
5
P10 PCI REQ/GNT (33 < PCI 50Mhz) - Input Setup (tIS)  
P11 PCI REQ (0 < PCI 33Mhz) - Input Setup (tIS)  
P12 PCI GNT (0 < PCI 33Mhz) - Input Setup (tIS)  
1
Please see the reset configuration signals description in the “Signal Descriptions” chapter within the MCF548x  
Reference Manual. Also specific guidelines may need to be followed when operating the system PLL below certain  
frequencies.  
2
3
4
Max cycle rate is determined by CLKIN and how the user has the system PLL configured.  
All signals defined as PCI bused signals. Does not include PTP (point-to-point) signals.  
PCI 2.2 spec does not require an output hold time. Although the MCF548X may provide a slight amount of hold, it  
is not required or guaranteed.  
5
6
PCI 2.2 spec requires zero input hold.  
These signals are defined at PTP (Point-to-point) in the PCI 2.2 spec.  
P1  
CLKIN  
P4  
P6  
Output  
Valid/Hold  
Output Valid  
P2  
Input  
Setup/Hold  
Input Valid  
P7  
Figure 18. PCI Timing  
11 Fast Ethernet AC Timing Specifications  
11.1 MII/7-WIRE Interface Timing Specs  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing  
specs/constraints for the EMAC_10_100 I/O signals.  
The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices. If this  
interface is to be used with a specific transceiver device the timing specs may be altered to match that specific transceiver.  
MCF548x ColdFire® Microprocessor, Rev. 4  
22  
Freescale Semiconductor  
Fast Ethernet AC Timing Specifications  
Table 15. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
RXCLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
RXCLK period  
RXCLK period  
RXCLK pulse width low  
M3  
M1  
RXCLK (Input)  
M4  
RXD[3:0] (Inputs)  
RXDV,  
RXER  
M2  
Figure 19. MII Receive Signal Timing Diagram  
11.2 MII Transmit Signal Timing  
Table 16. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
TXCLK pulse width high  
0
ns  
25  
ns  
35%  
35%  
65%  
65%  
TXCLK period  
TXCLK period  
TXCLK pulse width low  
M7  
TXCLK (Input)  
M5  
M8  
TXD[3:0] (Outputs)  
TXEN,  
TXER  
M6  
Figure 20. MII Transmit Signal Timing Diagram  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
23  
Fast Ethernet AC Timing Specifications  
11.3 MII Async Inputs Signal Timing (CRS, COL)  
Table 17. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
CRS, COL minimum pulse width  
1.5  
TX_CLK period  
CRS, COL  
M9  
Figure 21. MII Async Inputs Timing Diagram  
11.4 MII Serial Management Channel Timing (MDIO,MDC)  
Table 18. MII Serial Management Channel Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10  
MDC falling edge to MDIO output invalid  
(min prop delay)  
0
ns  
M11  
MDC falling edge to MDIO output valid  
(max prop delay)  
25  
ns  
M12  
M13  
M14  
M15  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high  
10  
0
ns  
ns  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
MDC pulse width low  
M14  
M15  
MDC (Output)  
MDIO (Output)  
MDIO (Input)  
M10  
M12  
M11  
M13  
Figure 22. MII Serial Management Channel TIming Diagram  
MCF548x ColdFire® Microprocessor, Rev. 4  
24  
Freescale Semiconductor  
General Timing Specifications  
12 General Timing Specifications  
Table 19 lists timing specifications for the GPIO, PSC, FlexCAN, DREQ, DACK, and external interrupts.  
Table 19. General AC Timing Specifications  
Name  
Characteristic  
CLKIN high to signal output valid  
Min  
Max  
Unit  
G1  
G2  
G3  
0
2
PSTCLK  
ns  
CLKIN high to signal invalid (output hold)  
Signal input pulse width  
2
PSTCLK  
13 I2C Input/Output Timing Specifications  
2
Table 20 lists specifications for the I C input timing parameters shown in Figure 23.  
2
Table 20. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
Bus clocks  
Bus clocks  
mS  
Clock low period  
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
ns  
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
mS  
Bus clocks  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
Bus clocks  
Bus clocks  
2
2
Table 21 lists specifications for the I C output timing parameters shown in Figure 23.  
2
Table 21. I C Output Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I11  
I2 1  
I3 2  
I4 1  
I5 3  
I6 1  
I7 1  
I8 1  
6
3
Bus clocks  
Bus clocks  
µS  
Clock low period  
10  
7
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
Bus clocks  
ns  
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
10  
2
Bus clocks  
Bus clocks  
Bus clocks  
Data setup time  
Start condition setup time (for repeated start  
condition only)  
20  
I9 1  
Stop condition setup time  
10  
Bus clocks  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
25  
 
 
 
JTAG and Boundary Scan Timing  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the  
maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 21. The  
I2C interface is designed to scale the actual data transition time to move it to the middle of the  
SCL low period. The actual position is affected by the prescale and division values programmed  
into the IFDR; however, the numbers given in Table 21 are minimum values.  
2
3
Because SCL and SDA are open-collector-type outputs, which the processor can only actively  
drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance  
and pull-up resistor values.  
Specified at a nominal 50-pF load.  
Figure 23 shows timing for the values in Table 20 and Table 21.  
I2  
I6  
I5  
SCL  
I1  
I7  
I3  
I4  
I8  
I9  
SDA  
2
Figure 23. I C Input/Output Timings  
14 JTAG and Boundary Scan Timing  
Table 22. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
2
10  
MHz  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
15.15  
0.0  
TCLK Rise and Fall Times  
tJCRF  
3.0  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
5.0  
24.0  
0.0  
15.0  
15.0  
tBSDZ  
0.0  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
5.0  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10.0  
0.0  
20.0  
15.0  
J12 TCLK Low to TDO High Z  
0.0  
J13 TRST Assert Time  
100.0  
10.0  
J14 TRST Setup Time (Negation) to TCLK High  
1
MTMOD is expected to be a static signal. Hence, it is not associated with any timing  
MCF548x ColdFire® Microprocessor, Rev. 4  
26  
Freescale Semiconductor  
 
 
JTAG and Boundary Scan Timing  
J2  
J3  
J3  
VIH  
TCLK (Input)  
VIL  
J4  
J4  
Figure 24. Test Clock Input Timing  
VIH  
TCLK  
VIL  
5
6
Data Inputs  
Data Outputs  
Data Outputs  
Data Outputs  
Input Data Valid  
7
8
Output Data Valid  
7
Output Data Valid  
Figure 25. Boundary Scan (JTAG) Timing  
VIH  
TCLK  
VIL  
9
10  
TDI, TMS, BKPT  
Input Data Valid  
11  
12  
TDO  
TDO  
TDO  
Output Data Valid  
11  
Output Data Valid  
Figure 26. Test Access Port Timing  
TCLK  
TRST  
14  
13  
Figure 27. TRST Timing Debug AC Timing Specifications  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
27  
JTAG and Boundary Scan Timing  
Table 23 lists specifications for the debug AC timing parameters shown in Figure 29.  
Table 23. Debug AC Timing Specifications  
50 MHz  
Num  
Characteristic  
Units  
Min  
Max  
D1  
D2  
PSTDDATA to PSTCLK setup  
PSTCLK to PSTDDATA hold  
DSI-to-DSCLK setup  
4.5  
4.5  
1
ns  
ns  
D3  
PSTCLKs  
PSTCLKs  
PSTCLKs  
D4 1  
DSCLK-to-DSO hold  
4
D5  
DSCLK cycle time  
5
1
DSCLK and DSI are synchronized internally. D4 is measured from the  
synchronized DSCLK input relative to the rising edge of CLKOUT.  
Figure 28 shows real-time trace timing for the values in Table 23.  
PSTCLK  
D1  
D2  
PSTDDATA[7:0]  
Figure 28. Real-Time Trace AC Timing  
Figure 29 shows BDM serial port AC timing for the values in Table 23.  
D5  
DSCLK  
D3  
DSI  
Current  
Next  
D4  
DSO  
Past  
Figure 29. BDM Serial Port AC Timing  
Current  
MCF548x ColdFire® Microprocessor, Rev. 4  
28  
Freescale Semiconductor  
 
 
 
DSPI Electrical Specifications  
15 DSPI Electrical Specifications  
Table 24 lists DSPI timings.  
Table 24. DSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
DS1  
DS2  
DS3  
DS4  
DS5  
DSPI_CS[3:0] to DSPI_CLK  
1 × tck  
510 × tck  
ns  
ns  
ns  
ns  
ns  
DSPI_CLK high to DSPI_DOUT valid.  
DSPI_CLK high to DSPI_DOUT invalid. (Output hold)  
DSPI_DIN to DSPI_CLK (Input setup)  
DSPI_DIN to DSPI_CLK (Input hold)  
12  
2
10  
10  
The values in Table 24 correspond to Figure 30.  
DSPI_CS[3:0]  
DS1  
DS2  
DSPI_CLK  
DSPI_DOUT  
DSPI_DIN  
DS3  
DS4  
DS5  
Figure 30. DSPI Timing  
16 Timer Module AC Timing Specifications  
Table 25 lists timer module AC timings.  
Table 25. Timer Module AC Timing Specifications  
0–50 MHz  
Name  
Characteristic  
Unit  
Min  
Max  
T1  
T2  
TIN0 / TIN1 / TIN2 / TIN3 cycle time  
TIN0 / TIN1 / TIN2 / TIN3 pulse width  
3
1
PSTCLK  
PSTCLK  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
29  
 
 
 
Case Drawing  
17 Case Drawing  
MCF548x ColdFire® Microprocessor, Rev. 4  
30  
Freescale Semiconductor  
Case Drawing  
Figure 31. 388-pin BGA Case Outline  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
31  
Revision History  
18 Revision History  
Revision  
Date  
Substantive Changes  
Number  
2.2  
August 29, 2005  
Table 7: Changed C1 minimum spec from 15.15 ns to 20 ns and maximum  
spec from 33.3 ns to 40 ns.  
2.3  
2.4  
August 30, 2005  
Table 22: Changed J11 maximum from 15 ns to 20 ns.  
December 14, 2005 Table 9: Changed heading maximum from 66 MHz to 50 MHz.  
Table 10: Changed frequency of operation maximum from 66 MHz to 50 MHz  
and corresponding FB1 minimum from 15.15 ns to 20 ns.  
Table 10: Changed FB1 maximum from 33.33 ns to 40 ns.  
Table 14: Changed frequency of operation maximum from 66 MHz to 50 MHz  
and corresponding FB1 minimum from 15.15 ns to 20 ns.  
Table 14: Changed FB1 maximum from 33.33 ns to 40 ns.  
Table 14: Changed various entry descriptions from “(33 < PCI 66 Mhz)” to  
(33< PCI 50 Mhz)  
Table 23: Changed heading maximum from 66 MHz to 50 MHz.  
Table 25: Changed heading maximum from 66 MHz to 50 MHz.  
3
4
February 20, 2007  
December 4, 2007  
Table 4: Updated DC electrical specifications, VIL and VIH.  
Table 6: Changed FlexBus output load from 20pF to 30pF.  
Added Section 4.3, “General USB Layout Guidelines.”  
Figure 2: Changed resistor value from 10W to 10Ω  
Figure 3: Changed note 1 in from “IVDD should not exceed EVDD, SD VDD  
or PLL VDD by more than 0.4V...to “IVDD should not exceed EVDD or SD  
VDD by more than 0.4V...”  
Table 3: Updated thermal information for θJMA, θJB, and θJC  
Table 4: Added input leakage current spec.  
Table 6: Added footnote regarding pads having balanced source & sink  
current.  
Table 9: Added RSTI pulse duration spec.  
Added features list, pinout drawing, block diagram, and case outline.  
MCF548x ColdFire® Microprocessor, Rev. 4  
32  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY BLANK  
MCF548x ColdFire® Microprocessor, Rev. 4  
Freescale Semiconductor  
33  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2007. All rights reserved.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF5485EC  
Rev. 4  
12/2007  

相关型号:

MCF5481

Microprocessor Electrical Characteristics
FREESCALE

MCF5481CVF166

Microprocessor
MOTOROLA

MCF5481CVR166

MCF548X V4ECORE MMU, FPU
NXP

MCF5481CZP166

32-BIT, 166.66MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, 1 MM PITCH, PLASTIC, MS-034AAL-1, BGA-388
MOTOROLA

MCF5482

Microprocessor Electrical Characteristics
FREESCALE

MCF5482CVR166

32-BIT, 166.66MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, 1 MM PITCH, MS-034AAL-1, PBGA-388
ROCHESTER

MCF5482CZP166

RISC Microprocessor, 32-Bit, 166.66MHz, CMOS, PBGA388, 27 X 27 MM, 1 MM PITCH, PLASTIC, MS-034AAL-1, BGA-388
MOTOROLA

MCF5483

Microprocessor Electrical Characteristics
FREESCALE

MCF5483CVF166

Microprocessor
MOTOROLA

MCF5483CVR166

MCF548X V4ECORE MMU, FPU
NXP

MCF5483CZP166

IC,MICROPROCESSOR,32-BIT,BGA,388PIN,PLASTIC
NXP

MCF5484

Microprocessor Electrical Characteristics
FREESCALE