MCF5484 [FREESCALE]

Microprocessor Electrical Characteristics; 微处理器的电气特性
MCF5484
型号: MCF5484
厂家: Freescale    Freescale
描述:

Microprocessor Electrical Characteristics
微处理器的电气特性

微处理器
文件: 总28页 (文件大小:787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF5485EC  
Rev. 2.1, 12/2004  
Freescale Semiconductor  
Data Sheet  
MCF548x Integrated  
Microprocessor Electrical  
Characteristics  
Applies to the MCF5480, MCF5481, MCF5482, MCF5483,  
MCF5484, and MCF5485  
Table of Contents  
This chapter contains electrical specification tables and  
reference timing diagrams for the MCF548x  
microprocessor. This section contains detailed  
information on power considerations, DC/AC electrical  
characteristics, and AC timing specifications of the  
MCF548x.  
1
2
3
4
Maximum Ratings................................................1  
Thermal Characteristics ......................................2  
DC Electrical Specifications ................................3  
Supply Voltage Sequencing and Separation  
Cautions ..............................................................5  
Output Driver Capability and Loading .................6  
PLL Timing Specifications...................................7  
Reset Timing Specifications................................8  
FlexBus................................................................9  
SDRAM Bus ......................................................11  
5
6
7
8
9
NOTE  
The parameters specified  
in this MPU document  
supersede any values  
found in the module  
specifications.  
10 PCI Bus .............................................................17  
11 Fast Ethernet AC Timing Specifications............18  
12 General Timing Specifications...........................21  
13 I2C Input/Output Timing Specifications .............21  
14 JTAG and Boundary Scan Timing .....................23  
15 DSPI Electrical Specifications ...........................26  
16 Timer Module AC Timing Specifications............26  
1 Maximum Ratings  
Table 1 lists maximum and minimum ratings for supply  
and operating voltages and storage temperature.  
Operating outside of these ranges may cause erratic  
behavior or damage to the processor.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
 
Thermal Characteristics  
Table 1. Absolute Maximum Ratings  
Symbol  
Rating  
Value  
Units  
External (I/O pads) supply voltage (3.3-V power pins)  
Internal logic supply voltage  
EVDD  
IVDD  
–0.3 to +4.0  
–0.5 to +2.0  
V
V
V
Memory (I/O pads) supply voltage (2.5-V power pins)  
SD VDD  
–0.3 to +4.0 SDR Memory  
–0.3 to +2.8 DDR Memory  
PLL supply voltage  
PLL VDD  
Vin  
–0.5 to +2.0  
–0.5 to +3.6  
–55 to +150  
V
V
Internal logic supply voltage, input voltage level  
Storage temperature range  
Tstg  
oC  
2 Thermal Characteristics  
2.1 Operating Temperatures  
Table 2 lists junction and ambient operating temperatures.  
Table 2. Operating Temperatures  
Characteristic  
Symbol  
Value  
Units  
Maximum operating junction temperature  
Maximum operating ambient temperature  
Minimum operating ambient temperature  
N1 OTES:  
Tj  
105  
<851  
– 40  
oC  
oC  
oC  
TAmax  
TAmin  
This published maximum operating ambient temperature should be used only as a system design guideline. All  
device operating parameters are guaranteed only when the junction temperature lies within the specified range.  
2.2 Thermal Resistance  
Table 3 lists thermal resistance values.  
Table 3. Thermal Resistance  
Characteristic  
Symbol  
Value  
Unit  
324 pin TEPBGA — Junction to ambient, natural Four layer board (2s2p)  
convection  
θJMA  
22–241,2  
°C/W  
388 pin TEPBGA — Junction to ambient, natural Four layer board (2s2p)  
convection  
θJMA  
20–221,2  
°C/W  
Junction to ambient (@200 ft/min)  
Junction to board  
Four layer board (2s2p)  
Natural convection  
θJMA  
θJB  
θJC  
Ψjt  
231,2  
153  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to case  
104  
Junction to top of package  
21,5  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
2
Freescale Semiconductor  
DC Electrical Specifications  
N1 OTES:  
JA and Ψjt parameters are simulated in accordance with EIA/JESD Standard 51-2 for natural convection.  
θ
Freescale recommends the use of θJA and power dissipation specifications in the system design to prevent device  
junction temperatures from exceeding the rated specification. System designers should be aware that device  
junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the  
device junction temperature specification can be verified by physical measurement in the customer’s system using  
the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.  
Per JEDEC JESD51-6 with the board horizontal.  
2
3
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written as Psi-JT.  
4
5
3 DC Electrical Specifications  
Table 4 lists DC electrical operating temperatures. This table is based on an operating voltage of  
EV = 3.3 V ± 0.3 V and IV of 1.5 ± 0.07 V .  
DD  
DC  
DC  
DD  
Table 4. DC Electrical Specifications  
DC  
Characteristic  
Symbol  
Min  
Max  
Units  
External (I/O pads) operation voltage range  
Memory (I/O pads) operation voltage range (DDR Memory)  
Internal logic operation voltage range 1  
PLL Analog operation voltage range 1  
USB oscillator operation voltage range  
USB digital logic operation voltage range  
USB PHY operation voltage range  
EVDD  
SD VDD  
IVDD  
3.0  
2.30  
1.43  
1.43  
3.0  
3.6  
2.70  
1.58  
1.58  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
pF  
PLL VDD  
USB_OSVDD  
USBVDD  
USB_PHYVDD  
USB_OSCAVDD  
USB_PLLVDD  
VIH  
3.0  
3.6  
3.0  
3.6  
USB oscillator analog operation voltage range  
USB PLL operation voltage range  
1.43  
1.43  
2.0  
1.58  
1.58  
3.6  
Input high voltage SSTL 3.3V (SDR DRAM)  
Input low voltage SSTL 3.3V (SDR DRAM)  
Input high voltage SSTL 2.5V (DDR DRAM)  
Input low voltage SSTL 2.5V (DDR DRAM)  
Output high voltage IOH = 8 mA, 16 mA,24 mA  
Output low voltage IOL = 8 mA, 16 mA,24 mA5  
Capacitance 2, Vin = 0 V, f = 1 MHz  
VIL  
–0.5  
2.0  
0.8  
VIH  
2.8  
VIL  
–0.5  
2.4  
0.8  
VOH  
VOL  
0.5  
CIN  
TBD  
N1 OTES:  
IVDD and PLL VDD should be at the same voltage. PLL VDD should have a filtered input. Please see Figure 1 for an  
example circuit. Note: There are three PLL VDD inputs. A filter circuit should used on each PLL VDD input.  
Capacitance CIN is periodically sampled rather than 100% tested.  
2
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
3
 
DC Electrical Specifications  
3.1 PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins.  
DD  
The filter shown in Figure 1 should be connected between the board V and the PLL V pins. The  
DD  
DD  
resistor and capacitors should be placed as close to the dedicated PLL V pin as possible.  
DD  
10 W  
Board VDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 1. System PLL V Power Filter  
DD  
3.2 USB Power Filtering  
To minimize noise, a external filters are required for each of the USB power pins. The filter shown in  
Figure 2 should be connected between the board EV or IV and each of the USB V pins. The  
DD  
DD  
DD  
resistor and capacitors should be placed as close to the dedicated USB V pin as possible. A separate  
DD  
filter circuit should be included for each USB V pin, a total of five circuits.  
DD  
R
Board EVDD/IVDD  
USB VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 2. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also  
recommended in parallel with those shown.  
Table 5 lists the resistor values and supply voltages to be used in the circuit for each of the USB V pins.  
DD  
Table 5. USB Filter Circuit Values  
USB VDD Pin  
Nominal Voltage  
Resistor Value (R)  
USB_OSCVDD  
USBVDD  
3.3V  
3.3V  
3.3V  
1.5V  
1.5V  
0Ω  
0Ω  
USB_PHYVDD  
USB_OSCAVDD  
USB_PLLVDD  
0Ω  
0Ω  
10Ω  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
4
Supply Voltage Sequencing and Separation Cautions  
4 Supply Voltage Sequencing and Separation  
Cautions  
Figure 3 shows situations in sequencing the I/O V (EV ), SDRAM V (SD V ), PLL V (PLL  
DD  
DD  
DD  
DD  
DD  
V
), and Core V (IV ).  
DD  
DD DD  
EVDD, SD VDD (3.3V)  
SD VDD (2.5V)  
3.3V  
Supplies Stable  
2.5V  
IVDD, PLL VDD  
1.5V  
1
2
0
Time  
NOTES:  
1. IVDD should not exceed EVDD, SD VDD or PLL VDD by more than  
0.4V at any time, including power-up.  
2. Recommended that IVDD/PLL VDD should track EVDD/SD VDD up to  
0.9V, then separate for completion of ramps.  
3. Input voltage must not be greater than the supply voltage (EVDD, SD VDD  
,
IVDD, or PLL VDD) by more than 0.5V at any time, including during power-up.  
4. Use 1 microsecond or slower rise time for all supplies.  
Figure 3. Supply Voltage Sequencing and Separation Cautions  
The relationship between SD V and EV is non-critical during power-up and power-down sequences.  
DD  
DD  
Both SD V (2.5V or 3.3V) and EV are specified relative to IV .  
DD  
DD  
DD  
4.1 Power Up Sequence  
If EV /SD V are powered up with the IV at 0V, then the sense circuits in the I/O pads will cause  
DD  
DD  
DD  
all pad output drivers connected to the EV /SD V to be in a high impedance state. There is no limit  
DD  
DD  
on how long after EV /SD V powers up before IV must power up. IV should not lead the EV ,  
DD  
DD  
DD  
DD  
DD  
SD V or PLL V by more than 0.4V during power ramp up, or there will be high current in the internal  
DD  
DD  
ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid  
turning on the internal ESD protection clamp diodes.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
5
Output Driver Capability and Loading  
The recommended power up sequence is as follows:  
1. Use 1 microsecond or slower rise time for all supplies.  
2. IV /PLL V and EV /SD V should track up to 0.9V, then separate for the completion of  
DD  
DD  
DD  
DD  
ramps with EV /SD V going to the higher external voltages. One way to accomplish this is to  
DD  
DD  
use a low drop-out voltage regulator.  
4.2 Power Down Sequence  
If IV PLL V are powered down first, then sense circuits in the I/O pads will cause all output drivers  
DD  
DD  
to be in a high impedance state. There is no limit on how long after IV and PLL V power down before  
DD  
DD  
EV or SD V must power down. IV should not lag EV , SD V , or PLL V going low by  
DD  
DD  
DD  
DD  
DD  
DD  
more than 0.4V during power down or there will be undesired high current in the ESD protection diodes.  
There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLL V to 0V  
DD  
DD  
2. Drop EV /SD V supplies  
DD  
DD  
5 Output Driver Capability and Loading  
Table 6 lists values for drive capability and output loading.  
Table 6. I/O Driver Capability  
Drive  
Output  
Signal  
Capability Load (CL)  
SDRAMC (SDADDR[12:0], SDDATA[31:0], RAS, CAS, SDDM[3:0],  
SDWE, SDBA[1:0]  
24 mA  
15 pF  
SDRAMC DQS and clocks (SDDQS[3:0], SDRDQS, SDCLK[1:0],  
SDCLK[1:0], SDCKE)  
24 mA  
15 pF  
SDRAMC chip selects (SDCS[3:0])  
24 mA  
16 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
24 mA  
15 pF  
20 pF  
15 pF  
50 pF  
30 pF  
30 pF  
30 pF  
50 pF  
FlexBus (AD[31:0], FBCS[5:0], ALE, R/W, BE/BWE[3:0], OE)  
FEC (EnMDIO, EnMDC, EnTXEN, EnTXD[3:0], EnTXER  
Timer (TOUT[3:0])  
FlexCAN (CANTX)  
DACK[1:0]  
PSC (PSCnTXD[3:0], PSCnRTS/PSCnFSYNC,  
DSPI (DSPISOUT, DSPICS0/SS, DSPICS[2:3], DSPICS5/PCSS)  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
6
Freescale Semiconductor  
PLL Timing Specifications  
Output  
Table 6. I/O Driver Capability (continued)  
Signal  
Drive  
Capability Load (CL)  
PCI (PCIAD[31:0], PCIBG[4:1], PCIBG0/PCIREQOUT, PCIDEVSEL,  
PCICXBE[3:0], PCIFRM, PCIPERR, PCIRESET, PCISERR, PCISTOP,  
PCIPAR, PCITRDY, PCIIRDY  
16 mA  
50 pF  
I2C (SCL, SDA)  
8 mA  
8 mA  
8 mA  
50 pF  
25 pF  
50 pF  
BDM (PSTCLK, PSTDDATA[7:0], DSO/TDO,  
RSTO  
6 PLL Timing Specifications  
The specifications in Table 7 are for the CLKIN pin.  
Table 7. Clock Timing Specification  
Num Characteristic  
Min  
Max  
Units  
C1 Cycle time  
15.15  
33.3  
2
ns  
ns  
ns  
%
C2 Rise time (20% of Vdd to 80% of vdd)  
C3 Fall time (80% of Vdd to 20% of Vdd)  
C4 Duty cycle (at 50% of Vdd)  
2
40  
60  
C1  
CLKIN  
C4  
C4  
C2  
C3  
Figure 4. Input Clock Timing Diagram  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
7
Reset Timing Specifications  
Figure 5 correlates CLKIN, internal bus, and core clock frequencies for the 1x–4x multipliers.  
CLKIN  
Internal Clock  
Core Clock  
2x  
2x  
2x  
4x  
50.0  
100.0  
25.0  
50.0  
100.0  
100.0  
200.0  
200.0  
25.0  
25 40 50 60 70  
CLKIN (MHz)  
30 40 50 60 70 80 90 100  
Internal Clock (MHz)  
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200  
Core Clock (MHz)  
Table 8. MCF548X Divide Ratio Encodings  
Internal XLB, SDRAM  
Bus, and PSTCLK Frequency  
Range (MHz)  
Clock  
Ratio  
CLKIN—PCI and FlexBus  
Frequency Range (MHz)  
Core Frequency Range  
(MHz)  
AD[12:8]1  
00011  
00101  
1:2  
1:2  
1:4  
41.6–50.0  
25.0–41.5  
25  
83.33–100  
50.0–83.02  
100  
166.66–200  
100.0–166.66  
200  
01111  
N1 OTES:  
All other values of AD[12:8] are reserved.  
Note that DDR memories typically have a minimum speed of 83 MHz. Some vendors specify down to 75 MHz.  
Check with memory component specifications to verify.  
2
Figure 5. CLKIN, Internal Bus, and Core Clock Ratios  
7 Reset Timing Specifications  
Table 9 lists specifications for the reset timing parameters shown in Figure 6  
Table 9. Reset Timing Specification  
66 MHz CLKIN  
Num  
Characteristic  
Units  
Min  
Max  
R1 1 Valid to CLKIN (setup)  
8
nS  
nS  
nS  
R2  
R3  
CLKIN to invalid (hold)  
RSTI to invalid (hold)  
1.0  
1.0  
N1 OTES:  
RSTI and FlexBus data lines are synchronized internally. Setup and hold  
times must be met only if recognition on a particular clock is required.  
Figure 6 shows reset timing for the values in Table 9.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
8
FlexBus  
CLKIN  
RSTI  
R1  
R2  
Mode Select  
FlexBus  
R1  
R3  
NOTE:  
Mode selects are registered on the rising clock edge before  
the cycle in which RSTI is recognized as being negated.  
Figure 6. Reset Timing  
8 FlexBus  
A multi-function external bus interface called FlexBus is provided on the MCF5482 with basic  
functionality to interface to slave-only devices up to a maximum bus frequency of 66 MHz. It can be  
directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories,  
gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For  
asynchronous devices, a simple chip-select based interface can be used. The FlexBus interface has six  
general purpose chip-selects (FBCS[5:0]). Chip-select FBCS0 can be dedicated to boot ROM access and  
can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing  
is compatible with common ROM / flash memories.  
8.1 FlexBus AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the system clock.  
Table 10. FlexBus AC Timing Specifications  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
1
Frequency of Operation  
FB1 Clock Period (CLKIN)  
25  
15.15  
66  
33.33  
7.0  
Mhz  
ns  
2
3
FB2 Address, Data, and Control Output Valid (AD[31:0], FBCS[5:0],  
R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST)  
ns  
3, 4  
FB3 Address, Data, and Control Output Hold ((AD[31:0], FBCS[5:0],  
R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST)  
1
ns  
FB4 Data Input Setup  
FB5 Data Input Hold  
3.5  
0
ns  
ns  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
9
FlexBus  
Table 10. FlexBus AC Timing Specifications (continued)  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
FB8 Address Output Valid (PCIAD[31:0])  
FB9 Address Output Hold (PCIAD[31:0])  
4
0
ns  
ns  
ns  
ns  
5
5
0
7.0  
N1 OTES:  
The frequency of operation is the same as the PCI frequency of operation. The MCF548X supports a single  
external reference clock (CLKIN). This signal defines the frequency of operation for both FlexBus and PCI.  
Max cycle rate is determined by CLKIN and how the user has the system PLL configured.  
Timing for chip selects only applies to the FBCS[5:0] signals. Please see Section 9.2, “DDR SDRAM AC  
Timing Characteristics” for SDCS[3:0] timing.  
The FlexBus supports programming an extension of the address hold. Please consult the MCF548X  
specification manual for more information.  
These specs are used when the PCIAD[31:0] signals are configured as 32-bit, non-muxed FlexBus address  
signals.  
2
3
4
5
CLKIN  
FB1  
FB3  
AD[X:0]  
A[X:0]  
FB2  
FB5  
AD[31:Y]  
A[31:Y]  
DATA  
R/W  
FB4  
ALE  
TSIZ[1:0]  
TSIZ[1:0]  
FBCSn, BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 7. FlexBus Read Timing  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
10  
SDRAM Bus  
CLKIN  
FB1  
FB3  
FB3  
AD[X:0]  
A[X:0]  
FB2  
AD[31:Y]  
A[31:Y]  
DATA  
R/W  
ALE  
TSIZ[1:0]  
TSIZ[1:0]  
FBCSn, BE/BWEn  
FB7  
OE  
TA  
FB6  
Figure 8. FlexBus Write Timing  
9 SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports  
either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.  
The SDRAM controller uses SSTL2 and SSTL3 I/O drivers. Both SSTL drive modes are programmable  
for either Class I or Class II drive strength.  
9.1 SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative  
to the memory bus clock, when operating in SDR mode on write cycles and relative to SDR_DQS on read  
cycles. The MCF548x SDRAM controller is a DDR controller that has an SDR mode. Because it is  
designed to support DDR, a DQS pulse must still be supplied to the MCF548x for each data beat of an  
SDR read. The MCF548x accomplishes this by asserting a signal called SDR_DQS during read cycles.  
Care must be taken during board design to adhere to the following guidelines and specs with regard to the  
SDR_DQS signal and its usage.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
11  
SDRAM Bus  
Symbol  
Table 11. SDR Timing Specifications  
Characteristic  
Frequency of Operation  
Clock Period (tCK  
Clock Skew (tSK  
Pulse Width High (tCKH  
Pulse Width Low (tCKL  
Min  
Max  
Unit  
Notes  
1
50  
133  
12  
Mhz  
ns  
2
SD1  
SD2  
SD3  
SD4  
SD5  
)
7.52  
)
TBD  
0.55  
0.55  
3
4
)
0.45  
0.45  
SDCLK  
SDCLK  
ns  
)
Address, CKE, CAS, RAS, WE, BA, CS - Output Valid (tCMV  
)
)
0.5 × SDCLK +  
1.0ns  
SD6  
SD7  
SD8  
SD9  
SD10  
Address, CKE, CAS, RAS, WE, BA, CS - Output Hold (tCMH  
2.0  
ns  
ns  
ns  
5
6
7
8
SDRDQS Output Valid (tDQSOV  
SDDQS[3:0] input setup relative to SDCLK (tDQSIS  
SDDQS[3:0] input hold relative to SDCLK (tDQSIH  
Data Input Setup relative to SDCLK (reference only) (tDIS  
)
Self timed  
)
0.25 × SDCLK 0.40 × SDCLK  
)
Does not apply. 0.5 SDCLK fixed width.  
)
0.25 × SDCLK  
ns  
SD11  
SD12  
Data Input Hold relative to SDCLK (reference only) (tDIH  
)
1.0  
ns  
ns  
Data and Data Mask Output Valid (tDV  
)
0.75 × SDCLK  
+0.500ns  
SD13  
Data and Data Mask Output Hold (tDH  
)
1.5  
ns  
N1 OTES:  
The frequency of operation is either 2x or 4x the CLKIN frequency of operation. The MCF548X supports a single external  
reference clock (CLKIN). This signal defines the frequency of operation for both FlexBus and PCI, but SDRAM clock  
operates at the same frequency as the internal bus clock. Please see the PLL chapter of the MCF548X Specification for  
more information on setting the SDRAM clock rate.  
2
3
4
5
SDCLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each  
data beat.  
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each  
data beat.  
6
7
8
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge  
does not affect the memory controller.  
Since a read cycle in SDR mode still uses the DQS circuit within the MCF548X, it is most critical that the data valid window  
be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input  
setup spec is just provided as guidance.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
12  
Freescale Semiconductor  
SDRAM Bus  
SD1  
SD3  
SD2  
SDCLK0  
SDCLK1  
SD2  
SD4  
SD6  
SDCSn,SDWE,  
RAS, CAS  
CMD  
SD5  
SDADDR,  
SDBA[1:0]  
ROW  
COL  
SD12  
SDDM  
SD13  
WD2  
SDDATA  
WD1  
WD3  
WD4  
Figure 9. SDR Write Timing  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
13  
SDRAM Bus  
SD1  
SD2  
SDCLK0  
SD2  
SDCLK1  
SD6  
SDCSn,SDWE,  
RAS, CAS  
CMD  
3/4 MCLK  
Reference  
SD5  
SDADDR,  
SDBA[1:0]  
ROW  
COL  
tDQS  
SDDM  
SD7  
SDRQS (Measured at Output Pin)  
SDDQS (Measured at Input Pin)  
Board Delay  
Board Delay  
SD9  
SD8  
Delayed  
SDCLK  
SD10  
SDDATA  
form  
Memories  
WD1  
WD2  
WD3  
WD4  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD11  
Figure 10. SDR Read Timing  
9.2 DDR SDRAM AC Timing Characteristics  
When using the DDR SDRAM controller, the following timing numbers must be followed to properly  
latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte lanes.  
Table 12shows the DDR clock crossover specifications.  
Table 12. DDR Clock Crossover Specifications  
Symbol  
Characteristic  
Clock output mid-point voltage  
Min  
Max  
Unit  
VMP  
VOUT  
VID  
1.05  
–0.3  
0.7  
1.45  
V
V
V
V
Clock output voltage level  
SD_VDD + 0.3  
SD_VDD + 0.6  
1.45  
Clock output differential voltage (peak to peak swing)  
Clock crossing point voltage1  
VIX  
1.05  
N1 OTES:  
The clock crossover voltage is only guaranteed when using the highest drive strength option for the  
SDCLK[1:0] and SDCLK[1:0] signals.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
14  
Freescale Semiconductor  
SDRAM Bus  
SDCLK  
SDCLK  
VIX  
VMP  
VIX  
VID  
Figure 11. DDR Clock Timing Diagram  
Table 13. DDR Timing Specifications  
Symbol  
Characteristic  
Min  
Max  
Unit  
MHz  
Notes  
2
Frequency of Operation  
501  
7.52  
0.45  
0.45  
133  
12  
3
4
5
6
DD1 Clock Period (tCK  
DD2 Pulse Width High (tCKH  
DD3 Pulse Width Low (tCKL  
DD4 Address, SDCKE, CAS, RAS, WE, SDBA, SDCS—Output  
Valid (tCMV  
DD5 Address, SDCKE, CAS, RAS, WE, SDBA, SDCS—Output Hold  
(tCMH  
DD6 Write Command to first DQS Latching Transition (tDQSS  
DD7 Data and Data Mask Output Setup (DQ−>DQS) Relative to  
DQS (DDR Write Mode) (tQS  
DD8 Data and Data Mask Output Hold (DQS−>DQ) Relative to DQS  
(DDR Write Mode) (tQH  
)
ns  
)
0.55  
0.55  
SDCLK  
SDCLK  
ns  
)
0.5 × SDCLK  
+ 1.0 ns  
)
2.0  
ns  
)
)
1.25  
SDCLK  
ns  
7
8
1.0  
)
9
1.0  
ns  
)
10  
11  
DD9 Input Data Skew Relative to DQS (Input Setup) (tIS)  
DD10 Input Data Hold Relative to DQS (tIH)  
1
ns  
ns  
0.25 × SDCLK  
+ 0.5ns  
DD11 DQS falling edge to SDCLK rising (output setup time) (tDSS  
)
0.5  
0.5  
0.9  
ns  
DD12 DQS falling edge from SDCLK rising (output hold time) (tDSH  
DD13 DQS input read preamble width (tRPRE  
DD14 DQS input read postamble width (tRPST  
DD15 DQS output write preamble width (tWPRE  
DD16 DQS output write postamble width (tWPST  
)
ns  
)
1.1  
0.6  
SDCLK  
SDCLK  
SDCLK  
SDCLK  
)
0.4  
)
0.25  
0.4  
)
0.6  
N1 OTES:  
Note that DDR memories typically have a minimum speed specification of 83 MHz. Some vendors go to 75 MHz. Check  
with memory component specifications to verify.  
2
The frequency of operation is either 2x or 4x the CLKIN frequency of operation. The MCF548X supports a single external  
reference clock (CLKIN). This signal defines the frequency of operation for both FlexBus and PCI, but SDRAM clock  
operates at the same frequency as the internal bus clock. Please see Section 2.2.6, “Reset Configuration Pins.”  
SDCLK is one memory clock in (ns).  
Pulse width high plus pulse width low cannot exceed max clock period.  
Pulse width high plus pulse width low cannot exceed max clock period.  
3
4
5
6
Command output valid should be 1/2 the memory bus clock (SDCLK) plus some minor adjustments for process,  
temperature, and voltage variations.  
7
This specification relates to the required input setup time of today’s DDR memories. SDDATA[31:24] is relative to  
SDDQS3, SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative  
SDDQS0.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
15  
SDRAM Bus  
8
The first data beat will be valid before the first rising edge of SDDQS and after the SDDQS write preamble. The remaining  
data beats will be valid for each subsequent SDDQS edge.  
9
This specification relates to the required hold time of today’s DDR memories. SDDATA[31:24] is relative to SDDQS3,  
SDDATA[23:16] is relative to SDDQS2, SDDATA[15:8] is relative to SDDQS1, and SDDATA[7:0] is relative SDDQS0.  
Data input skew is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the last data  
line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing  
or other factors).  
10  
11  
Data input hold is derived from each SDDQS clock edge. It begins with a SDDQS transition and ends when the first data  
line becomes invalid.  
DD1  
DD2  
SDCLK0  
SDCLK1  
SDCLK0  
SDCLK1  
DD3  
DD5  
SDCSn,SDWE,  
RAS, CAS  
CMD  
ROW  
DD4  
DD6  
SDADDR,  
SDBA[1:0]  
COL  
DD7  
SDDM  
SDDQS  
SDDATA  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 12. DDR Write Timing  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
16  
PCI Bus  
DD1  
DD2  
SDCLK0  
SDCLK1  
SDCLK0  
SDCLK1  
DD3  
DD5  
CL=2  
SDCSn,SDWE,  
RAS, CAS  
CMD  
ROW  
DD4  
CL=2.5  
SDADDR,  
SDBA[1:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SDDQS  
SDDATA  
SDDQS  
SDDATA  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
WD1 WD2 WD3 WD4  
Figure 13. DDR Read Timing  
10 PCI Bus  
The PCI bus on the MCF548x is PCI 2.2 compliant. The following timing numbers are mostly from the  
PCI 2.2 spec. Please refer to the PCI 2.2 spec for a more detailed timing analysis.  
Table 14. PCI Timing Specifications  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
1
Frequency of Operation  
Clock Period (tCK  
25  
15.15  
3.0  
7.0  
66  
33.33  
MHz  
ns  
2
P1  
P2  
P3  
P4  
P5  
)
Address, Data, and Command (33< PCI 66 Mhz)—Input Setup (tIS)  
Address, Data, and Command (0 < PCI 33 Mhz)—Input Setup (tIS)  
ns  
ns  
3
Address, Data, and Command (33-66 Mhz) - Output Valid (tDV  
)
6.0  
ns  
Address, Data, and Command (0 -33 Mhz) - Output Valid (tDV  
)
11.0  
ns  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
17  
Fast Ethernet AC Timing Specifications  
Table 14. PCI Timing Specifications (continued)  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
4
P6  
P7  
P8  
P9  
PCI signals (0 - 66 Mhz) - Output Hold (tDH  
)
0
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
6
PCI signals (0 - 66 Mhz) - Input Hold (tIH)  
0
PCI REQ/GNT (33 < PCI 66Mhz) - Output valid (tDV  
)
12  
10  
PCI REQ/GNT (0 < PCI 33Mhz) - Output valid (tDV  
)
12  
5
P10 PCI REQ/GNT (33 < PCI 66Mhz) - Input Setup (tIS)  
P11 PCI REQ (0 < PCI 33Mhz) - Input Setup (tIS)  
P12 PCI GNT (0 < PCI 33Mhz) - Input Setup (tIS)  
NOTES:  
1
Please see Section 2.2.6, “Reset Configuration Pins,” for more information on setting the PCI clock rate. Also  
specific guidelines may need to be followed when operating the system PLL below certain frequencies.  
Max cycle rate is determined by CLKIN and how the user has the system PLL configured.  
All signals defined as PCI bused signals. Does not include PTP (point-to-point) signals.  
PCI 2.2 spec does not require an output hold time. Although the MCF548X may provide a slight amount of hold, it  
is not required or guaranteed.  
2
3
4
5
6
PCI 2.2 spec requires zero input hold.  
These signals are defined at PTP (Point-to-point) in the PCI 2.2 spec.  
P1  
CLKIN  
P4  
P6  
Output  
Valid/Hold  
Output Valid  
P2  
Input  
Setup/Hold  
Input Valid  
P7  
Figure 14. PCI Timing  
11 Fast Ethernet AC Timing Specifications  
11.1 MII/7-WIRE Interface Timing Specs  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the EMAC_10_100 I/O signals.  
The following timing specs meet the requirements for both MII and 7-Wire style interfaces for a range of  
transceiver devices. If this interface is to be used with a specific transceiver device the timing specs may  
be altered to match that specific transceiver.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
18  
Freescale Semiconductor  
Fast Ethernet AC Timing Specifications  
Table 15. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
RXCLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
RXCLK period  
RXCLK period  
RXCLK pulse width low  
M3  
M1  
RXCLK (Input)  
M4  
RXD[3:0] (Inputs)  
RXDV,  
RXER  
M2  
Figure 15. MII Receive Signal Timing Diagram  
11.2 MII Transmit Signal Timing  
Table 16. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
TXCLK pulse width high  
0
ns  
25  
ns  
35%  
35%  
65%  
65%  
TXCLK period  
TXCLK period  
TXCLK pulse width low  
M7  
TXCLK (Input)  
M5  
M8  
TXD[3:0] (Outputs)  
TXEN,  
TXER  
M6  
Figure 16. MII Transmit Signal Timing Diagram  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
19  
Fast Ethernet AC Timing Specifications  
11.3 MII Async Inputs Signal Timing (CRS, COL)  
Table 17. MII Transmit Signal Timing  
Num  
Characteristic  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
M9  
1.5  
TX_CLK period  
CRS, COL  
M9  
Figure 17. MII Async Inputs Timing Diagram  
11.4 MII Serial Management Channel Timing (MDIO,MDC)  
Table 18. MII Serial Management Channel Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10  
MDC falling edge to MDIO output invalid  
(min prop delay)  
0
ns  
M11  
MDC falling edge to MDIO output valid  
(max prop delay)  
25  
ns  
M12  
M13  
M14  
M15  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high  
10  
0
ns  
ns  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
MDC pulse width low  
M14  
M15  
MDC (Output)  
MDIO (Output)  
MDIO (Input)  
M10  
M12  
M11  
M13  
Figure 18. MII Serial Management Channel TIming Diagram  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
20  
Freescale Semiconductor  
General Timing Specifications  
12 General Timing Specifications  
Table 19 lists timing specifications for the GPIO, PSC, FlexCAN, DREQ, DACK, and external interrupts.  
Table 19. General AC Timing Specifications  
Name  
G1  
Characteristic  
CLKIN high to signal output valid  
Min  
Max  
Unit  
0
2
PSTCLK  
ns  
G2  
G3  
CLKIN high to signal invalid (output hold)  
Signal input pulse width  
2
PSTCLK  
13 I2C Input/Output Timing Specifications  
2
Table 20 lists specifications for the I C input timing parameters shown in Figure 19.  
2
Table 20. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
Bus clocks  
Bus clocks  
mS  
Clock low period  
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
ns  
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
mS  
Bus clocks  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
Bus clocks  
Bus clocks  
2
2
Table 21 lists specifications for the I C output timing parameters shown in Figure 19.  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
21  
I2C Input/Output Timing Specifications  
2
Table 21. I C Output Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I11  
I2 1  
I3 2  
I4 1  
I5 3  
I6 1  
I7 1  
I8 1  
6
3
Bus clocks  
Bus clocks  
µS  
Clock low period  
10  
7
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
Bus clocks  
ns  
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
10  
2
Bus clocks  
Bus clocks  
Bus clocks  
Data setup time  
Start condition setup time (for repeated start  
condition only)  
20  
I9 1  
Stop condition setup time  
10  
Bus clocks  
N1 OTES:  
Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed  
with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in  
Table 21. The I2C interface is designed to scale the actual data transition time to move it to the  
middle of the SCL low period. The actual position is affected by the prescale and division values  
programmed into the IFDR; however, the numbers given in Table 21 are minimum values.  
Because SCL and SDA are open-collector-type outputs, which the processor can only actively  
drive low, the time SCL or SDA take to reach a high level depends on external signal  
capacitance and pull-up resistor values.  
2
3
Specified at a nominal 50-pF load.  
Figure 19 shows timing for the values in Table 20 and Table 21.  
I2  
I6  
I5  
SCL  
SDA  
I1  
I3  
I7  
I4  
I8  
I9  
2
Figure 19. I C Input/Output Timings  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
22  
Freescale Semiconductor  
JTAG and Boundary Scan Timing  
14 JTAG and Boundary Scan Timing  
Table 22. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
2
10  
MHz  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
15.15  
0.0  
TCLK Rise and Fall Times  
tJCRF  
3.0  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
5.0  
24.0  
0.0  
15.0  
15.0  
tBSDZ  
0.0  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
5.0  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10.0  
0.0  
15.0  
15.0  
J12 TCLK Low to TDO High Z  
0.0  
J13 TRST Assert Time  
100.0  
10.0  
J14 TRST Setup Time (Negation) to TCLK High  
N1 OTES:  
MTMOD is expected to be a static signal. Hence, it is not associated with any timing  
J2  
J3  
J3  
VIH  
TCLK (Input)  
VIL  
J4  
J4  
Figure 20. Test Clock Input Timing  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
23  
JTAG and Boundary Scan Timing  
VIH  
TCLK  
Data Inputs  
VIL  
5
6
Input Data Valid  
7
8
Data Outputs  
Data Outputs  
Data Outputs  
Output Data Valid  
7
Output Data Valid  
Figure 21. Boundary Scan (JTAG) Timing  
VIH  
TCLK  
TDI, TMS, BKPT  
TDO  
VIL  
9
10  
Input Data Valid  
11  
12  
Output Data Valid  
TDO  
11  
TDO  
Output Data Valid  
Figure 22. Test Access Port Timing  
TCLK  
TRST  
14  
13  
Figure 23. TRST Timing Debug AC Timing Specifications  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
24  
Freescale Semiconductor  
JTAG and Boundary Scan Timing  
Table 23 lists specifications for the debug AC timing parameters shown in Figure 25.  
Table 23. Debug AC Timing Specification  
66 MHz  
Num  
Characteristic  
Units  
Min  
Max  
D1  
D2  
PSTDDATA to PSTCLK setup  
PSTCLK to PSTDDATA hold  
DSI-to-DSCLK setup  
4.5  
4.5  
1
ns  
ns  
D3  
PSTCLKs  
PSTCLKs  
PSTCLKs  
D4 1  
DSCLK-to-DSO hold  
4
D5  
DSCLK cycle time  
5
N1 OTES:  
DSCLK and DSI are synchronized internally. D4 is measured from the  
synchronized DSCLK input relative to the rising edge of CLKOUT.  
Figure 24 shows real-time trace timing for the values in Table 23.  
PSTCLK  
D1  
D2  
PSTDDATA[7:0]  
Figure 24. Real-Time Trace AC Timing  
Figure 25 shows BDM serial port AC timing for the values in Table 23.  
D5  
DSCLK  
D3  
DSI  
Current  
Next  
D4  
DSO  
Past  
Figure 25. BDM Serial Port AC Timing  
Current  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
25  
DSPI Electrical Specifications  
15 DSPI Electrical Specifications  
Table 24 lists DSPI timings.  
Table 24. DSPI Modules AC Timing Specifications  
Name  
DS1  
Characteristic  
Min  
Max  
Unit  
DSPI_CS[3:0] to DSPI_CLK  
1 × tck  
510 × tck  
ns  
ns  
ns  
ns  
ns  
DS2  
DS3  
DS4  
DS5  
DSPI_CLK high to DSPI_DOUT valid.  
DSPI_CLK high to DSPI_DOUT invalid. (Output hold)  
DSPI_DIN to DSPI_CLK (Input setup)  
DSPI_DIN to DSPI_CLK (Input hold)  
12  
2
10  
10  
The values in Table 24 correspond to Figure 26.  
DSPI_CS[3:0]  
DS1  
DSPI_CLK  
DSPI_DOUT  
DSPI_DIN  
DS2  
DS3  
DS4  
DS5  
Figure 26. DSPI Timing  
16 Timer Module AC Timing Specifications  
Table 25 lists timer module AC timings.  
Table 25. Timer Module AC Timing Specifications  
0–66 MHz  
Name  
Characteristic  
Unit  
Min  
Max  
T1  
T2  
TIN0 / TIN1 / TIN2 / TIN3 cycle time  
TIN0 / TIN1 / TIN2 / TIN3 pulse width  
3
1
PSTCLK  
PSTCLK  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
26  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY LEFT BLANK  
MCF548x Integrated Microprocessor Electrical Characteristics, Rev. 2.1  
Freescale Semiconductor  
27  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-0047, Japan  
0120 191014 or +81 3 3440 3569  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property  
of their respective owners.© Freescale Semiconductor, Inc. 2004. All rights  
reserved.  
MCF5485EC  
Rev. 2.1  
12/2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY