MC56F81743VLC [NXP]

DSC based on 32-bit 56800EX core;
MC56F81743VLC
型号: MC56F81743VLC
厂家: NXP    NXP
描述:

DSC based on 32-bit 56800EX core

文件: 总73页 (文件大小:1117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MC56F81XXX  
Rev. 1.1, 12/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
MC56F81XXX  
MC56F81xxx  
Supports MC56F81xxx  
Features  
• One high resolution eFlexPWM module with up to 12  
PWM outputs, including 8 channels with 312ps  
resolution NanoEdge placement  
• This family of digital signal controllers (DSCs) is  
based on the 32-bit 56800EX core. On a single chip,  
each device combines the processing power of a DSP  
and the functionality of an MCU, with a flexible set of  
peripherals to support many target applications:  
– Industrial control  
• Communication interfaces  
– Up to two high-speed queued SCI (QSCI) modules  
with LIN slave functionality  
– One queued SPI (QSPI) modules  
– Motion control  
– Up to two LPI2C modules (Support Full PMBus)  
– Home appliances  
– General-purpose inverters  
• Timers  
– One 16-bit quad timer (1 x 4 16-bit timer)  
– Two 32-bit Periodic Interval Timers (PITs)  
– One Quadrature Decoder (QDC)  
– Smart sensors, fire and security systems  
– Wireless charging  
– Switched-mode power supply and power  
management  
• Security and integrity  
– Uninterruptible power supplies (UPS)  
– Solar inverter  
– Medical monitoring applications  
– Cyclic Redundancy Check (CRC) generator  
– Windowed Computer operating properly (COP)  
watchdog  
– External Watchdog Monitor (EWM)  
• DSC based on 32-bit 56800EX core  
– Up to 100 MIPS at 100 MHz core frequency in fast  
mode  
• Clocks  
– On-chip oscillators: 200 kHz, and 8/2MHz IRC  
– Crystal / resonator oscillator  
– DSP and MCU functionality in a unified, C-efficient  
architecture  
• System  
• On-chip memory  
– 4-channel enhanced DMA controller, supporting up  
to 63 request sources  
– Up to 128 KB flash memory  
– Up to 20 KB data/program RAM  
– Both on-chip flash memory and RAM can be  
mapped into both program and data memory spaces  
– Boot ROM (supports boot from SCI, I2C)  
– Integrated power-on reset (POR) and low-voltage  
interrupt (LVI) and brown-out reset module  
– Inter-Module Crossbar and Event Generator  
– JTAG/enhanced on-chip emulation (EOnCE) for  
unobtrusive, real-time debugging  
• Analog  
– Two high-speed, 12-bit ADCs with dynamic x1, x2,  
and x4 programmable amplifier  
– Two operational amplifiers, programmable gain up  
to x16  
• Operating characteristics  
– Single supply: 2.7 V to 3.6 V  
– Operation ambient temperature (V): -40 to 105°C  
– Operation ambient temperature (M): -40 to 125°C  
– Up to four analog comparators with integrated 8-bit  
DAC references  
– One 12-bit digital-to-analog converters (DAC)  
– On-chip temperature sensors  
• 64-pin LQFP, 48-pin LQFP, 32-pin LQFP and QFN  
packages  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Table of Contents  
1
Overview............................................................................................3  
8.8 Definition: Typical value........................................................ 37  
8.9 Typical value conditions......................................................... 38  
Ratings................................................................................................38  
9.1 Thermal handling ratings........................................................ 38  
9.2 Moisture handling ratings........................................................38  
9.3 ESD handling ratings.............................................................. 38  
9.4 Voltage and current operating ratings..................................... 39  
1.1 Product Family........................................................................ 3  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core...........4  
1.3 Operation Parameters.............................................................. 4  
1.4 Interrupt Controller................................................................. 5  
1.5 Peripheral highlights............................................................... 5  
1.6 System Block Diagram............................................................13  
MC56F81xxx signal and pin descriptions..........................................15  
Signal groups......................................................................................25  
Pinout................................................................................................. 26  
4.1 Signal Multiplexing and Pin Assignments..............................26  
4.2 Pinout diagrams.......................................................................28  
Ordering parts.....................................................................................31  
5.1 Determining valid orderable parts...........................................31  
5.2 Part number list....................................................................... 31  
Part identification...............................................................................32  
6.1 Description.............................................................................. 32  
6.2 Format..................................................................................... 32  
6.3 Fields....................................................................................... 32  
6.4 Example...................................................................................33  
Package marking information............................................................ 33  
Terminology and guidelines...............................................................34  
8.1 Definition: Operating requirement..........................................34  
8.2 Definition: Operating behavior............................................... 34  
8.3 Definition: Attribute................................................................35  
8.4 Definition: Rating....................................................................35  
8.5 Result of exceeding a rating....................................................35  
8.6 Relationship between ratings and operating requirements......36  
8.7 Guidelines for ratings and operating requirements................. 36  
9
2
3
4
10 General............................................................................................... 39  
10.1 General characteristics............................................................ 39  
10.2 AC electrical characteristics....................................................40  
10.3 Nonswitching electrical specifications....................................41  
10.4 Switching specifications..........................................................47  
10.5 Thermal specifications............................................................ 47  
11 Peripheral operating requirements and behaviors..............................49  
11.1 Core modules...........................................................................49  
11.2 System modules.......................................................................50  
11.3 Clock modules.........................................................................50  
11.4 Memories and memory interfaces...........................................53  
11.5 Analog..................................................................................... 55  
11.6 PWMs and timers....................................................................61  
11.7 Communication interfaces.......................................................62  
12 Design Considerations....................................................................... 67  
12.1 Thermal design considerations................................................67  
12.2 Electrical design considerations..............................................69  
12.3 Power-on Reset design considerations....................................70  
13 Obtaining package dimensions.......................................................... 71  
14 Product documentation.......................................................................72  
15 Revision history................................................................................. 72  
5
6
7
8
MC56F81xxx, Rev. 1.1, 12/2020  
2
NXP Semiconductors  
Overview  
1 Overview  
1.1 Product Family  
Table 1. MC56F81xxx Family  
Feature  
MC56F81  
768  
748  
766  
746  
763  
743  
668  
648  
666  
646  
663  
643  
Core frequency (MHz)  
Flash memory (KB)  
RAM (KB)  
100 / 50  
128  
20  
64  
12  
128  
20  
64  
12  
128  
20  
64  
12  
128  
20  
64  
12  
128  
20  
64  
12  
128  
20  
64  
12  
Boot ROM  
Yes (supports SCI, I2C)  
Inter Module Xbar  
Event Generator  
Yes  
4
Windowed Watchdog  
External Watchdog Monitor  
eDMA  
1
1
4CH  
Internal OSC  
8 MHz / 200 KHz  
External Crystal Oscillator  
Comparator + 8bit DAC  
Operational Amplifier  
12-bit Cyclic ADC channels  
NanoEdge PWM: high-resolution  
Standard PWM with Input capture  
QTimers  
Yes (4 MHz ~ 16 MHz)  
4
2
3
1
4
2
3
1
2 x 8-ch  
2 x 5-ch  
2 x 3-ch  
2 x 8-ch  
2 x 5-ch  
2 x 3-ch  
6-ch 1  
8-ch  
4-ch  
6-ch 1  
2-ch  
8-ch + 4-ch 6-ch + 2-ch1  
4 x 16bit  
Quadrature Decoder  
Periodic Interval Timers  
12bit DAC  
1
1
2 x 32bit  
1
LPI2C (supports Full PMBus)  
QSCI  
2
2
1
2
1
1
QSPI  
1
GPIO  
54  
39  
26  
54  
39  
26  
Operating Temperature  
-40to 105(V temperature)  
-40to 125(M temperature)  
-40to 105(V temperature)  
Package  
64 LQFP  
48 LQFP  
32  
LQFP/QFN 2  
64 LQFP  
48 LQFP  
32  
LQFP/QFN 2  
1. Only include the PWM channels with output pins. All internal 8 channels PWM are available through the on-chip inter-  
module crossbar.  
2. The 32 LQFP and 32 QFN packages for this product are not yet available. However, the pin-out and pricing information of  
these packages are readily available. These devices are then committed for sampling and production based on customer  
demand.  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
3
Overview  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core  
• Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual  
Harvard architecture:  
• Three internal address buses  
• Four internal data buses: two 32-bit primary buses, one 16-bit secondary data  
bus, and one 16-bit instruction bus  
• 32-bit data accesses  
• Supports concurrent instruction fetches in the same cycle, and dual data accesses  
in the same cycle  
• 20 addressing modes  
• 162 basic instructions  
• Instruction set supports both fractional arithmetic and integer arithmetic  
• 32-bit internal primary data buses support 8-bit, 16-bit, and 32-bit data movement,  
plus addition, subtraction, and logical operations  
• Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator  
(MAC) with dual parallel moves  
• 32-bit arithmetic and logic multi-bit shifter  
• Four 36-bit accumulators, including extension bits  
• Parallel instruction set with unique DSP addressing modes  
• Hardware DO and REP loops  
• Bit reverse address mode, which effectively supports DSP and Fast Fourier  
Transform algorithms  
• Full shadowing of the register stack for zero-overhead context saves and restores:  
nine shadow registers correspond to nine address registers (R0, R1, R2, R3, R4, R5,  
N, N3, M01)  
• Instruction set supports both DSP and controller functions  
• Controller-style addressing modes and instructions enable compact code  
• Enhanced bit manipulation instruction set  
• Efficient C compiler and local variable support  
• Software subroutine and interrupt stack, with the stack's depth limited only by  
memory  
• Priority level setting for interrupt levels  
• JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, real-time debugging  
that is independent of processor speed  
1.3 Operation Parameters  
• 50 MHz core frequency in normal mode, 100 MHz core frequency in fast mode.  
• Operation ambient temperature:  
MC56F81xxx, Rev. 1.1, 12/2020  
4
NXP Semiconductors  
Peripheral highlights  
V Temperature option:-40 oC to 105oC  
M Temperature option:-40 oC to 125oC  
• Single 3.3 V power supply  
• Supply range: VDD - VSS = 2.7 V to 3.6 V, VDDA - VSSA = 2.7 V to 3.6 V  
1.4 Interrupt Controller  
• Five interrupt priority levels  
• Three user-programmable priority levels for each interrupt source: level 0, level  
1, level 2  
• Unmaskable level 3 interrupts include illegal instruction, hardware stack  
overflow, misaligned data access, SWI3 instruction  
• Interrupt level 3 is highest priority and non-maskable. Its sources include:  
• Illegal instructions  
• Hardware stack overflow  
• SWI instruction  
• EOnce interrupts  
• Misaligned data accesses  
• Lowest-priority software interrupt: level LP  
• Support for nested interrupts, so that a higher priority level interrupt request can  
interrupt lower priority interrupt subroutine  
• Masking of interrupt priority level is managed by the 56800EX core  
• Two programmable fast interrupts that can be assigned to any interrupt source  
• Notification to System Integration Module (SIM) to restart clock when in wait and  
stop states  
• Ability to relocate interrupt vector table  
1.5 Peripheral highlights  
1.5.1 Enhanced Flex Pulse Width Modulator (eFlexPWM)  
• 16 bits of resolution for center, edge-aligned, and asymmetrical PWMs  
• PWMA with NanoEdge high resolution  
• Fractional delay for enhanced resolution of the PWM period and edge placement  
• Arbitrary PWM edge placement  
• 312 ps PWM frequency and duty-cycle resolution when NanoEdge functionality  
is enabled.  
• PWM outputs can be configured as complementary output pairs or independent  
outputs  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
5
Peripheral highlights  
• Dedicated time-base counter with period and frequency control per submodule  
• Independent top and bottom deadtime insertion for each complementary pair  
• Independent control of both edges of each PWM output  
• Enhanced input capture and output compare functionality on each input:  
• Channels not used for PWM generation can be used for buffered output compare  
functions.  
• Channels not used for PWM generation can be used for input capture functions.  
• Enhanced dual edge capture functionality  
• Synchronization of submodule to external hardware (or other PWM) is supported.  
• Double-buffered PWM registers  
• Integral reload rates from 1 to 16  
• Half-cycle reload capability  
• Multiple output trigger events can be generated per PWM cycle via hardware.  
• Support for double-switching PWM outputs  
• Up to eight fault inputs can be assigned to control multiple PWM outputs  
• Programmable filters for fault inputs  
• Independently programmable PWM output polarity  
• Individual software control of each PWM output  
• All outputs can be programmed to change simultaneously via a FORCE_OUT event.  
• PWMX pin can optionally output a third PWM signal from each submodule  
• Option to supply the source for each complementary PWM signal pair from any of  
the following:  
• Crossbar module outputs  
• External ADC input, taking into account values set in ADC high and low limit  
registers  
• 312 ps resolution can be enabled for period, duty and deadtime related registers  
• Direct phase shift controls among each submodule  
• Trigger signal can share the same load frequency as reload signal in each submodule  
1.5.2 12-bit Analog-to-Digital Converter (Cyclic type)  
• Two independent 12-bit analog-to-digital converters (ADCs):  
• 2 x 8-channel external inputs  
• Built-in x1, x2, x4 programmable gain pre-amplifier  
• Maximum ADC clock frequency up to 12.5 MHz, having period as low as 80 ns  
• Single conversion time of 10 ADC clock cycles  
• Additional conversion time of 8 ADC clock cycles  
• Support of analog inputs for single-ended and differential (including unipolar  
differential) conversions  
• Sequential and parallel scan modes. Parallel mode includes simultaneous and  
independent scan modes.  
MC56F81xxx, Rev. 1.1, 12/2020  
6
NXP Semiconductors  
Peripheral highlights  
• Samples of each ADC have offset, limit and zero-crossing calculation supported  
• ADC conversions can be synchronized by any module connected to the internal  
crossbar module, such as PWM, timer, GPIO, and comparator modules.  
• Support for hardware-triggering and software-triggering conversions  
• Support for a multi-triggering mode with a programmable number of conversions on  
each trigger  
• Each ADC has ability to scan and store up to 8 conversion results.  
• Current injection protection  
1.5.3 Operational Amplifier (OPAMP)  
• Up to four sets for rotation configuration  
• Configurable gain through internal channels  
• Obtain gain through external channels  
• Optional clocks for counter  
• Low power technology  
• Optimize transient response  
1.5.4 12-bit Digital-to-Analog Converter  
• 12-bit resolution  
• Powerdown mode  
• Automatic mode allows the DAC to automatically generate pre-programmed output  
waveforms, including square, triangle, and sawtooth waveforms (for applications like  
slope compensation)  
• Programmable period, update rate, and range  
• Output can be routed to an internal comparator, or optionally to an off-chip  
destination  
1.5.5 Comparator  
• Full rail-to-rail comparison range  
• Support for high and low speed modes  
• Selectable input source includes external pins and internal DACs  
• Programmable output polarity  
• 8-bit programmable DAC as a voltage reference per comparator  
• Three programmable hysteresis levels  
• Selectable interrupt on rising-edge, falling-edge, or toggle of a comparator output  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
7
Peripheral highlights  
1.5.6 Periodic Interrupt Timer (PIT) Modules  
• 32-bit counter with programmable count modulo  
• PIT0 is master and PIT1 is slave (if synchronizing both PITs)  
• The output signals of both PIT0 and PIT1 are internally connected to a peripheral  
crossbar module  
• Can run when the CPU is in Wait/Stop modes. Can also wake up the CPU from  
Wait/Stop modes.  
• In addition to its existing bus clock (up to 50 MHz), 3 alternate clock sources for the  
counter clock are available:  
• Crystal oscillator output  
• 8 MHz / 2 MHz internal RC output  
• On-chip low-power 200 kHz oscillator  
1.5.7 Quadrature Decoder (QDC)  
• Includes logic to decode quadrature signals  
• Inputs can be connected to a general purpose timer to make low speed velocity  
measurements  
• Configurable digital filter for inputs  
• Quadrature decoder filter can be bypassed  
• 32-bit position counter capable of modulo counting  
• Position counter can be initialized by software or external events  
• 16-bit position difference register  
• Compare function can indicate when shaft has reached a defined position  
• A watchdog timer can detect a non-rotating shaft condition  
• Preloadable 16-bit revolution counter  
• Maximum count frequency equals the peripheral clock rate  
• Optional interrupt when both PHASEA and PHASEB inputs change in the same  
cycle  
1.5.8 Inter-Module Crossbar and Event Generator (EVTG) logic  
• Provides generalized connections between and among on-chip peripherals: ADCs,  
12-bit DAC, comparators, quad-timers, eFlexPWMs, EWM, quadrature decoder, and  
select I/O pins  
• User-defined input/output pins for all modules connected to the crossbar  
• DMA request and interrupt generation from the crossbar  
MC56F81xxx, Rev. 1.1, 12/2020  
8
NXP Semiconductors  
Peripheral highlights  
• Write-once protection for all registers  
• The EVTG module mainly includes two parts: Two AND/OR/INVERT (known  
simply as the AOI) modules and one configurable Flip-Flop. It supports the  
generation of a configurable number of EVENT signals. The inputs are from crossbar  
(XBAR) outputs, and the outputs feed to XBAR inputs.  
1.5.9 Quad Timer  
• Four 16-bit up/down counters, with a programmable prescaler for each counter  
• Operation modes: edge count, gated count, signed count, capture, compare, PWM,  
signal shot, single pulse, pulse string, cascaded, quadrature decode  
• Programmable input filter  
• Counting start can be synchronized across counters  
1.5.10 Queued Serial Communications Interface (QSCI) modules with  
LIN Slave Functionality  
• Operating clock can be up to two times the CPU operating frequency  
• Four-word-deep FIFOs available on both transmit and receive buffers  
• Standard mark/space non-return-to-zero (NRZ) format  
• 16-bit integer and 3-bit fractional baud rate selection  
• Full-duplex or single-wire operation  
• Programmable 8-bit or 9-bit data format  
• Error detection capability  
• Two receiver wakeup methods:  
• Idle line  
• Address mark  
• 1/16 bit-time noise detection  
• Support for Local Interconnect Network (LIN) slave operation  
1.5.11 Queued Serial Peripheral Interface (QSPI) modules  
• Maximum 25 Mbit/s baud rate  
• Selectable baud rate clock sources for low baud rate communication  
• Baud rate as low as the maximum Baud rate / 4096  
• Full-duplex operation  
• Master and slave modes  
• Double-buffered operation with separate transmit and receive registers  
• Four-word-deep FIFOs available on transmit and receive buffers  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
9
Peripheral highlights  
• Programmable length transmissions (2 bits to 16 bits)  
• Programmable transmit and receive shift order (MSB or LSB as first bit transmitted)  
1.5.12 Low Power Inter-Integrated Circuit (LPI2C)  
The LPI2C supports:  
• Standard, Fast, Fast+ and Ultra Fast modes are supported  
• High speed mode (HS) in slave mode  
• High speed mode (HS) in master mode, if SCL pin implements current source pull-  
up (device-specific)  
• Multi-master support, including synchronization and arbitration. Multi-master means  
any number of master nodes can be present. Additionally, master and slave roles may  
be changed between messages (after a STOP is sent).  
• Clock stretching: Sometimes multiple I2C nodes may be driving the lines at the same  
time. If any I2C node is driving a line low, then that line will be low. I2C nodes that  
are starting to transmit a logical one (by letting the line float high) can detect that the  
line is low, and thereby know that another I2C node is active at the same time.  
• When node detection is used on the SCL line, it is called clock stretching, and  
clock stretching is used as a I2C flow control mechanism for multiple laves.  
• When node detection is used on the SDA line, it is called arbitration, and  
arbitration ensures that there is only one I2C node transmitter at a time.  
• General call, 7-bit and 10-bit addressing  
• Software reset, START byte and Device ID (also require software support)  
The LPI2C master supports:  
• Command/transmit FIFO of 4words.  
• Receive FIFO of 4words.  
• Command FIFO will wait for idle I2C bus before initiating transfer  
• Command FIFO can initiate (repeated) START and STOP conditions and one or  
more master-receiver transfers  
• STOP condition can be generated from command FIFO, or generated automatically  
when the transmit FIFO is empty  
• Host request input to control the start time of an I2C bus transfer  
• Flexible receive data match can generate interrupt on data match and/or discard  
unwanted data  
• Flag and optional interrupt to signal Repeated START condition, STOP condition,  
loss of arbitration, unexpected NACK, and command word errors  
• Supports configurable bus idle timeout and pin-stuck-low timeout  
The LPI2C slave supports:  
MC56F81xxx, Rev. 1.1, 12/2020  
10  
NXP Semiconductors  
Peripheral highlights  
• Separate I2C slave registers to minimize software overhead because of master/slave  
switching  
• Support for 7-bit or 10-bit addressing, address range, SMBus alert and general call  
address  
• Transmit data register that supports interrupt or DMA requests  
• Receive data register that supports interrupt or DMA requests  
• Software-controllable ACK or NACK, with optional clock stretching on ACK/  
NACK bit  
• Configurable clock stretching, to avoid transmit FIFO underrun and receive FIFO  
overrun errors  
• Flag and optional interrupt at end of packet, STOP condition, or bit error detection  
1.5.13 Windowed Computer Operating Properly (COP) watchdog  
• Programmable windowed timeout period  
• Support for operation in all power modes: run mode, wait mode, stop mode  
• Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is  
detected  
• Selectable reference clock source in support of EN60730 and IEC61508  
• Selectable clock sources:  
• External crystal oscillator  
• On-chip low-power 200 kHz oscillator  
• System bus (IPBus up to 50 MHz)  
• 8 MHz / 2 MHz IRC  
• Support for interrupt generation  
1.5.14 External Watchdog Monitor (EWM)  
• Monitors external circuit as well as the software flow  
• Programmable timeout period  
• Interrupt capability prior to timeout  
• Independent output (EWM_OUT_b) that places external circuit (but not CPU and  
peripheral) in a safe mode when EWM timeout occurs  
• Selectable reference clock source in support of EN60730 and IEC61508  
• Wait mode and Stop mode operation is not supported.  
• Selectable clock sources:  
• External crystal oscillator  
• On-chip low-power 200 kHz oscillator  
• System bus (IPBus up to 50 MHz)  
• 8 MHz / 2 MHz IRC  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
11  
Clock sources  
1.5.15 Power supervisor  
• Power-on reset (POR) is released after VDD > 2.7 V during supply is ramped up;  
CPU, peripherals, and JTAG/EOnCE controllers exit RESET state  
• Brownout reset (VDD < 2.0 V)  
• Critical warn low-voltage interrupt (LVI 2.2 V)  
• Peripheral low-voltage warning interrupt (LVI 2.7 V)  
1.5.16 Phase-locked loop  
• Output frequency range is optimized from 200 MHz to 550 MHz  
• Input reference clock frequency: 8 MHz to 16 MHz  
• Detection of loss of lock and loss of reference clock  
• Ability to power down  
1.5.17 Clock sources  
1.5.17.1 On-chip oscillators  
• Tunable 8 MHz RC oscillator with 2 MHz at standby mode  
• 200 kHz low frequency clock as secondary clock source for COP, EWM, PIT  
1.5.17.2 Crystal oscillator  
• Support for both high ESR crystal oscillator (ESR greater than 100 Ω) and ceramic  
resonator  
• Operating frequency: 4–16 MHz  
1.5.18 Cyclic Redundancy Check (CRC) generator  
• Hardware 16/32-bit CRC generator  
• High-speed hardware CRC calculation  
• Programmable initial seed value  
• Programmable 16/32-bit polynomial  
• Error detection for all single, double, odd, and most multi-bit errors  
• Option to transpose input data or output data (CRC result) bitwise or bytewise,1  
which is required for certain CRC standards  
• Option for inversion of final CRC result  
1. A bytewise transposition is not possible when accessing the CRC data register via 8-bit accesses. In this case, user  
software must perform the bytewise transposition.  
MC56F81xxx, Rev. 1.1, 12/2020  
12  
NXP Semiconductors  
Clock sources  
1.5.19 General Purpose I/O (GPIO)  
• Individual control of peripheral mode or GPIO mode for each pin  
• Programmable push-pull or open drain output  
• Configurable pullup or pulldown on all input pins  
• All pins (except JTAG, RESET_B ) default to be GPIO inputs  
• Controllable output slew rate  
1.6 System Block Diagram  
NOTE  
The following figure shows the maximum memory  
configurations supported.  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
13  
Clock sources  
ROM Patch  
Controller  
Boot ROM  
32 KB  
JTAG  
Program Bus  
Core Data Bus  
EOnCE  
56800EX CPU  
M0  
M1  
Program  
Controller  
(PC)  
Address  
Generation  
Unit (AGU)  
Program/Data Flash  
Up to 128 KB  
S0  
Secondary Data Bus  
4
M2  
M3  
Arithmetic  
Logic Unit  
(ALU)  
Bit  
Manipulation  
Unit  
Data/Program RAM  
Up to 20 KB  
S1  
S3 S2  
eDMA Controller  
Watchdog (COP)  
Interrupt Controller  
Crystal OSC  
Internal IRC  
2 MHz/ 8 MHz  
Power Management  
Controller (PMC)  
Internal IRC  
200 kHz  
System Integration  
Module (SIM)  
Periodic Interrupt  
Timer (PIT32) 0,1  
PLL  
CRC  
Peripheral Bus  
QSCI  
0,1  
eFlexPWM  
NanoEdge  
LPI2C  
0,1  
Quad Timer  
4ch  
Quadrature  
Decoder  
QSPI  
Inter Module Crossbar Inputs Inter Module connction  
Inter Module Crossbar Outputs  
Event  
Generator  
GPIO & Peripheral MUX  
Inter-Module  
Crossbar  
Inter Module Crossbar Outputs  
Inter Module Crossbar Inputs  
Package  
Pins  
Compartors With  
8bit DAC A,B,C,D  
ADCB  
12Bit  
DAC  
12Bit  
ADCA  
12Bit  
Op-Amp  
0.1  
EWM  
Peripheral Bus  
Figure 1. System block diagram  
MC56F81xxx, Rev. 1.1, 12/2020  
14  
NXP Semiconductors  
MC56F81xxx signal and pin descriptions  
2 MC56F81xxx signal and pin descriptions  
After reset, each pin is configured for its primary function (listed first). Any alternative  
functionality, shown in parentheses, must be programmed through the GPIO module  
peripheral enable registers (GPIOx_PER) and the SIM module GPIO peripheral select  
(GPSx) registers. All GPIO ports can be individually programmed as an input or output  
(using bit manipulation).  
For the MC56F81xxx products, which use 64-pin LQFP, 48-pin LQFP and 32-pin LQFP  
packages:  
Table 2. Signal descriptions  
Signal Name  
64  
48  
32  
State  
Type  
Signal Description  
LQFP LQFP LQFP/ During  
QFN  
Reset  
VDD  
29  
44  
60  
30  
43  
61  
22  
32  
44  
22  
31  
45  
15  
Supply  
Supply  
I/O Power — Supplies 3.3 V power to the chip I/O  
interface.  
28  
14  
29  
9
VSS  
Supply  
Supply  
I/O Ground — Provide ground for the device I/O  
interface.  
VDDA  
VSSA  
VCAP  
Supply  
Supply  
Supply  
Supply  
Analog Power — Supplies 3.3 V power to the analog  
modules. It must be connected to a clean analog power  
supply.  
23  
16  
10  
Analog Ground — Supplies an analog ground to the  
analog modules. It must be connected to a clean power  
supply.  
26  
57  
19  
43  
On-chip On-chip Connect a 2.2 µF or greater bypass capacitor between  
regulator regulator this pin and VSS to stabilize the core voltage regulator  
output  
27  
output  
output required for proper device operation.  
NOTE: The total bypass capacitor value between all  
VCAP pins and VSS recommends between  
4.0uF ~ 5.0uF.  
TDI  
64  
62  
48  
46  
32  
30  
Input,  
internal  
pullup  
Input  
Test Data Input — Provides a serial input data stream  
to the JTAG/EOnCE port. It is sampled on the rising  
edge of TCK and has an internal pullup resistor. After  
reset, the default state is TDI.  
enabled  
(GPIOD0)  
Input/  
Output  
GPIO Port D0.  
TDO  
Output  
Output  
Test Data Output — This tri-state-able pin provides a  
serial output data stream from the JTAG/EOnCE port. It  
is driven in the shift-IR and shift-DR controller states,  
and it changes on the falling edge of TCK. After reset,  
the default state is TDO.  
(GPIOD1)  
Input/  
GPIO Port D1.  
Output  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
15  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
TCK  
1
1
1
Input,  
Input  
Test Clock Input — This input pin provides a gated  
clock to synchronize the test logic and shift serial data  
to the JTAG/EOnCE port.The pin is connected  
internally to a pulldown resistor. A Schmitt-trigger input  
is used for noise immunity. After reset, the default state  
is TCK.  
internal  
pulldown  
enabled  
(GPIOD2)  
Input/  
GPIO Port D2.  
Output  
TMS  
63  
47  
31  
Input,  
internal  
pullup  
Input  
Test Mode Select Input — Used to sequence the JTAG  
TAP controller state machine. It is sampled on the  
rising edge of TCK and has an internal pullup resistor.  
After reset, the default state is TMS.  
enabled  
NOTE: Always tie the TMS pin to VDD through a 2.2  
kΩ resistor if need to keep on-board debug  
capability. Otherwise, directly tie to VDD  
Except being configured as GPIO.  
.
(GPIOD3)  
Input/  
GPIO Port D3.  
Output  
RESET  
2
2
2
Input,  
internal  
pullup  
Input  
Reset — A direct hardware reset on the processor.  
When RESET is asserted low, the device is initialized  
and placed in the reset state. A Schmitt-trigger input is  
used for noise immunity. The internal reset signal is  
deasserted synchronously with the internal clocks after  
a fixed number of internal clocks. After reset, the  
default state is RESET. Recommended a capacitor of  
0.1 µF for filtering noise and up to 22 µF for time delay  
if required.  
enabled  
(GPIOD4)  
Input/  
Open-  
drain  
GPIO Port D4 — Can be individually programmed as  
an input or open-drain output pin. RESET functionality  
is disabled in this mode and the device can be reset  
only through Power-On Reset (POR), COP reset, or  
software reset.  
Output  
GPIOA0  
13  
9
6
Input  
Input/  
Output  
GPIO Port A0 — After reset, the default state is  
GPIOA0.  
(ANA0  
Input  
ANA0 — ADCA input channel 0.  
&
CMPA_IN3 — Analog comparator A input 3  
OPAMPA_IN3 — Operational amplifier A input 3  
CMPA_IN3  
&
When used as an analog input, the signal goes to  
ANA0 and CMPA_IN3 and OPAMPA_IN3. 1  
OPAMPA_IN3)  
(CMPC_O)  
GPIOA1  
Output  
Analog comparator C output.  
14  
10  
7
Input  
Input/  
Output  
GPIO Port A1 — After reset, the default state is  
GPIOA1.  
(ANA1  
&
Input  
ANA1 — ADCA input channel 1.  
CMPA_IN0 — Analog comparator A input 0.  
OPAMPA_IN0 — Operational amplifier A input 0.  
CMPA_IN0  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
16  
NXP Semiconductors  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
&
When used as an analog input, the signal goes to  
ANA1 and CMPA_IN0 and OPAMPA_IN0.1  
OPAMPA_IN0)  
GPIOA2  
15  
11  
8
Input  
Input/  
Output  
GPIO Port A2 — After reset, the default state is  
GPIOA2.  
(ANA2  
Input  
ANA2 — ADCA input channel 2.  
&
VREFHA — ADCA analog reference high.  
CMPA_IN1 — Analog comparator A input 1.  
OPAMPA_IN1 — Operational amplifier A input 1.  
VREFHA  
&
CMPA_IN1  
&
When used as an analog input, the signal goes to  
ANA2 (or VREFHA) and CMPA_IN1 and  
OPAMPA_IN1. 1  
OPAMPA_IN1)  
NOTE: ADC input can be configured as either ANA2  
or VREFHA in the ADC Calibration Register.  
GPIOA3  
16  
12  
Input  
Input/  
Output  
GPIO Port A3 — After reset, the default state is  
GPIOA3.  
(ANA3  
Input  
ANA3 — ADCA input channel 3.  
&
VREFLA — ADCA analog reference low.  
CMPA_IN2 — Analog comparator A input 2.  
OPAMPA_IN2 — Operational amplifier A input 2.  
VREFLA  
&
CMPA_IN2  
&
When used as an analog input, the signal goes to  
ANA3 (or VREFLA) and CMPA_IN2 and  
OPAMPA_IN2.1  
OPAMPA_IN2)  
NOTE: ADC input can be configured as either ANA3  
or VREFLA in the ADC Calibration Register.  
GPIOA4  
12  
11  
10  
8
Input  
Input  
Input  
Input/  
Output  
GPIO Port A4 — After reset, the default state is  
GPIOA4.  
(ANA4  
&
Input  
ANA4 — ADCA input channel 4.  
CMPD_IN0 — Analog comparator D input 0.  
CMPD_IN0)  
When used as an analog input, the signal goes to  
ANA4 and CMPD_IN0.1  
GPIOA5  
Input/  
Output  
GPIO Port A5 — After reset, the default state is  
GPIOA5.  
(ANA5  
&
Input  
ANA5 — ADCA input channel 5.  
CMPD_IN1 — Analog comparator D input 1.  
CMPD_IN1)  
When used as an analog input, the signal goes to  
ANA5 and CMPD_IN1.1  
GPIOA6  
Input/  
Output  
GPIO Port A6 — After reset, the default state is  
GPIOA6.  
(ANA6  
&
Input  
ANA6 — ADCA input channel 6.  
CMPD_IN2 — Analog comparator D input 2.  
CMPD_IN2)  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
17  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
When used as an analog input, the signal goes to  
ANA6 and CMPD_IN2.1  
GPIOA7  
9
Input  
Input/  
Output  
GPIO Port A7 — After reset, the default state is  
GPIOA7.  
(ANA7  
&
Input  
ANA7 — ADCA input channel 7.  
CMPD_IN3 — Analog comparator D input 3.  
CMPD_IN3)  
When used as an analog input, the signal goes to  
ANA7 and CMPD_IN3.1  
GPIOB0  
24  
17  
11  
12  
13  
Input  
Input  
Input  
Input/  
Output  
GPIO Port B0 — After reset, the default state is  
GPIOB0.  
(ANB0  
Input  
ANB0 — ADCB input channel 0.  
&
CMPB_IN3 — Analog comparator B input 3.  
OPAMPB_IN3 — Operational amplifier B input 3.  
CMPB_IN3  
&
When used as an analog input, the signal goes to  
ANB0 and CMPB_IN3 and OPAMPB_IN3.1  
OPAMPB_IN3)  
GPIOB1  
25  
18  
Input/  
Output  
GPIO Port B1 — After reset, the default state is  
GPIOB1.  
(ANB1  
Input  
ANB1 — ADCB input channel 1.  
&
CMPB_IN0 —Analog comparator B input 0.  
OPAMPB_IN0 — Operational amplifier B input 0.  
CMPB_IN0  
&
When used as an analog input, the signal goes to  
ANB1 and CMPB_IN0 and OPAMPB_IN0.1  
OPAMPB_IN0)  
GPIOB2  
27  
20  
Input/  
Output  
GPIO Port B2 — After reset, the default state is  
GPIOB2.  
(ANB2  
Input  
ANB2 — ADCB input channel 2.  
&
VREFHB — ADCB analog reference high.  
CMPC_IN3 — Analog comparator C input 3.  
VREFHB  
&
When used as an analog input, the signal goes to  
ANB2 (or VREFHB) and CMPC_IN3.1  
CMPC_IN3)  
NOTE: ADC input can be configured as either ANB2  
or VREFHB in the ADC Calibration Register.  
GPIOB3  
28  
21  
Input  
Input/  
Output  
GPIO Port B3 — After reset, the default state is  
GPIOB3.  
(ANB3  
Input  
ANB3 — ADCB input channel 3.  
&
VREFLB — ADCB analog reference low.  
CMPC_IN0 _ Analog comparator C input 0.  
VREFLB  
&
When used as an analog input, the signal goes to  
ANB3 (or VREFHB) and CMPC_IN0.1  
CMPC_IN0)  
NOTE: ADC input can be configured as either ANB3  
or VREFLB in the ADC Calibration Register.  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
18  
NXP Semiconductors  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
GPIOB4  
21  
20  
19  
14  
Input  
Input/  
Output  
GPIO Port B4 — After reset, the default state is  
GPIOB4.  
(ANB4  
&
Input  
ANB4 — ADCB input channel 4.  
CMPC_IN1 — Analog comparator C input 1.  
CMPC_IN1)  
When used as an analog input, the signal goes to  
ANB4 and CMPC_IN1.1  
GPIOB5  
Input  
Input  
Input/  
Output  
GPIO Port B5 — After reset, the default state is  
GPIOB5.  
(ANB5  
&
Input  
ANB5 — ADCB input channel 5.  
CMPC_IN2 — Analog comparator C input 2.  
CMPC_IN2)  
When used as an analog input, the signal goes to  
ANB5 and CMPC_IN2.1  
GPIOB6  
Input/  
Output  
GPIO Port B6 — After reset, the default state is  
GPIOB6.  
(ANB6  
Input  
ANB6 — ADCB input channel 6.  
&
CMPB_IN1 — Analog comparator B input 1.  
OPAMPB_IN1 — Operational amplifier B input 1.  
CMPB_IN1  
&
When used as an analog input, the signal goes to  
ANB6 and CMPB_IN1 and OPAMPB_IN1. 1  
OPAMPB_IN1)  
GPIOB7  
17  
Input  
Input/  
Output  
GPIO Port B7 — After reset, the default state is  
GPIOB7.  
(ANB7  
Input  
ANB7 — ADCB input channel 7.  
&
CMPB_IN2 — Analog comparator B input 2.  
OPAMPB_IN2 — Operational amplifier B input 2.  
CMPB_IN2  
&
When used as an analog input, the signal goes to  
ANB7 and CMPB_IN2 and OPAMPB_IN2.1  
OPAMPB_IN2)  
GPIOC0  
3
3
Input  
Input/  
Output  
GPIO Port C0 — After reset, the default state is  
GPIOC0.  
(EXTAL)  
(CLKIN0)  
Input  
External crystal oscillator input (EXTAL) connects the  
internal crystal oscillator input to an external crystal or  
ceramic resonator.  
Input  
External clock input 0 to OCCS.  
NOTE: If this pin is selected as the device’s external  
clock input, then both SIM_GPSCL[C0] bit in  
SIM and OSCTL1[EXT_SEL] bit in OCCS  
must be set. The crystal oscillator should be  
powered down.  
GPIOC1  
4
4
Input  
Input/  
Output  
GPIO Port C1 — After reset, the default state is  
GPIOC1.  
(XTAL)  
Output  
External crystal oscillator output (XTAL) connects the  
internal crystal oscillator output to an external crystal or  
ceramic resonator.  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
19  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
GPIOC2  
5
5
3
Input  
Input/  
Output  
GPIO Port C2 — After reset, the default state is  
GPIOC2.  
(TXD0)  
Output  
SCI0 transmit data output or transmit/receive in single  
wire operation.  
(XB_OUT11)  
(XB_IN2)  
Output  
Input  
Crossbar module output 11.  
Crossbar module input 2.  
Buffered clock output 0.  
(CLKO0)  
Output  
NOTE: The clock source is selected by  
SIM_CLKOUT[CLKOSEL0] bits in SIM.  
GPIOC3  
7
6
4
Input  
Input/  
Output  
GPIO Port C3 — After reset, the default state is  
GPIOC3.  
(TA0)  
Input/  
Quad timer channel 0 input/output.  
Output  
(CMPA_O)  
(RXD0)  
Output  
Input  
Analog comparator A output.  
SCI0 receive data input.  
(CLKIN1)  
Input  
External clock input 1 to OCCS.  
NOTE: If this pin is selected as device's external clock  
input, then both SIM_GPSCL[C3] bits in SIM  
and OSCTL1[EXT_SEL] bit in OCCS must be  
set.  
GPIOC4  
8
7
5
Input  
Input/  
Output  
GPIO Port C4 — After reset, the default state is  
GPIOC4.  
(TA1)  
Input/  
Quad timer channel 1 input/output.  
Output  
(CMPB_O)  
(XB_IN8)  
Output  
Input  
Analog comparator B output.  
Crossbar module input 8.  
(OPAMPA_OUT)  
GPIOC5  
Output  
Operational amplifier A output.  
18  
31  
13  
23  
Input  
Input  
Input/  
Output  
GPIO Port C5 — After reset, the default state is  
GPIOC5.  
(DACA_O)  
(XB_IN7)  
GPIOC6  
Output  
Input  
12-bit digital-to-analog output.  
Crossbar module input 7.  
15  
Input/  
Output  
GPIO Port C6 — After reset, the default state is  
GPIOC6.  
(TA2)  
Input/  
Quad timer channel 2 input/output.  
Output  
(XB_IN3)  
(CMP_REF)  
(SS0_B)  
Input  
Input  
Crossbar module input 3.  
Input 5 of analog comparator A and B and C and D.  
SPI0 slave select.  
Input/  
Output  
GPIOC7  
32  
24  
Input  
Input/  
Output  
GPIO Port C7 — After reset, the default state is  
GPIOC7.  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
20  
NXP Semiconductors  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
(SS0_B)  
Input/  
SPI0 slave select.  
Output  
(TXD0)  
Output  
SCI0 transmit data output or transmit/receive in single  
wire operation.  
(XB_IN8)  
(XB_OUT6)  
GPIOC8  
Input  
Crossbar module input 8.  
Crossbar module output 6.  
Output  
33  
34  
25  
26  
16  
Input  
Input/  
Output  
GPIO Port C8 — After reset, the default state is  
GPIOC8.  
(MISO0)  
Input/  
Output  
SPI0 master in/slave out.  
(RXD0)  
Input  
Input  
SCI0 receive data input.  
Crossbar module input 9.  
(XB_IN9)  
GPIOC9  
17  
18  
Input  
Input  
Input  
Input/  
Output  
GPIO Port C9 — After reset, the default state is  
GPIOC9.  
(SCLK0)  
Input/  
Output  
SPI0 serial clock.  
(XB_IN4)  
(TXD0)  
Input  
Crossbar module input 4.  
Output  
SCI0 transmit data output or transmit/receive in single  
wire operation.  
(XB_OUT8)  
Output  
Crossbar module output 8.  
GPIOC10  
35  
27  
Input/  
Output  
GPIO Port C10 — After reset, the default state is  
GPIOC10.  
(MOSI0)  
Input/  
Output  
SPI0 master out/slave.  
(XB_IN5)  
(MISO0)  
Input  
Crossbar module input 5.  
SPI0 master in/slave out.  
Input/  
Output  
(XB_OUT9)  
Output  
Crossbar module output 9.  
GPIOC11  
37  
29  
Input/  
Output  
GPIO Port C11 — After reset, the default state is  
GPIOC11.  
(LP_SCLS0)  
(LP_SCL1)  
Output  
I2C0 secondary serial clock line.  
NOTE: In 4-wire mode, this is the I2C slave SCL  
output for voltage level shift.  
I2C1 serial clock line.  
Input/  
Open-  
drain  
NOTE: In 4-wire mode, this is the I2C slave SCL input.  
Output  
(TXD1)  
Output  
SCI1 transmit data output or transmit/receive in single  
wire operation.  
(PWMA_0X)  
Output  
PWM submodule 0, output X or input capture X.  
GPIOC12  
38  
30  
Input  
Input/  
Output  
GPIO Port C12 — After reset, the default state is  
GPIOC12.  
(LP_SDAS0)  
Output  
I2C0 secondary serial data line.  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
21  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
NOTE: In 4-wire mode, this is the I2C slave SDA  
output for voltage level shift.  
(LP_SDA1)  
Input/  
I2C1 serial data line  
Open-  
drain  
Output  
NOTE: In 4-wire mode, this is the I2C slave SDA  
input.  
(RXD1)  
Input  
SCI1 receive data input  
(PWMA_1X)  
GPIOC13  
Output  
PWM submodule 1, output X or input capture X.  
49  
55  
37  
41  
Input  
Input/  
Output  
GPIO Port C13 — After reset, the default state is  
GPIOC13.  
(TA3)  
Input/  
Output  
Quad timer channel 3 input/output.  
(XB_IN6)  
Input  
Crossbar module input 6.  
(EWM_OUT_B)  
GPIOC14  
Output  
External Watchdog Module output.  
Input  
Input/  
Output  
GPIO Port C14 — After reset, the default state is  
GPIOC14.  
(LP_SDA0)  
Input/  
Open-  
drain  
I2C0 serial data line  
NOTE: In 4-wire mode, this is the I2C slave SDA  
input.  
Output  
(XB_OUT4)  
Output  
Input  
Crossbar module output 4.  
(PWMA_FAULT4)  
GPIOC15  
PWM Fault input 4 for disabling selected PWM outputs.  
56  
42  
Input  
Input/  
Output  
GPIO Port C15: After reset, the default state is  
GPIOC15.  
(LP_SCL0)  
Input/  
Open-  
drain  
I2C0 serial clock line  
NOTE: In 4-wire mode, this is the I2C slave SCL input.  
Output  
(XB_OUT5)  
(PWMA_FAULT5)  
GPIOE0  
Output  
Input  
Crossbar module output 5.  
PWM Fault input 5 for disabling selected PWM outputs.  
45  
46  
47  
33  
34  
35  
21  
22  
23  
Input  
Input  
Input  
Input/  
Output  
GPIO Port E0 — After reset, the default state is  
GPIOE0.  
(PWMA_0B)  
Input/  
Output  
PWM submodule 0, high resolution output B or input  
capture B.  
XB_OUT4  
Output  
Crossbar module output 4.  
GPIOE1  
Input/  
Output  
GPIO Port E1 — After reset, the default state is  
GPIOE1.  
(PWMA_0A)  
Input/  
Output  
PWM submodule 0, high resolution output A or input  
capture A.  
(XB_OUT5)  
Output  
Crossbar module output 5.  
GPIOE2  
Input/  
Output  
GPIO Port E2 — After reset, the default state is  
GPIOE2.  
(PWMA_1B)  
Input/  
Output  
PWM submodule 1, high resolution output B or input  
capture B.  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
22  
NXP Semiconductors  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
XB_OUT6  
Output  
Crossbar module output 6.  
GPIOE3  
48  
36  
24  
Input  
Input/  
Output  
GPIO Port E3 — After reset, the default state is  
GPIOE3.  
(PWMA_1A)  
Input/  
Output  
PWM submodule 1, high resolution output A or input  
capture A.  
(XB_OUT7)  
Output  
Crossbar module output 7.  
GPIOE4  
51  
39  
25  
Input  
Input/  
Output  
GPIO Port E4 — After reset, the default state is  
GPIOE4.  
(PWMA_2B)  
Input/  
Output  
PWM submodule 2, high resolution output B or input  
capture B.  
(XB_IN2)  
Input  
Crossbar module input 2  
(LP_SCL1)  
Input/  
Open-  
drain  
I2C1 serial clock line  
NOTE: In 4-wire mode, this is the I2C slave SCL input.  
Output  
(XB_OUT8)  
Output  
Crossbar module output 8.  
GPIOE5  
52  
40  
26  
Input  
Input/  
Output  
GPIO Port E5 — After reset, the default state is  
GPIOE5.  
(PWMA_2A)  
Input/  
Output  
PWM submodule 2, high resolution output A or input  
capture A  
(XB_IN3)  
Input  
Crossbar module input 3.  
I2C1 serial data line  
(LP_SDA1)  
Input/  
Open-  
drain  
NOTE: In 4-wire mode, this is the I2C slave SDA  
input.  
Output  
(XB_OUT9)  
Output  
Crossbar module output 9.  
GPIOE6  
53  
54  
36  
28  
Input  
Input  
Input  
Input/  
Output  
GPIO Port E6 — After reset, the default state is  
GPIOE6.  
(PWMA_3B)  
Input/  
Output  
PWM submodule 3, high resolution output B or input  
capture B.  
(XB_IN4)  
Input  
Crossbar module input 4  
(XB_OUT10)  
GPIOE7  
Output  
Crossbar module output 10.  
Input/  
Output  
GPIO Port E7 — After reset, the default state is  
GPIOE7.  
(PWMA_3A)  
Input/  
Output  
PWM ,submodule 3, high resolution output A or input  
capture A.  
(XB_IN5)  
(XB_OUT11)  
GPIOF0  
Input  
Crossbar module input 5.  
Output  
Crossbar module output 11.  
Input/  
Output  
GPIO Port F0 — After reset, the default state is  
GPIOF0.  
(XB_IN6)  
Input  
Crossbar module input 6  
(OPAMPB_OUT)  
Output  
Operational amplifier B output.  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
23  
MC56F81xxx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
GPIOF1  
50  
38  
Input  
Input/  
Output  
GPIO Port F1 — After reset, the default state is  
GPIOF1.  
(CLKO1)  
Output  
Buffered clock output 1.  
NOTE: The clock source is selected by  
SIM_CLKOUT[CLKOSEL1] bits in SIM.  
(XB_IN7)  
(CMPD_O)  
GPIOF2  
Input  
Crossbar module input 7.  
Output  
Analog comparator D output.  
39  
19  
Input  
Input/  
Output  
GPIO Port F2 — After reset, the default state is  
GPIOF2.  
(LP_SCL1)  
Input/  
Open-  
drain  
I2C1 serial clock line  
NOTE: In 4-wire mode, this is the I2C slave SCL input.  
Output  
(XB_OUT6)  
(LP_SDA0)  
Output  
Crossbar module output 6  
I2C0 serial data line.  
Input/  
Open-  
drain  
NOTE: In 4-wire mode, this is the I2C slave SDA  
input.  
Output  
GPIOF3  
40  
20  
Input  
Input/  
Output  
GPIO Port F3 — After reset, the default state is  
GPIOF3.  
(LP_SDA1)  
Input/  
Open-  
drain  
I2C1 serial data line.  
NOTE: In 4-wire mode, this is the I2C slave SDA  
input.  
Output  
(XB_OUT7)  
(LP_SCL0)  
Output  
Crossbar module output 7  
I2C0 serial clock line  
Input/  
Output  
NOTE: In 4-wire mode, this is the I2C slave SCL input.  
GPIOF4  
41  
Input  
Input/  
Output  
GPIO Port F4 — After reset, the default state is  
GPIOF4.  
(TXD1)  
Output  
SCI1 transmit data output or transmit/receive in single  
wire operation  
(XB_OUT8)  
(PWMA_0X)  
Output  
Crossbar module output 8  
Input/  
PWM submodule 0, output X or input capture X.  
Output  
(PWMA_FAULT6)  
Input  
PWM Fault input 6 for disabling selected PWM outputs.  
GPIOF5  
42  
Input  
Input/  
Output  
GPIO Port F5 — After reset, the default state is  
GPIOF5.  
(RXD1)  
Input  
SCI1 receive data input.  
(XB_OUT9)  
(PWMA_1X)  
Output  
Crossbar module output 9.  
Input/  
PWM submodule 1, output X or input capture X.  
Output  
(PWMA_FAULT7)  
Input  
PWM Fault input 7 for disabling selected PWM outputs.  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
24  
NXP Semiconductors  
Signal groups  
Table 2. Signal descriptions (continued)  
Signal Name  
64  
LQFP LQFP LQFP/ During  
QFN Reset  
48  
32  
State  
Type  
Signal Description  
GPIOF6  
58  
Input  
Input/  
Output  
GPIO Port F6 — After reset, the default state is  
GPIOF6.  
(PWMA_3X)  
LP_SCLS1  
Input/  
Output  
PWM submodule 3, output X or input capture X.  
Output  
Input  
I2C1 secondary serial clock line.  
NOTE: In 4-wire mode, this is the I2C slave SCL  
output for voltage level shift.  
(XB_IN2)  
Crossbar module input 2.  
GPIOF7  
59  
Input  
Input/  
Output  
GPIO Port F7 — After reset, the default state is  
GPIOF7.  
(CMPC_O)  
LP_SDAS1  
Output  
Output  
Analog comparator C output.  
I2C1 secondary serial data line.  
NOTE: In 4-wire mode, this is the I2C slave SDA  
output for voltage level shift.  
(XB_IN3)  
Input  
Crossbar module input 3.  
GPIOF8  
6
Input  
Input/  
Output  
GPIO Port F8 — After reset, the default state is  
GPIOF8.  
(RXD0)  
Input  
SCI0 receive data input.  
(XB_OUT10)  
(CMPD_O)  
(PWMA_2X)  
Output  
Output  
Output  
Crossbar module output 10.  
Analog comparator D output.  
PWM submodule 2, output X or input capture X.  
1. The glitch on this pin during ADC sampling may interfere with other analog inputs shared on this pin.  
3 Signal groups  
The input and output signals of the MC56F81xxx are organized into functional groups, as  
detailed in the following table.  
Table 3. Functional Group Pin Allocations  
Functional Group  
Number of Pins  
32LQFP  
48LQFP  
64LQFP  
Power Inputs (VDD, VDDA), Power output( VCAP  
)
3
3
1
6
0
4
4
5
4
1
6
2
5
7
6
4
Ground (VSS, VSSA  
Reset  
)
1
eFlexPWM outputs high resolution PWM  
8
eFlexPWM outputs without high resolution PWM  
Queued Serial Peripheral Interface (QSPI0) ports  
Queued Serial Communications Interface (QSCI0 and QSCI11) ports  
6
5
10  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
25  
Pinout  
Table 3. Functional Group Pin Allocations  
(continued)  
Functional Group  
Number of Pins  
32LQFP  
48LQFP  
64LQFP  
Inter-Integrated Circuit Interface (LPI2C0 and LPI2C1 ) ports  
12-bit Analog-to-Digital Converter (ADC) inputs  
Analog Comparator inputs/outputs  
42  
63  
10  
16  
6
10  
7/3  
5/1  
0
11/4  
6/2  
1
17/6  
8/2  
1
Analog Operational Amplifier inputs/outputs  
12-bit Digital-to-Analog output  
Quad Timer Module (TMR) ports  
3
4
4
Inter-Module Crossbar inputs/outputs  
Clock inputs/outputs  
8/11  
1/1  
4
13/12  
2/2  
4
17/19  
2/2  
4
JTAG / Enhanced On-Chip Emulation (EOnCE)  
1. Not available in 32-pin package.  
2. 4-wire mode does not support.  
3. Only LPI2C0 supports 4-wire mode.  
4 Pinout  
4.1 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
64  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
1
2
1
2
1
2
TCK  
TCK  
GPIOD2  
GPIOD4  
EXTAL  
XTAL  
RESET_B  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
GPIOC3  
GPIOC4  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
RESET_B  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
GPIOC3  
GPIOC4  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
3
3
3
CLKIN0  
4
4
5
5
TXD0  
RXD0  
TA0  
XB_OUT11  
XB_OUT10  
CMPA_O  
XB_IN2  
CMPD_O  
RXD0  
CLKO0  
6
6
4
PWMA_2X  
CLKIN1  
7
8
7
5
TA1  
CMPB_O  
XB_IN8  
OPAMPA_OUT  
9
8
6
ANA7+CMPD_IN3  
ANA6+CMPD_IN2  
ANA5+CMPD_IN1  
ANA4+CMPD_IN0  
10  
11  
12  
13  
9
ANA0+CMPA_  
CMPC_O  
IN3+OPAMPA_IN3  
MC56F81xxx, Rev. 1.1, 12/2020  
26  
NXP Semiconductors  
Pinout  
64  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
14  
15  
16  
17  
10  
11  
12  
7
8
GPIOA1  
GPIOA2  
GPIOA3  
GPIOB7  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOB7  
ANA1+CMPA_  
IN0+OPAMPA_IN0  
ANA2+VREFHA+CMPA_  
IN1+OPAMPA_IN1  
ANA3+VREFLA+CMPA_  
IN2+OPAMPA_IN2  
ANB7+CMPB_  
IN2+OPAMPB_IN2  
18  
19  
13  
GPIOC5  
GPIOB6  
GPIOC5  
GPIOB6  
DACA_O  
XB_IN7  
ANB6+CMPB_  
IN1+OPAMPB_IN1  
20  
21  
22  
23  
24  
14  
15  
16  
17  
9
GPIOB5  
GPIOB4  
VDDA  
GPIOB5  
GPIOB4  
VDDA  
ANB5+CMPC_IN2  
ANB4+CMPC_IN1  
10  
11  
VSSA  
VSSA  
GPIOB0  
GPIOB0  
ANB0+CMPB_  
IN3+OPAMPB_IN3  
25  
18  
12  
GPIOB1  
GPIOB1  
ANB1+CMPB_  
IN0+OPAMPB_IN0  
26  
27  
19  
20  
VCAP  
VCAP  
13  
GPIOB2  
GPIOB2  
ANB2+VREFHB+CMPC_  
IN3  
28  
21  
GPIOB3  
GPIOB3  
ANB3+VREFLB+CMPC_  
IN0  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VDD  
VDD  
VSS  
VSS  
GPIOC6  
GPIOC7  
GPIOC8  
GPIOC9  
GPIOC6  
GPIOC7  
GPIOC8  
GPIOC9  
GPIOC10  
GPIOF0  
GPIOC11  
GPIOC12  
GPIOF2  
GPIOF3  
GPIOF4  
GPIOF5  
VSS  
TA2  
XB_IN3  
TXD0  
CMP_REF  
XB_IN8  
XB_IN9  
TXD0  
SS0_B  
SS0_B  
XB_OUT6  
MISO0  
RXD0  
SCLK0  
MOSI0  
XB_IN4  
XB_IN5  
XB_OUT8  
XB_OUT9  
GPIOC10  
GPIOF0  
GPIOC11  
GPIOC12  
GPIOF2  
GPIOF3  
GPIOF4  
GPIOF5  
VSS  
MISO0  
XB_IN6  
LP_SCLS0  
LP_SDAS0  
LP_SCL1  
LP_SDA1  
TXD1  
OPAMPB_OUT  
PWMA_0X  
LP_SCL1  
LP_SDA1  
XB_OUT6  
XB_OUT7  
XB_OUT8  
XB_OUT9  
TXD1  
RXD1  
PWMA_1X  
LP_SDA0  
LP_SCL0  
PWMA_0X  
PWMA_1X  
PWMA_FAULT6  
PWMA_FAULT7  
RXD1  
VDD  
VDD  
GPIOE0  
GPIOE1  
GPIOE2  
GPIOE3  
GPIOE0  
GPIOE1  
GPIOE2  
GPIOE3  
PWMA_0B  
PWMA_0A  
PWMA_1B  
PWMA_1A  
XB_OUT4  
XB_OUT5  
XB_OUT6  
XB_OUT7  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
27  
Pinout  
64  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
25  
26  
27  
28  
29  
30  
31  
32  
GPIOC13  
GPIOC13  
GPIOF1  
GPIOE4  
GPIOE5  
GPIOE6  
GPIOE7  
GPIOC14  
GPIOC15  
VCAP  
TA3  
XB_IN6  
XB_IN7  
XB_IN2  
XB_IN3  
XB_IN4  
XB_IN5  
XB_OUT4  
XB_OUT5  
EWM_OUT_B  
GPIOF1  
GPIOE4  
GPIOE5  
GPIOE6  
GPIOE7  
GPIOC14  
GPIOC15  
VCAP  
CLKO1  
CMPD_O  
LP_SCL1  
LP_SDA1  
PWMA_2B  
PWMA_2A  
PWMA_3B  
PWMA_3A  
LP_SDA0  
LP_SCL0  
XB_OUT8  
XB_OUT9  
XB_OUT10  
XB_OUT11  
PWMA_FAULT4  
PWMA_FAULT5  
GPIOF6  
GPIOF7  
VDD  
GPIOF6  
GPIOF7  
VDD  
PWMA_3X  
CMPC_O  
LP_SCLS1  
LP_SDAS1  
XB_IN2  
XB_IN3  
VSS  
VSS  
TDO  
TDO  
GPIOD1  
GPIOD3  
GPIOD0  
TMS  
TMS  
TDI  
TDI  
4.2 Pinout diagrams  
The following diagrams show pinouts for the packages. For each pin, the diagrams show  
the default function. However, many signals may be multiplexed onto a single pin.  
MC56F81xxx, Rev. 1.1, 12/2020  
28  
NXP Semiconductors  
Pinout  
TCK  
RESET_B  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
GPIOC3  
GPIOC4  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
VDD  
2
3
4
5
6
VSS  
7
GPIOF5  
GPIOF4  
GPIOF3  
GPIOF2  
GPIOC12  
GPIOC11  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 2. 64-pin LQFP  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
29  
Pinout  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
VDD  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
TCK  
RESET_B  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOC3  
GPIOC4  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
1
2
3
4
5
VSS  
6
GPIOC12  
GPIOC11  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
7
8
9
10  
11  
12  
Figure 3. 48-pin LQFP  
MC56F81xxx, Rev. 1.1, 12/2020  
30  
NXP Semiconductors  
Ordering parts  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
GPIOF3  
GPIOF2  
GPIOC10  
GPIOC9  
TCK  
RESET_B  
GPIOC2  
GPIOC3  
GPIOC4  
GPIOA0  
GPIOA1  
GPIOA2  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
18  
17  
Figure 4. 32-pin LQFP  
5 Ordering parts  
5.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: MC56F81  
5.2 Part number list  
The following table shows a part number list for this device.  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
31  
Part identification  
Table 4. Part numbers  
Part Number  
Flash Size  
Operating Temperature  
Package  
MC56F81768VLH  
MC56F81748VLH  
MC56F81766VLF  
MC56F81746VLF  
MC56F81763VLC  
MC56F81743VLC  
MC56F81763VFM  
MC56F81743VFM  
MC56F81668VLH  
MC56F81648VLH  
MC56F81666VLF  
MC56F81646VLF  
MC56F81663VLC  
MC56F81643VLC  
MC56F81768MLH  
MC56F81748MLH  
MC56F81766MLF  
MC56F81746MLF  
128 KB  
64 KB  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 105℃  
-40 to 125℃  
-40 to 125℃  
-40 to 125℃  
-40 to 125℃  
64 LQFP  
64 LQFP  
48 LQFP  
48 LQFP  
32 LQFP  
32 LQFP  
32 QFN  
128 KB  
64 KB  
128 KB  
64 KB  
128 KB  
64 KB  
32 QFN  
128 KB  
64 KB  
64 LQFP  
64 LQFP  
48 LQFP  
48 LQFP  
32 LQFP  
32 LQFP  
64 LQFP  
64 LQFP  
48 LQFP  
48 LQFP  
128 KB  
64 KB  
128 KB  
64 KB  
128 KB  
64 KB  
128 KB  
64 KB  
6 Part identification  
6.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
6.2 Format  
Part numbers for this device have the following format: Q 56F8 1 C F P T PP N  
6.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
MC56F81xxx, Rev. 1.1, 12/2020  
32  
NXP Semiconductors  
Package marking information  
Values  
Field  
Description  
Q
Qualification status  
• MC = Fully qualified, general market flow  
• PC = Prequalification  
56F8  
DSC family with flash memory and DSP56800/  
DSP56800E/DSP56800EX core  
• 56F8  
1
DSC subfamily  
• 1  
C
Maximum CPU frequency (MHz)  
• 6 = 100 MHz  
• 7 = 100 MHz  
F
P
Primary program flash memory size  
Pin count  
• 4 = 64 KB  
• 6 = 128 KB  
• 3 = 32  
• 6 = 48  
• 8 = 64  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• M = –40 to 125  
PP  
• LC = 32LQFP  
• FM = 32QFN  
• LF = 48LQFP  
• LH = 64LQFP  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
6.4 Example  
This is an example part number: MC56F81768VLH  
7 Package marking information  
The MC56F81xxx 64LQFP package has the following top-side marking:  
• First line: aaaaaaaaaaaaa  
• Second line: mmmmm  
• Third line: xxxyywwx  
The MC56F81xxx 48LQFP package has the following top-side marking:  
• First line: aaaaaaaaaaa  
• Second line: mmmmm  
• Third line: xxywx  
The detailed code format for these identifiers is show in the table below.  
Identifier  
Description  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
33  
Terminology and guidelines  
a
Part number code, refer to the "Part identification" section.  
For example, in 48LQFP package, the last digit 'V' stands for  
VLF.  
m
y
Mask set  
Work year  
w
x
Work week  
NXP internal use  
8 Terminology and guidelines  
8.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
8.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
8.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of values  
for a technical characteristic that are guaranteed during operation if you meet the  
operating requirements and any other specified conditions.  
8.2.1 Example  
This is an example of an operating behavior:  
MC56F81xxx, Rev. 1.1, 12/2020  
34  
NXP Semiconductors  
Terminology and guidelines  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
8.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
8.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
8.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
8.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
35  
Terminology and guidelines  
8.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
8.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
MC56F81xxx, Rev. 1.1, 12/2020  
36  
NXP Semiconductors  
Terminology and guidelines  
8.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
8.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
8.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
37  
Ratings  
8.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
9 Ratings  
9.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
9.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
MC56F81xxx, Rev. 1.1, 12/2020  
38  
NXP Semiconductors  
General  
9.3 ESD handling ratings  
Although damage from electrostatic discharge (ESD) is much less common on these  
devices than on early CMOS circuits, use normal handling precautions to avoid exposure  
to static discharge. Qualification tests are performed to ensure that these devices can  
withstand exposure to reasonable levels of static without suffering any permanent  
damage.  
A device is defined as a failure if after exposure to ESD pulses, the device no longer  
meets the device specification. Complete DC parametric and functional testing is  
performed as per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 5. ESD/Latch-up Protection  
Characteristic1  
Min  
–2000  
–500  
–100  
Max  
+2000  
+500  
+100  
Unit  
V
Notes  
ESD for Human Body Model (VHBM  
)
2
3
4
ESD for Charge Device Model (VCDM  
)
V
Latch-up current at TA= 85°C (ILAT) (V part)  
mA  
1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions  
unless otherwise noted.  
2. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
3. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
9.4 Voltage and current operating ratings  
Table 6. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to all  
port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
10 General  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
39  
General  
10.1 General characteristics  
Absolute maximum ratings in the table of "Voltage and current operating ratings" section  
are stress ratings only, and functional operation at the maximum is not guaranteed. Stress  
beyond these ratings may affect device reliability or cause permanent damage to the  
device.  
Unless otherwise stated, all specifications within this chapter apply to the temperature  
range specified in the table of "Voltage and current operating ratings" section over the  
following supply ranges: VSS = VSSA = 0 V, VDD = VDDA = 3.0 V to 3.6 V, CL ≤ 50 pF,  
fOP = 50 MHz.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
normal precautions are advised to avoid application of any  
voltages higher than maximum-rated voltages to this high-  
impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate voltage level.  
10.2 AC electrical characteristics  
Tests are conducted using the input levels specified in the section "Voltage and current  
operating behaviors". Unless otherwise specified, propagation delays are measured from  
the 50% to the 50% point, and rise and fall times are measured between the 20% and 80%  
points, as shown in Figure 5.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 5. Input signal measurement references  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
MC56F81xxx, Rev. 1.1, 12/2020  
40  
NXP Semiconductors  
General  
Figure 6 shows the definitions of the following signal states:  
• Active state, when a bus or signal is driven, and enters a low impedance state  
• Tri-stated, when a bus or signal is placed in a high impedance state  
• Data Valid state, when a signal level has reached VOL or VOH  
• Data Invalid state, when a signal level is in transition between VOL and VOH  
Data1 Valid  
Data1  
Data2 Valid  
Data2  
Data3 Valid  
Data3  
Data  
Data Invalid State  
Tri-stated  
Data Active  
Data Active  
Figure 6. Signal states  
10.3 Nonswitching electrical specifications  
10.3.1 Voltage and current operating requirements  
This section includes information about recommended operating conditions.  
Table 7. Voltage and current operating requirements  
Symbol Description  
Min.  
2.7  
Typ.  
3.3  
Max.  
3.6  
Unit  
V
Notes  
VDD  
Supply voltage  
VDDA  
Analog supply voltage  
VDD-to-VDDA differential voltage  
2.7  
3.3  
3.6  
V
VDD  
–0.1  
0.1  
V
VDDA  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
0.1  
V
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
0.7 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
0.35 × VDD  
V
VHYS  
Input hysteresis  
0.06 × VDD  
2.0  
V
V
VIHOSC  
Oscillator Input Voltage High  
XTAL driven by an external clock source  
Oscillator Input Voltage Low  
IO pin negative DC injection current—single pin  
• VIN < VSS–0.3V  
VDD + 0.3  
VILOSC  
IICIO  
-0.3  
–3  
0.8  
V
1
mA  
IICcont  
Contiguous pin DC injection current —regional  
limit, includes sum of negative injection currents  
of 16 contiguous pins  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
41  
General  
Table 7. Voltage and current operating requirements  
Symbol Description  
• Negative current injection  
Min.  
Typ.  
Max.  
Unit  
Notes  
–25  
mA  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this  
limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is  
calculated as R = (VIO_MIN - VIN)/|IICIO|.  
10.3.2 LVD and POR operating requirements  
Table 8. PMC Low-Voltage Detection (LVD) and Power-On Reset (POR) Parameters  
Characteristic  
Symbol  
POR  
Min  
Typ  
2.0  
Max  
Unit  
V
POR Assert Voltage1  
POR Release Voltage2  
Low-Voltage Warning Interrupt  
Low-Voltage Alarm Interrupt  
POR  
2.7  
V
LVI_2p7  
LVI_2p2  
2.73  
2.23  
V
V
1. During 3.3-volt VDD power supply ramp down  
2. During 3.3-volt VDD power supply ramp up (gated by LVI_2p7)  
10.3.3 Voltage and current operating behaviors  
Table 9. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET)  
1
VDD – 0.5  
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
VOH  
Output high voltage — High drive pad (except RESET)  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA  
2, 1  
VDD – 0.5  
V
IOHT  
VOL  
Output high current total for all ports  
100  
mA  
1
Output low voltage — Normal drive pad (except  
RESET)  
0.5  
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
VOL  
Output low voltage — High drive pad (except RESET)  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
2, 1  
0.5  
100  
1
V
IOLT  
IIN  
Output low current total for all ports  
mA  
μA  
3
Input leakage current (per pin) for full temperature  
range  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
μA  
3
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
42  
NXP Semiconductors  
General  
Table 9. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IIN  
Input leakage current (total all pins) for full temperature  
range  
41  
μA  
3
IOZ  
RPU  
RPD  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
20  
20  
1
μA  
kΩ  
kΩ  
4
50  
50  
Internal pulldown resistors  
5
1. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
2. GPIOC2, GPIOC7~12, GPIOF2~3 and GPIOC14~15 support high drive strength mode.  
3. Measured at VDD = 3.6 V  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
5. Measured at VDD supply voltage = VDD min and Vinput = VDD  
10.3.4 Power mode transition operating behaviors  
Parameters listed are guaranteed by design.  
NOTE  
All address and data buses described here are internal.  
Table 10. Reset, stop, wait, and interrupt timing  
Characteristic  
Symbol  
Typical Min  
Typical  
Max  
Unit  
See  
Figure  
Minimum RESET Assertion Duration  
tRA  
tRDA  
tIF  
16 1  
865 × TOSC + 8 × T  
361.3  
ns  
ns  
ns  
RESET deassertion to First Address Fetch  
Delay from Interrupt Assertion to Fetch of first  
instruction (exiting Stop)  
570.9  
1. If the RESET pin filter is enabled by setting the RST_FLT bit in the SIM_CTRL register to 1, the minimum pulse assertion  
must be greater than 21 ns. Recommended a capacitor of up to 0.1 µF on RESET.  
NOTE  
In Table 10, T = system clock cycle and TOSC = oscillator clock  
cycle. For an operating frequency of 50MHz, T=20 ns. At 4  
MHz (used coming out of reset and stop modes), T=250 ns.  
Table 11. Power mode transition behavior  
Symbol  
Description  
Typical  
Max  
Unit Notes1  
TPOR  
After a POR event, the amount of delay from when VDD reaches  
2.7 V to when the first instruction executes (over the operating  
temperature range).  
250  
288  
µs  
STOP mode to RUN mode  
7.10  
8.17  
µs  
2
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
43  
General  
Symbol  
Table 11. Power mode transition behavior (continued)  
Description  
Typical  
285  
Max  
328  
Unit Notes1  
LPS mode to LPRUN mode  
VLPS mode to VLPRUN mode  
WAIT mode to RUN mode  
µs  
µs  
µs  
µs  
µs  
3
4
5
3
4
878  
1010  
0.454  
328  
0.395  
285  
LPWAIT mode to LPRUN mode  
VLPWAIT mode to VLPRUN mode  
868  
998  
1. Wakeup times are measured from GPIO toggle for wakeup till GPIO toggle at the wakeup interrupt subroutine from  
respective stop/wait mode.  
2. Clock configuration: CPU clock=4 MHz. System clock source is 8 MHz IRC in normal mode.  
3. CPU clock = 200 kHz and 8 MHz IRC on standby. Exit by an interrupt on PORTA GPIO.  
4. Using 64 kHz external clock; CPU Clock = 32 kHz. Exit by an interrupt on PORTA GPIO.  
5. Clock configuration: CPU and system clocks= 100 MHz. Bus Clock = 50MHz. Exit by interrupt on PORTA GPIO  
10.3.5 Power consumption operating behaviors  
Table 12. Current Consumption (Unit: mA)  
Mode  
Maximum  
Frequency  
Conditions  
Typical at Maximum Maximum  
3.3 V,  
25°C  
at 3.6 V,  
105°C  
at 3.6V,  
125°C  
1
1
1
IDD IDDA IDD IDDA IDD IDDA  
RUN1  
100 MHz  
• 100 MHz Core  
24.9 8.6 46.0 13.2 46.9 13.2  
• 50 MHz Peripheral clock  
• Regulators are in full regulation  
• Relaxation Oscillator on  
• PLL powered on  
• Continuous MAC instructions with fetches from  
Program Flash  
• All peripheral modules enabled. TMRs and SCIs  
using 1X peripheral clock  
• NanoEdge within eFlexPWM using 2X peripheral  
clock  
• ADC/DAC (only one 12-bit DAC and all 8-bit DACs)  
powered on and clocked  
• Comparator powered on  
RUN2  
50 MHz  
• 50 MHz Core and Peripheral clock  
• Regulators are in full regulation  
• Relaxation Oscillator on  
20.3 8.7 43.0 12.2 43.4 12.3  
• PLL powered on  
• Continuous MAC instructions with fetches from  
Program Flash  
• All peripheral modules enabled. TMRs and SCIs  
using 1X peripheral clock  
• NanoEdge within eFlexPWM using 2X peripheral  
clock  
• ADC/DAC (only one 12-bit DAC and all 8-bit DACs)  
powered on and clocked  
• Comparator powered on  
WAIT  
50 MHz  
• 50 MHz Core and Peripheral clock  
17.3  
35.0  
35.7  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
44  
NXP Semiconductors  
General  
Table 12. Current Consumption (Unit: mA) (continued)  
Mode  
Maximum  
Frequency  
Conditions  
Typical at Maximum Maximum  
3.3 V,  
25°C  
at 3.6 V,  
105°C  
at 3.6V,  
125°C  
1
1
1
IDD IDDA IDD IDDA IDD IDDA  
• Regulators are in full regulation  
• Relaxation Oscillator on  
• PLL powered on  
• Processor Core in WAIT state  
• All Peripheral modules enabled.  
• TMRs and SCIs using 1X Clock  
• NanoEdge within PWMA using 2X clock  
• ADC/DAC (single 12-bit DAC, all 8-bit DACs),  
Comparator powered off  
STOP  
4 MHz  
2 MHz  
• 4 MHz Device Clock  
• Regulators are in full regulation  
• Relaxation Oscillator on  
4.4  
12.5  
13.1  
• PLL powered off  
• Processor Core in STOP state  
• All peripheral module and core clocks are off  
• ADC/DAC/Comparator powered off  
LPRUN  
(LsRUN)  
• 200 kHz Device Clock from Relaxation Oscillator's  
(ROSC) low speed clock  
1.1 2.4 11.1 4.0 12.8 4.0  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules enabled, except NanoEdge  
and cyclic ADCs. One 12-bit DAC and all 8-bit  
DACs enabled.  
• Simple loop with running from platform instruction  
buffer  
LPWAIT  
(LsWAIT)  
2 MHz  
• 200 kHz Device Clock from Relaxation Oscillator's  
(ROSC) low speed clock  
1.0 2.4 11.1 4.0 12.8 4.0  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• All peripheral modules enabled, except NanoEdge  
and cyclic ADCs. One 12-bit DAC and all 8-bit  
DACs enabled.2  
• Processor core in wait mode  
LPSTOP  
(LsSTOP)  
2 MHz  
• 200 kHz Device Clock from Relaxation Oscillator's  
(ROSC) low speed clock  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• Only PITs and COP enabled; other peripheral  
modules disabled and clocks gated off2  
• Processor core in stop mode  
1.0  
0.4  
9.1  
7.5  
10.5  
VLPRUN  
200 kHz  
• 32 kHz Device Clock  
9.0  
• Clocked by a 64 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
45  
General  
Mode  
Table 12. Current Consumption (Unit: mA) (continued)  
Maximum  
Conditions  
Typical at Maximum Maximum  
Frequency  
3.3 V,  
25°C  
at 3.6 V,  
105°C  
at 3.6V,  
125°C  
1
1
1
IDD IDDA IDD IDDA IDD IDDA  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules, except COP and EWM,  
disabled and clocks gated off  
• Simple loop running from platform instruction buffer  
VLPWAIT  
200 kHz  
• 32 kHz Device Clock  
0.4  
7.5  
9.0  
• Clocked by a 64 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
• All peripheral modules, except COP, disabled and  
clocks gated off  
• Processor core in wait mode  
VLPSTOP  
200 kHz  
• 32 kHz Device Clock  
0.4  
7.5  
9.0  
• Clocked by a 64 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby.  
• Small regulator is disabled.  
• PLL disabled  
• All peripheral modules, except COP, disabled and  
clocks gated off  
• Processor core in stop mode  
1. No output switching, all ports configured as inputs, all inputs low, no DC loads.  
2. In all chip LP modes and flash memory VLP modes, the maximum frequency for flash memory operation is 500 kHz due to  
the fixed frequency ratio of 1:2 between the CPU clock and the flash clock when running with 2 MHz external clock input  
and CPU running at 1 MHz.  
10.3.6 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for “EMC design.”  
MC56F81xxx, Rev. 1.1, 12/2020  
46  
NXP Semiconductors  
General  
10.3.7 Capacitance attributes  
Table 13. Capacitance attributes  
Description  
Symbol  
CIN  
Min.  
Typ.  
10  
Max.  
Unit  
Input capacitance  
Output capacitance  
pF  
pF  
COUT  
10  
10.4 Switching specifications  
10.4.1 Device clock specifications  
Table 14. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYSCLK  
Device (system and core) clock frequency  
• using relaxation oscillator  
0.001  
0
100  
100  
50  
MHz  
MHz  
• using external clock source  
fBUS  
Bus clock  
10.4.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO signals.  
Table 15. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
10.5 Thermal specifications  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
47  
General  
10.5.1 Thermal operating requirements  
Table 16. Thermal operating requirements  
Symbol  
Description  
Grade  
Min  
–40  
–40  
–40  
–40  
Max  
125  
135  
105  
125  
Unit  
°C  
TJ  
Die junction temperature  
V
M
V
°C  
TA  
Ambient temperature  
°C  
M
°C  
10.5.2 Thermal attributes  
This section provides information about operating temperature range, power dissipation,  
and package thermal resistance. Power dissipation on I/O pins is usually small compared  
to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-  
determined rather than being controlled by the MCU design. To account for PI/O in power  
calculations, determine the difference between actual pin voltage and VSS or VDD and  
multiply by the pin current for each I/O pin. Except in cases of unusually high pin current  
(heavy loads), the difference between pin voltage and VSS or VDD is very small.  
See Thermal design considerations for more detail on thermal design considerations.  
Board type 1  
Symbol  
Description  
48 LQFP  
64 LQFP  
Unit  
Notes  
Four-layer  
(2s2p)  
RθJA  
Thermal  
resistance,  
junction to  
55  
52  
°C/W  
2
ambient (natural  
convection)  
Single-layer  
(1s)  
RθJC  
Thermal  
resistance,  
junction to case  
23  
3
20  
3
°C/W  
°C/W  
3
2
ΨJT  
Thermal  
characterization  
parameter,  
junction to  
package top  
outside center  
(natural  
convection)  
1. Thermal test board meets JEDEC specification for this package (JESD51-7, 2s2p and JESD51-3, 1s).  
2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not  
meant to predict the performance of a package in an application-specific environment.  
3. Junction-to-Case (Top) thermal resistance is determined using an isothermal cold plate attached to the package top. Case  
(Top) temperature refers to the mold surface temperature at the center.  
MC56F81xxx, Rev. 1.1, 12/2020  
48  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
11 Peripheral operating requirements and behaviors  
11.1 Core modules  
11.1.1 JTAG timing  
Table 17. JTAG timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See  
Figure  
TCK frequency of operation  
TCK clock pulse width  
fOP  
tPW  
tDS  
tDH  
tDV  
tTS  
DC  
50  
5
SYS_CLK/ 8  
MHz  
ns  
Figure 7  
Figure 7  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
30  
30  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
ns  
5
ns  
ns  
ns  
1/f  
OP  
t
t
PW  
PW  
V
IH  
V
V
V
M
M
TCK  
(Input)  
IL  
V
= V + (V – V )/2  
IL IH IL  
M
Figure 7. Test clock input timing diagram  
TCK  
(Input)  
t
t
DH  
DS  
TDI  
TMS  
Input Data Valid  
(Input)  
t
DV  
TDO  
(Output)  
Output Data Valid  
t
TS  
TDO  
(Output)  
Figure 8. Test access port timing diagram  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
49  
System modules  
11.2 System modules  
11.2.1 Voltage regulator specifications  
The voltage regulator supplies approximately 1.2 V to the device's core logic. For proper  
operations, the voltage regulator requires a minimum external 2.2 µF capacitor on each  
VCAP pin with total capacitors on all VCAP pins at a minimum of 4.4 µF. Ceramic and  
tantalum capacitors tend to provide better performance tolerances. The output voltage can  
be measured directly on the VCAP pin. The specifications for this regulator are shown in  
Table 18.  
Table 18. Regulator 1.2 V parameters  
Characteristic  
Output Voltage 1  
Short Circuit Current 2  
Symbol  
VCAP  
ISS  
Min  
Typ  
1.23  
600  
Max  
Unit  
V
mA  
Short Circuit Tolerance (VCAP shorted to ground)  
TRSC  
1
minute  
1. Value is after trim  
2. Guaranteed by design  
Table 19. Bandgap electrical specifications  
Characteristic  
Reference Voltage (after trim)  
Symbol  
Min  
Typ  
Max  
Unit  
VREF  
1.241  
V
1. Typical value is trimmed at 25. There could be 50 mV variation due to temperature change.  
11.3 Clock modules  
11.3.1 External clock operation timing  
Parameters listed are guaranteed by design.  
Table 20. External clock operation timing requirements  
Characteristic  
Symbol  
fosc  
Min  
8
Typ  
Max  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock pulse width2  
50  
tPW  
External clock input rise time3  
External clock input fall time4  
trise  
1
1
ns  
tfall  
ns  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
50  
NXP Semiconductors  
System modules  
Table 20. External clock operation timing requirements (continued)  
Characteristic  
Symbol  
Vih  
Min  
0.85×VDD  
Typ  
Max  
Unit  
V
Input high voltage overdrive by an external clock  
Input low voltage overdrive by an external clock  
Vil  
0.3×VDD  
V
1. See the "External clock timing" figure for details on using the recommended connection of an external clock driver.  
2. The chip may not function if the high or low pulse width is smaller than 6.25 ns.  
3. External clock input rise time is measured from 10% to 90%.  
4. External clock input fall time is measured from 90% to 10%.  
V
IH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
t
V
IL  
t
fall  
rise  
t
t
PW  
PW  
Note: The midpoint is V + (V – V )/2.  
IL  
IH  
IL  
Figure 9. External clock timing  
11.3.2 Phase-Locked Loop timing  
Table 21. Phase-Locked Loop timing  
Characteristic  
PLL input reference frequency1  
PLL output frequency2  
Symbol  
fref  
Min  
8
Typ  
8
Max  
Unit  
MHz  
MHz  
µs  
16  
550  
100  
60  
fop  
200  
50  
PLL lock time3  
tplls  
Allowed Duty Cycle of input reference  
tdc  
40  
%
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly.  
The PLL is optimized for 8 MHz input.  
2. The frequency of the core system clock cannot exceed 100 MHz. If the NanoEdge PWM is available, the PLL output must  
be set to 400 MHz.  
3. This is the time required after the PLL is enabled to ensure reliable operation.  
11.3.3 External crystal or resonator requirement  
Table 22. Crystal or resonator requirement  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency of operation  
fXOSC  
4
8
16  
MHz  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
51  
System modules  
11.3.4 RC Oscillator Timing  
Table 23. RC Oscillator Electrical Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
8 MHz Output Frequency1  
Run Mode  
0°C to 105°C  
7.84  
7.76  
7.76  
1.9  
8
8
8.16  
8.24  
8.24  
2.1  
MHz  
MHz  
MHz  
MHz  
MHz  
-40°C to 105°C  
-40°C to 125°C  
8
2M Mode (IRC trimmed @ -40°C to 105°C  
8 MHz)  
2.0  
2.0  
-40°C to 125°C  
1.9  
2.1  
8 MHz Frequency Variation over 25°C  
RUN Mode  
0°C to 105°C  
1.5  
1.5  
1.5  
2
3
%
%
%
-40°C to 105°C  
-40°C to 125°C  
-3 to +3  
200 kHz Output Frequency2  
RUN Mode  
-40°C to 105°C  
-40°C to 125°C  
194  
192  
200  
200  
206  
208  
kHz  
kHz  
200 kHz Output Frequency Variation over 25°C  
RUN Mode  
0°C to 85°C  
1.5  
1.5  
1.5  
-
2
3
%
%
%
µs  
µs  
%
-40°C to 105°C  
-40°C to 125°C  
8 MHz output3  
200 kHz output3  
4
Stabilization Time  
Output Duty Cycle  
tstab  
1
15  
375  
55  
-
125  
50  
45  
1. Frequency after factory trim  
2. Frequency after factory trim  
3. Power down to run mode transition  
MC56F81xxx, Rev. 1.1, 12/2020  
52  
NXP Semiconductors  
System modules  
Figure 10. RC Oscillator Temperature Variation (Typical) After Trim (Preliminary)  
11.4 Memories and memory interfaces  
11.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
11.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 24. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
thvpgm4  
Longword Program high-voltage time  
7.5  
18  
μs  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
53  
System modules  
Table 24. NVM program/erase timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
13  
Max.  
113  
Unit  
ms  
Notes  
thversscr Sector Erase high-voltage time  
1
1
thversall  
Erase All high-voltage time  
52  
452  
ms  
1. Maximum time based on expectations at cycling end-of-life.  
11.4.1.2 Flash timing specifications — commands  
Table 25. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
1
65  
14  
145  
114  
1.8  
25  
μs  
2
tersscr  
trd1all  
ms  
ms  
μs  
1
trdonce  
1
tpgmonce Program Once execution time  
65  
88  
μs  
2
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
650  
30  
ms  
μs  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
1
88  
650  
ms  
2
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
11.4.1.3 Flash high voltage current behaviors  
Table 26. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
11.4.1.4 Reliability specifications  
Table 27. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
5
50  
years  
years  
20  
100  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
54  
NXP Semiconductors  
System modules  
Table 27. NVM reliability specifications (continued)  
Symbol Description  
Min.  
10 K  
1 K  
Typ.1  
50 K  
Max.  
Unit  
Notes  
nnvmcycp Cycling endurance  
nnvmcycp Cycling endurance  
cycles  
cycles  
2
3
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
3. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 135 °C. If the product application is  
exposed to Tj > 125 °C, the reduced W/E spec applies independent of the number of W/E cycles in the high Tj band.  
11.5 Analog  
11.5.1 12-bit Cyclic Analog-to-Digital Converter (ADC) Parameters  
Table 28. 12-bit ADC Electrical Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Recommended Operating Conditions  
Supply Voltage1  
VDDA  
Vrefhx  
fADCCLK  
RAD  
3
3.3  
3.6  
VDDA  
12.5  
V
V
VREFH (in external reference mode)  
ADC Conversion Clock2  
Conversion Range3  
VDDA-0.6  
0.1  
MHz  
V
VREFH – VREFL  
VREFH  
Fully Differential  
– (VREFH – VREFL  
VREFL  
)
Single Ended/Unipolar  
Input Voltage Range (per input)4  
External Reference  
VADIN  
V
VREFL  
0
VREFH  
VDDA  
Internal Reference  
Timing and Power  
Conversion Time5  
tADC  
8
ADC Clock  
Cycles  
ADC Power-Up Time (from adc_pdn)  
ADC RUN Current (per ADC block)  
tADPU  
13  
ADC Clock  
Cycles  
IADRUN  
2.5  
0.1  
mA  
µA  
ADC Powerdown Current (adc_pdn  
enabled)  
IADPWRDWN  
VREFH Current (in external mode)  
Accuracy (DC or Absolute)  
Integral non-Linearity6  
Differential non-Linearity6  
Monotonicity  
IVREFH  
190  
225  
µA  
INL  
+/- 1.5  
+/- 0.5  
+/- 2.2  
+/- 0.8  
LSB7  
LSB7  
DNL  
GUARANTEED  
Offset8  
VOFFSET  
mV  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
55  
System modules  
Table 28. 12-bit ADC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Fully Differential  
+/- 8  
Single Ended/Unipolar  
Gain Error  
+/- 12  
EGAIN  
0.996 to  
1.004  
0.990 to 1.010  
AC Specifications9  
Signal to Noise Ratio  
SNR  
THD  
66  
75  
dB  
dB  
dB  
dB  
bits  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Signal to Noise plus Distortion  
Effective Number of Bits  
Gain = 1x (Fully Differential/Unipolar)  
Gain = 2x (Fully Differential/Unipolar)  
Gain = 4x (Fully Differential/Unipolar)  
Gain = 1x (Single Ended)  
Gain = 2x (Single Ended)  
Gain = 4x (Single Ended)  
Variation across channels10  
ADC Inputs  
SFDR  
SINAD  
ENOB  
77  
66  
10.6  
10.3  
10.6  
10.4  
10.2  
0.1  
Input Leakage Current  
IIN  
1
nA  
mV/°C  
V
Temperature sensor slope  
Temperature sensor voltage at 25 °C  
Disturbance  
TSLOPE  
VTEMP25  
1.3  
0.82  
Input Injection Current 11  
Channel to Channel Crosstalk12  
Memory Crosstalk13  
IINJ  
+/-3  
mA  
dB  
dB  
pF  
ISOXTLK  
MEMXTLK  
CADI  
-82  
-71  
Input Capacitance  
4.8  
Sampling Capacitor  
1. The ADC functions up to VDDA = 2.7 V. When VDDA is below 3.0 V, ADC specifications are not guaranteed  
2. ADC clock duty cycle is 45% ~ 55%  
3. Conversion range is defined for x1 gain setting. For x2 and x4 the range is 1/2 and 1/4, respectively.  
4. In unipolar mode, positive input must be ensured to be always greater than negative input.  
5. First conversion takes 10 clock cycles.  
6. INL/DNL is measured from VIN = VREFL to VIN = VREFH using Histogram method at x1 gain setting  
7. Least Significant Bit = 0.806 mV at 3.3 V VDDA, x1 gain Setting  
8. Offset measured at 2048 code  
9. Measured converting a 1 kHz input full scale sine wave  
10. When code runs from internal RAM  
11. The current that can be injected into or sourced from an unselected ADC input without affecting the performance of the  
ADC  
12. Any off-channel with 50 kHz full-scale input to the channel being sampled with DC input (isolation crosstalk)  
13. From a previously sampled channel with 50 kHz full-scale input to the channel being sampled with DC input (memory  
crosstalk).  
MC56F81xxx, Rev. 1.1, 12/2020  
56  
NXP Semiconductors  
System modules  
11.5.1.1 Equivalent circuit for ADC inputs  
The following figure shows the ADC input circuit during sample and hold. S1 and S2 are  
always opened/closed at non-overlapping phases, and both S1 and S2 are dependent on  
the ADC clock frequency. The following equation gives equivalent input impedance  
when the input is selected.  
1
+
ohm  
+Resistor  
50  
(ADC ClockRate) x CADI  
NOTE  
Resistor=1200 ohm@gain1×, or 730 ohm@gain2×, or 500  
ohm@gain4×  
C1  
Channel Mux  
equivalent resistance  
S1  
50 ESD  
Resistor  
Analog Input  
C1  
C1  
Resistor(value see the note)  
S1  
S1  
S/H  
1
2
S1  
S2  
S2  
(VREFHx - VREFLx ) / 2  
C1  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling =  
1.8pF  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal  
routing = 2.04pF  
3. S1 and S2 switch phases are non-overlapping and depend on the ADC clock  
frequency  
S1  
S2  
Figure 11. Equivalent circuit for A/D loading  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
57  
System modules  
11.5.2 12-bit Digital-to-Analog Converter (DAC) parameters  
NOTE  
RLD = 3 kΩ and CLD = 400 pF, unless otherwise specified.  
Table 29. DAC parameters  
Parameter  
Conditions/Comments  
Symbol  
Min  
Typ  
Max  
Unit  
DC Specifications  
Resolution  
Settling time1  
12  
12  
12  
bits  
µs  
At output load  
RLD = 3 kΩ  
1 (high-  
speed  
mode)  
CLD = 400 pF  
2 (low-  
speed  
mode)  
Range of input digital words: 410 to  
3891  
Power-up time  
Time from release of PWRDWN  
signal until DACOUT signal is valid  
tDAPU  
11  
µs  
Accuracy  
Integral non-linearity  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
INL  
+/- 3  
+/- 4  
+/- 1  
LSB  
LSB  
Differential non-linearity  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
DNL  
+/- 0.5  
Monotonicity  
Offset error  
> 6 sigma monotonicity,  
< 3.4 ppm non-monotonicity  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
guaranteed  
+/- 25  
VOFFSET  
+ /- 43  
+/- 1.5  
mV  
Gain error  
Range of input digital words: 410 to  
3891 ($19A - $F33)  
EGAIN  
+/- 0.5  
%
V
DAC Output  
Output voltage range Within 40 mV of either VSSA or VDDA  
VOUT  
VSSA  
0.04 V  
+
VDDA - 0.04  
V
AC Specifications  
SNR  
Signal-to-noise ratio  
80  
dB  
dB  
Spurious free dynamic  
range  
SFDR  
-72  
Effective number of bits  
IDD from VDDA  
ENOB  
10  
bits  
mA  
average IDD of VDDA (IDD varies with  
DAC input word)  
IDDA  
3.2  
1. When DAC output is fed to other internal peripherals, the settling time is much shorter.  
11.5.3 OPAMP electrical specifications  
MC56F81xxx, Rev. 1.1, 12/2020  
58  
NXP Semiconductors  
System modules  
Table 30. OPAMP electrical specifications  
Symbol  
VCC  
Description  
Power supply  
Supply current  
Min.  
3.0  
Typ.  
Max.  
3.6  
Unit  
V
ICC  
500  
100  
μA  
• high-speed mode  
• low-power mode  
VOS  
Input offset voltage  
• high-speed mode  
• low-power mode  
1.5  
2
5
mV  
6.5  
VIN  
VOUT  
CMRR  
PSRR  
SR  
Common input voltage  
VSSA  
0.15  
60  
80  
80  
8
VDDA - 1.2  
V
V
Output voltage range  
VDDA - 0.15  
Input common mode rejection ratio  
Power supply rejection ratio  
Slew rate 1  
dB  
dB  
V/μs  
60  
4
• high-speed mode  
• low-power mode  
1
GBW  
Unity gain bandwidth 1  
• high-speed mode  
• low-power mode  
8
MHz  
1.5  
1. RL = 5 ~ 10 kΩ, CL = 30 ~ 50 pf  
11.5.4 CMP and 8-bit DAC electrical specifications  
Table 31. Comparator and 8-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
3.0  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, high-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
Analog input offset voltage 1  
Analog comparator hysteresis  
• CR0[HYSTCTR] = 002  
300  
36  
μA  
μA  
V
VSS  
VDD  
20  
VAIO  
mV  
VH  
5
13  
48  
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 011  
25  
55  
80  
• CR0[HYSTCTR] = 101  
105  
148  
• CR0[HYSTCTR] = 111  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
25  
0.5  
70  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)3  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)3  
Analog comparator initialization delay4  
60  
40  
200  
ns  
μs  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
59  
System modules  
Table 31. Comparator and 8-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
7
Max.  
Unit  
μA  
V
IDAC8b  
8-bit DAC current adder (enabled)  
Vreference 8-bit DAC reference inputs, Vin1 and Vin2  
VDD  
There are two reference input options selectable (via  
VRSEL control bit). The reference options must fall  
within this range.  
INL  
8-bit DAC integral non-linearity  
8-bit DAC differential non-linearity  
–1  
–1  
1
1
LSB5  
LSB  
DNL  
1. Measured with input voltage range limited to 0.7≤Vin≤VDD-0.8  
2. Measured with input voltage range limited to 0 to VDD  
3. Input voltage range: 0.1VDD≤Vin≤0.9VDD, step = 100mV, across all temperature. Does not include PCB and PAD delay.  
4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
5. 1 LSB = Vreference/256  
250.00E-03  
hystCR  
200.00E-03  
0
150.00E-03  
1
100.00E-03  
2
50.00E-03  
3
000.00E+00  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
Vin Level (V)  
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2  
Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
400.00E-03  
350.00E-03  
300.00E-03  
250.00E-03  
200.00E-03  
150.00E-03  
100.00E-03  
50.00E-03  
hystCR  
0
1
2
3
000.00E+00  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
Vin Level (V)  
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2  
Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
MC56F81xxx, Rev. 1.1, 12/2020  
60  
NXP Semiconductors  
PWMs and timers  
11.6 PWMs and timers  
11.6.1 Enhanced NanoEdge PWM characteristics  
Table 32. NanoEdge PWM timing parameters  
Characteristic  
Symbol  
pwmp  
tpu  
Min  
Typ  
100  
312  
Max  
Unit  
MHz  
ps  
PWM clock frequency  
NanoEdge Placement (NEP) Step Size1, 2  
Delay for fault input activating to PWM output deactivated  
Power-up Time3  
1
33  
ns  
25  
µs  
Resolution of Deadtime  
312  
ps  
1. Reference IPbus clock of 100 MHz in NanoEdge Placement mode.  
2. Temperature and voltage variations do not affect NanoEdge Placement step size.  
3. Powerdown to NanoEdge mode transition.  
11.6.2 Quad Timer timing  
Parameters listed are guaranteed by design.  
Table 33. Timer timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min1  
2T + 6  
1T + 3  
20  
Max  
Unit  
ns  
See Figure  
Figure 14  
Figure 14  
Figure 14  
Figure 14  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
Timer output high/low period  
POUTHL  
10  
ns  
1. T = clock cycle. For 100 MHz operation, T = 10 ns.  
Timer Inputs  
P
P
INHL  
INHL  
P
IN  
Timer Outputs  
P
P
OUTHL  
OUTHL  
P
OUT  
Figure 14. Timer timing  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
61  
PWMs and timers  
11.6.3 QDC Timing Specifications  
Parameters listed are guaranteed by design.  
Table 34. Quadrature Decoder Timing  
Characteristic  
Symbol  
PIN  
Min1  
4T + 12  
2T + 6  
1T + 3  
Max  
Unit  
ns  
Quadrature input period  
Quadrature input high/low period  
Quadrature phase period  
PHL  
ns  
PPH  
ns  
1. In the formulas listed, T equals the system clock cycle. For 50 MHz operation, T = 20 ns. For 100 MHz operation,  
T = 10 ns.  
PPH  
PPH  
PPH  
PPH  
Phase A  
Input  
PIN  
PHL  
PHL  
Phase B  
Input  
PIN  
PHL  
PHL  
PIN Input period  
PPH Phase period  
PHL Input high/low period  
Figure 15. Quadrature Decoder Timing  
11.7 Communication interfaces  
11.7.1 Queued Serial Peripheral Interface (SPI) timing  
Parameters listed are guaranteed by design.  
Table 35. SPI timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
tC  
Figure 16  
60  
ns  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
62  
NXP Semiconductors  
PWMs and timers  
Table 35. SPI timing (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Master  
60  
ns  
Figure 17  
Figure 18  
Slave  
Figure 19  
Figure 19  
Enable lead time  
Master  
tELD  
tELG  
tCH  
ns  
ns  
20  
Slave  
Enable lag time  
Master  
Figure 19  
ns  
ns  
20  
Slave  
Clock (SCK) high time  
Master  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 19  
ns  
ns  
Slave  
Clock (SCK) low time  
tCL  
28  
28  
ns  
ns  
Master  
Slave  
Data set-up time required for inputs  
tDS  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 19  
20  
1
ns  
ns  
Master  
Slave  
Data hold time required for inputs  
tDH  
1
3
ns  
ns  
Master  
Slave  
Access time (time to data active  
from high-impedance state)  
tA  
5
5
ns  
ns  
Slave  
Disable time (hold time to high-  
impedance state)  
tD  
Figure 19  
Slave  
Data valid for outputs  
Master  
tDV  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 16  
ns  
ns  
Slave (after enable edge)  
Data invalid  
Master  
tDI  
0
0
ns  
ns  
Slave  
Rise time  
tR  
Table continues on the next page...  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
63  
PWMs and timers  
Table 35. SPI timing (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Master  
Slave  
1
ns  
Figure 17  
1
ns  
Figure 18  
Figure 19  
Figure 16  
Fall time  
Master  
Slave  
tF  
1
1
ns  
ns  
Figure 17  
Figure 18  
Figure 19  
SS  
(Input)  
SS is held high on master  
t
C
t
R
t
F
t
CL  
SCLK (CPOL = 0)  
(Output)  
t
CH  
t
F
t
R
t
CL  
SCLK (CPOL = 1)  
(Output)  
t
t
DH  
CH  
t
DS  
MISO  
(Input)  
MSB in  
t
Bits 14–1  
LSB in  
t (ref)  
DI  
t
DI  
DV  
MOSI  
(Output)  
Master MSB out  
Bits 14–1  
Master LSB out  
t
t
R
F
Figure 16. SPI master timing (CPHA = 0)  
MC56F81xxx, Rev. 1.1, 12/2020  
64  
NXP Semiconductors  
PWMs and timers  
SS  
(Input)  
SS is held High on master  
t
C
t
F
t
R
t
CL  
SCLK (CPOL = 0)  
(Output)  
t
CH  
t
F
t
CL  
SCLK (CPOL = 1)  
(Output)  
t
CH  
t
DS  
t
R
t
DH  
MISO  
(Input)  
MSB in  
t
Bits 14–1  
LSB in  
t
(ref)  
DI  
t
DV  
t (ref)  
DV  
DI  
MOSI  
(Output)  
Master MSB out  
Bits 14– 1  
Master LSB out  
t
t
R
F
Figure 17. SPI master timing (CPHA = 1)  
SS  
(Input)  
t
C
t
F
t
ELG  
t
CL  
t
R
SCLK (CPOL = 0)  
(Input)  
t
CH  
t
ELD  
t
CL  
SCLK (CPOL = 1)  
(Input)  
t
CH  
t
F
t
t
A
R
t
D
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
t
t
DS  
DV  
t
t
DI  
DI  
t
DH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 18. SPI slave timing (CPHA = 0)  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
65  
PWMs and timers  
SS  
(Input)  
t
F
t
C
t
R
t
CL  
SCLK (CPOL = 0)  
(Input)  
t
CH  
t
ELG  
t
ELD  
t
CL  
SCLK (CPOL = 1)  
(Input)  
t
t
DV  
CH  
t
R
t
t
D
t
A
F
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
t
t
DV  
DS  
t
DI  
t
DH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 19. SPI slave timing (CPHA = 1)  
11.7.2 Queued Serial Communication Interface (SCI) timing  
Parameters listed are guaranteed by design.  
Table 36. SCI timing  
Characteristic  
Baud rate1  
Symbol  
BR  
Min  
Max  
Unit  
Mbit/s  
μs  
See Figure  
(fMAX/16)  
1.04/BR  
1.04/BR  
RXD pulse width  
TXD pulse width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
Figure 20  
Figure 21  
μs  
LIN Slave Mode  
Deviation of slave node clock from nominal FTOL_UNSYNCH  
clock rate before synchronization  
-14  
14  
2
%
%
Deviation of slave node clock relative to  
the master node clock after  
synchronization  
FTOL_SYNCH  
-2  
Minimum break character length  
TBREAK  
13  
11  
Master  
node bit  
periods  
Slave node  
bit periods  
1. fMAX is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock (max.50 MHz  
depending on part number) or 2x bus clock (max. 100 MHz) for the devices.  
MC56F81xxx, Rev. 1.1, 12/2020  
66  
NXP Semiconductors  
Design Considerations  
RXD  
SCI receive  
data pin  
RXD  
PW  
(Input)  
Figure 20. RXD pulse width  
TXD  
SCI transmit  
data pin  
TXD  
PW  
(output)  
Figure 21. TXD pulse width  
11.7.3 LPI2C  
Table 37. LPI2C specifications  
Symbol Description  
Min.  
Max.  
100  
Unit  
Notes  
fSCL  
SCL clock frequency  
Standard mode (Sm)  
Fast mode (Fm)  
0
0
0
0
0
kHz  
1, 2, 3  
400  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
1. Hs-mode is only supported in slave mode.  
2. The maximum SCL clock frequency in Fast mode with maximum bus loading (400pF) can only be achieved with  
appropriate pull-up devices on the bus when using the high or normal drive pins across the full voltage range . The  
maximum SCL clock frequency in Fast mode Plus can support maximum bus loading (400pF) with appropriate pull-up  
devices when using the high drive pins. The maximum SCL clock frequency in Ultra Fast mode can support maximum bus  
loading (400pF) when using the high drive pins. The maximum SCL clock frequency for slave in High speed mode can  
support maximum bus loading (400pF) with appropriate pull-up devices when using the high drive pins. For more  
information on the required pull-up devices, see I2C Bus Specification.  
3. See the section "General switching specifications".  
12 Design Considerations  
12.1 Thermal design considerations  
An estimate of the chip junction temperature (TJ) can be obtained from the equation:  
TJ = TA + (RΘJA × PD)  
where  
TA = Ambient temperature for the package (°C)  
RΘJA = Junction-to-ambient thermal resistance (°C/W)  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
67  
Design Considerations  
PD = Power dissipation in the package (W).  
The junction-to-ambient thermal resistance is an industry-standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values in  
common usage: the value determined on a single-layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by  
a factor of two. Which TJ value is closer to the application depends on the power  
dissipated by other components on the board.  
• The TJ value obtained on a single layer board is appropriate for a tightly packed  
printed circuit board.  
• The TJ value obtained on a board with the internal planes is usually appropriate if the  
board has low-power dissipation and if the components are well separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-  
case thermal resistance and a case-to-ambient thermal resistance:  
RΘJA = RΘJC + RΘCA  
where  
RΘJA = Package junction-to-ambient thermal resistance (°C/W)  
RΘJC = Package junction-to-case thermal resistance (°C/W)  
RΘCA = Package case-to-ambient thermal resistance (°C/W).  
RΘJC is device related and cannot be adjusted. You control the thermal environment to  
change the case to ambient thermal resistance, RΘCA. For instance, you can change the  
size of the heat sink, the air flow around the device, the interface material, the mounting  
arrangement on printed circuit board, or change the thermal dissipation on the printed  
circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat  
sinks are not used, the thermal characterization parameter (ΨJT) can be used to  
determine the junction temperature with a measurement of the temperature at the top  
center of the package case using the following equation:  
TJ = TT + (ΨJT × PD)  
where  
TT = Thermocouple temperature on top of package (°C/W)  
ΨJT = hermal characterization parameter (°C/W)  
PD = Power dissipation in package (W).  
MC56F81xxx, Rev. 1.1, 12/2020  
68  
NXP Semiconductors  
Design Considerations  
The thermal characterization parameter is measured per JESD51–2 specification using a  
40-gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
To determine the junction temperature of the device in the application when heat  
sinks are used, the junction temperature is determined from a thermocouple inserted at  
the interface between the case of the package and the interface material. A clearance slot  
or hole is normally required in the heat sink. Minimizing the size of the clearance is  
important to minimize the change in thermal performance caused by removing part of the  
thermal interface to the heat sink. Because of the experimental difficulties with this  
technique, many engineers measure the heat sink temperature and then back-calculate the  
case temperature using a separate measurement of the thermal resistance of the interface.  
From this case temperature, the junction temperature is determined from the junction-to-  
case thermal resistance.  
12.2 Electrical design considerations  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
take normal precautions to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the device:  
• Provide a low-impedance path from the board power supply to each VDD pin on the  
device and from the board ground to each VSS (GND) pin.  
• The minimum bypass requirement is to place 0.01–0.1 µF capacitors positioned as  
near as possible to the package supply pins. The recommended bypass configuration  
is to place one bypass capacitor on each of the VDD/VSS pairs, including VDDA/VSSA  
Ceramic and tantalum capacitors tend to provide better tolerances.  
• Ensure that capacitor leads and associated printed circuit traces that connect to the  
chip VDD and VSS (GND) pins are as short as possible.  
.
• Bypass the VDD and VSS with approximately 100 µF, plus the number of 0.1 µF  
ceramic capacitors.  
• PCB trace lengths should be minimal for high-frequency signals.  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
69  
Design Considerations  
• Consider all device loads as well as parasitic capacitance due to PCB traces when  
calculating capacitance. This is especially critical in systems with higher capacitive  
loads that could create higher transient currents in the VDD and VSS circuits.  
• Take special care to minimize noise levels on the VREF, VDDA, and VSSA pins.  
• Using separate power planes for VDD and VDDA and separate ground planes for VSS  
and VSSA are recommended. Connect the separate analog and digital power and  
ground planes as near as possible to power supply outputs. If an analog circuit and  
digital circuit are powered by the same power supply, then connect a small inductor  
or ferrite bead in serial with VDDA. Traces of VSS and VSSA should be shorted  
together.  
• Physically separate analog components from noisy digital components by ground  
planes. Do not place an analog trace in parallel with digital traces. Place an analog  
ground trace around an analog signal trace to isolate it from digital traces.  
• Because the flash memory is programmed through the JTAG/EOnCE port, SPI, SCI,  
or I2C, the designer should provide an interface to this port if in-circuit flash  
programming is desired.  
• If desired, connect an external RC circuit to the RESET pin. The resistor value  
should be in the range of 4.7 kΩ–10 kΩ; the capacitor value should be in the range of  
0.1 µF–4.7 µF.  
• Configuring the RESET pin to GPIO output in normal operation in a high-noise  
environment may help to improve the performance of noise transient immunity.  
• Add a 2.2 kΩ external pullup on the TMS pin of the JTAG port to keep EOnCE in a  
reset state during normal operation if JTAG converter is not present. Furthermore,  
configure TMS, TDI, TDO and TCK to GPIO if operation environment is very noisy.  
• During reset and after reset but before I/O initialization, all the GPIO pins are at tri-  
state.  
• To eliminate PCB trace impedance effect, each ADC input should have a no less than  
33 pF 10Ω RC filter.  
12.3 Power-on Reset design considerations  
12.3.1 Improper power-up sequence between VDD/VSS and VDDA/  
VSSA:  
It is recommended that VDD be kept within 100 mV of VDDA at all times, including  
power ramp-up and ramp-down. Failure to keep VDD within 100 mV of VDDA may  
cause a leakage current through the substrate, between the VDD and VDDA pad cells.  
This leakage current could prevent operation of the device after it powers up. The voltage  
MC56F81xxx, Rev. 1.1, 12/2020  
70  
NXP Semiconductors  
Obtaining package dimensions  
difference between VDD and VDDA must be limited to below 0.3 V at all times, to avoid  
permanent damage to the part (See the table in "Voltage and current operating ratings"  
section). Also see the table in "Voltage and current operating requirements" section.  
12.3.2 Heavy capacitive load on power supply output:  
In some applications, the low cost DC/DC converter may not regulate the output voltage  
well before it reaches the regulation point, which is roughly around 2.5V to 2.7V.  
However, the device might exit power-on reset at around 2.3V. If the initialization code  
enables the PLL to run the DSC at full speed right after reset, then the high current will  
be pulled by DSC from the supply, which can cause the supply voltage to drop below the  
operation voltage; see the captured graph (Figure 22). This can cause the DSC fail to start  
up.  
Figure 22. Supply Voltage Drop  
A recommended initialization sequence during power-up is:  
1. After POR is released, run a few hundred NOP instructions from the internal  
relaxation oscillator; this gives time for the supply voltage to stabilize.  
2. Configure the peripherals (except the ADC) to the desired settings; the ADC should  
stay in low power mode.  
3. Power up the PLL.  
4. After the PLL locks, switch the clock from PLL prescale to postscale.  
5. Configure the ADC.  
13 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
MC56F81xxx, Rev. 1.1, 12/2020  
NXP Semiconductors  
71  
Product documentation  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing's document number:  
Drawing for package  
32LQFP  
Document number to be used  
98ASH70029A  
32QFN  
98ASA00473D  
48-pin LQFP  
64-pin LQFP  
98ASH00962A  
98ASS23234W  
14 Product documentation  
The documents listed in Table 38 are required for a complete description and to  
successfully design using the device. Documentation is available from local NXP  
distributors, NXP sales offices, or online at www.nxp.com.  
Table 38. Device documentation  
Topic  
Description  
Document Number  
DSP56800E/DSP56800EX  
Reference Manual  
Detailed description of the 56800EX family architecture, 32-bit  
digital signal controller core processor, and the instruction set  
DSP56800ERM  
MC56F81xxx Reference Manual Detailed functional description and programming model  
MC56F81XXXRM  
MC56F81XXX  
MC56F81xxx Data Sheet  
Electrical and timing specifications, pin descriptions, and  
package information (this document)  
MC56F81xxx Errata  
Details any chip issues that might be present  
MC56F81XXX_0N91Z  
15 Revision history  
The following table provides a revision history for this document.  
Table 39. Revision history  
Rev.  
1
Date  
Substantial Changes  
08/2020 Initial public release  
1.1  
12/2020 Added M-part devices (temperature range as –40 to 125), and updated related specifications: e.g.  
the "Current Consumption" table, the "NVM reliability specifications" table.  
MC56F81xxx, Rev. 1.1, 12/2020  
72  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2019-2021 NXP B.V.  
Document Number MC56F81XXX  
Revision 1.1, 12/2020  

相关型号:

MC56F81746MLF

DSC based on 32-bit 56800EX core
NXP

MC56F81746VLF

DSC based on 32-bit 56800EX core
NXP

MC56F81748MLH

DSC based on 32-bit 56800EX core
NXP

MC56F81748VLH

DSC based on 32-bit 56800EX core
NXP

MC56F81763VFM

DSC based on 32-bit 56800EX core
NXP

MC56F81763VLC

DSC based on 32-bit 56800EX core
NXP

MC56F81766MLF

DSC based on 32-bit 56800EX core
NXP

MC56F81766VLF

DSC based on 32-bit 56800EX core
NXP

MC56F81768MLH

DSC based on 32-bit 56800EX core
NXP

MC56F81768VLH

DSC based on 32-bit 56800EX core
NXP

MC56F81XXX

DSC based on 32-bit 56800EX core
NXP

MC56F82313VLC

32-bit DSC, 56800EX core, 16KB Flash, 50MHz, QFP 32
NXP