ATC100A220GT500XT [NXP]

RF LDMOS Wideband Integrated Power Amplifier;
ATC100A220GT500XT
型号: ATC100A220GT500XT
厂家: NXP    NXP
描述:

RF LDMOS Wideband Integrated Power Amplifier

文件: 总17页 (文件大小:1189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MHV5IC1810N  
Rev. 1, 3/2011  
Freescale Semiconductor  
Technical Data  
RF LDMOS Wideband Integrated  
Power Amplifier  
The MHV5IC1810N wideband integrated circuit is designed with on--chip  
matching that makes it usable from 1805 to 1990 MHz. This multi--stage  
structure is rated for 24 to 32 Volt operation and covers all typical cellular base  
station modulation formats.  
MHV5IC1810NR2  
1805--1990 MHz, 5 W AVG., 28 V  
GSM/GSM EDGE  
RF LDMOS WIDEBAND  
INTEGRATED POWER AMPLIFIER  
Final Application  
Typical Two--Tone Performance: VDD = 28 Volts, IDQ1 = 120 mA, IDQ2  
90 mA, Pout = 5 Watts Avg., Full Frequency Band (1805--1880 MHz or  
1930--1990 MHz)  
=
Power Gain — 29 dB  
Power Added Efficiency — 29%  
IMD — --34 dBc  
Driver Application  
16  
Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 105 mA, IDQ2  
95 mA, Pout = 35 dBm, Full Frequency Band (1805--1880 MHz or  
1930--1990 MHz)  
=
1
Power Gain — 29 dB  
Spectral Regrowth @ 400 kHz Offset = --67 dBc  
Spectral Regrowth @ 600 kHz Offset = --76 dBc  
EVM — 1.1% rms  
CASE 978--03  
PFP--16  
PLASTIC  
Capable of Handling 3:1 VSWR, @ 28 Vdc, 1990 MHz, 10 Watts CW  
Output Power  
Stable into a 3:1 VSWR. All Spurs Below --60 dBc @ 100 mW to 10 W CW  
Pout  
Features  
.
Characterized with Series Equivalent Large--Signal Impedance Parameters  
and Common Source Parameters  
On--Chip Matching (50 Ohm Input, >5 Ohm Output)  
Integrated Quiescent Current Temperature Compensation  
with Enable/Disable Function  
On--Chip Current Mirror gm Reference FET for Self Biasing Application (1)  
Integrated ESD Protection  
RoHS Compliant  
In Tape and Reel. R2 Suffix = 1500 Units, 16 mm Tape Width, 13 inch Reel.  
NC  
1
2
3
4
NC  
V
16  
15  
14  
13  
V
V
RD1  
/RF  
/RF  
/RF  
/RF  
/RF  
/RF  
V
V
DS2  
out  
out  
out  
out  
out  
out  
RD1  
RG1  
V
V
V
V
V
DS2  
DS2  
DS2  
DS2  
DS2  
RG1  
V
DS1  
V
DS1  
2 Stage IC  
GND  
5
6
7
8
12  
11  
10  
9
RF  
in  
RF  
V
/RF  
DS2 out  
in  
V
V
GS1  
NC  
GS2  
V
V
GS1  
GS2  
Quiescent Current  
Temperature Compensation  
(Top View)  
Note: Exposed backside flag is source  
terminal for transistors.  
Figure 1. Functional Block Diagram  
Figure 2. Pin Connections  
1. Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1987.  
© Freescale Semiconductor, Inc., 2006, 2011. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +65  
--0.5, +12  
--65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain--Source Voltage  
Gate--Source Voltage  
Storage Temperature Range  
Operating Junction Temperature  
Input Power  
V
DSS  
V
GS  
T
stg  
T
J
°C  
P
12  
dBm  
in  
Table 2. Thermal Characteristics  
(1)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
θ
°C/W  
JC  
Final Application  
(P = 10 W CW)  
out  
Stage 1, 28 Vdc, I  
Stage 2, 28 Vdc, I  
= 120 mA  
= 90 mA  
9.2  
3.3  
DQ1  
DQ2  
Driver Application  
(P = 2.25 W CW)  
out  
Stage 1, 28 Vdc, I  
Stage 2, 28 Vdc, I  
= 120 mA  
= 90 mA  
10  
3.5  
DQ1  
DQ2  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
0 (Minimum)  
A (Minimum)  
III (Minimum)  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22--A113, IPC/JEDEC J--STD--020  
3
260  
°C  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Functional Tests (In Freescale Wideband 1930--1990 MHz Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 120 mA, I  
= 90 mA,  
DD  
DQ1  
DQ2  
P
= 5 W Avg., f1 = 1990 MHz, f2 = 1990.1 MHz, Two--Tone Test  
out  
Power Gain  
G
26.5  
25  
29  
29  
dB  
%
ps  
Power Added Efficiency  
Intermodulation Distortion  
Input Return Loss  
PAE  
IMD  
IRL  
-- 3 4  
-- 2 7  
dBc  
dB  
-- 10  
Typical Two--Tone Performances (In Freescale Test Fixture, 50 οhm system) V = 28 Vdc, I  
= 120 mA, I  
= 90 mA, P  
=
out  
DD  
DQ1  
DQ2  
5 W Avg., 1805--1880 MHz  
Power Gain  
G
29  
29  
dB  
%
ps  
Power Added Efficiency  
Intermodulation Distortion  
Input Return Loss  
PAE  
IMD  
IRL  
-- 3 4  
-- 1 5  
dBc  
dB  
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) V = 28 Vdc, I  
= 105 mA, I  
= 95 mA,  
DD  
DQ1  
DQ2  
P
= 3.2 W Avg., 1805--1880 MHz or 1930--1990 MHz EDGE Modulation  
out  
Power Gain  
G
29  
dB  
% rms  
dBc  
ps  
Error Vector Magnitude  
EVM  
SR1  
SR2  
1.1  
-- 6 7  
-- 7 6  
Spectral Regrowth at 400 kHz Offset  
Spectral Regrowth at 600 kHz Offset  
dBc  
1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
(continued)  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
2
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
= 90 mA, P =  
out  
Unit  
Typical CW Performances (In Freescale CW Test Fixture, 50 οhm system) V = 28 Vdc, I  
= 120 mA, I  
DD  
DQ1  
DQ2  
2.25 W Avg., 1805--1990 MHz  
Power Gain  
G
29  
19  
dB  
%
ps  
Power Added Efficiency  
Input Return Loss  
PAE  
IRL  
-- 1 3  
dB  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
3
1
2
3
4
5
6
7
8
NC  
NC 16  
Z10  
Z9  
Z8  
V
V
V
DS2  
15  
14  
13  
12  
11  
10  
RD1  
C5  
C9  
C11  
RG1  
Z11  
V
C13  
Z5  
C14  
DS1  
RF  
OUTPUT  
C10  
Z3  
Z4  
Z6  
Z7  
RF  
INPUT  
C6  
Z1  
Z2  
C12  
C15  
C2  
V
GS1  
Quiescent Current  
Temperature Compensation  
R1  
C7  
C3  
V
9
NC  
GS2  
R2  
C8  
C4  
Z1  
0.120x 0.044Microstrip  
0.257x 0.044Microstrip  
0.130x 0.170Microstrip  
0.067x 0.122Microstrip  
0.127x 0.122Microstrip  
0.355x 0.084Microstrip  
Z7  
Z8  
Z9  
Z10  
Z11  
0.273x 0.044Microstrip  
0.917x 0.050Microstrip  
0.304x 0.050Microstrip  
0.710x 0.050Microstrip  
1.296x 0.400Microstrip  
Z2  
Z3  
Z4  
Z5  
Z6  
PCB  
Rogers 4350, 0.020, ε = 3.50  
r
Figure 3. MHV5IC1810NR2 Test Circuit Schematic — 1930--1990 MHz  
Table 6. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1930--1990 MHz  
Part  
Description  
22 pF Chip Capacitor  
Part Number  
ATC100A220GT500XT  
ATC100A8R2CT500XT  
08055C103KAT  
Manufacturer  
ATC  
C2  
C3, C4, C5, C6  
C7, C8, C9  
C10, C11  
C12, C13  
C14, C15  
R1, R2  
8.2 pF Chip Capacitors  
10 nF Chip Capacitors  
6.8 μF Chip Capacitors  
3.3 pF Chip Capacitors  
0.5 pF Chip Capacitors  
1 k, 1/8 W Chip Resistors  
ATC  
AVX  
TDK  
ATC  
ATC  
Vishay  
C4532X5R1H685MT  
ATC100A3R3BT500XT  
ATC100A0R5BT500XT  
CRCW1K00FKEA  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
4
V
V
D1  
D2  
C11  
C10  
C5  
C9  
C13  
C12  
C14  
C15  
C2  
C6  
C3  
C7  
C4  
MHV5IC1810N  
Rev. 0  
C8  
R2  
R1  
V
V
GS2  
GS1  
Figure 4. MHV5IC1810NR2 Test Circuit Component Layout — 1930--1990 MHz  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — 1930--1990 MHz  
35  
34  
33  
32  
31  
30  
-- 1 0  
--15  
--20  
--25  
--30  
--35  
IRL  
V
= 28 Vdc, P = 5 W (Avg.)  
out  
DD  
PAE  
I
= 120 mA, I  
= 90 mA  
DQ1  
DQ2  
100 kHz Tone Spacing  
G
ps  
IMD  
29  
28  
27  
--40  
--45  
-- 5 0  
1900  
1920  
1940  
1960  
1980  
2000  
f, FREQUENCY (MHz)  
Figure 5. Two--Tone Wideband Performance  
@ Pout = 5 Watts (Avg.)  
35  
30  
25  
20  
15  
10  
0
G
ps  
-- 1 0  
-- 2 0  
-- 3 0  
-- 4 0  
-- 5 0  
IRL  
V
= 28 Vdc, P = 20 dBm (Avg.)  
out  
DD  
I
= 120 mA, I  
= 90 mA  
DQ1  
DQ2  
100 kHz Tone Spacing  
IMD  
-- 6 0  
-- 7 0  
5
0
PAE  
1900  
1920  
1940  
1960  
1980  
2000  
f, FREQUENCY (MHz)  
Figure 6. Two--Tone Wideband Performance  
@ Pout = 20 dBm (Avg.)  
32  
-- 10  
I
I
= 120 mA  
= 140 mA  
DQ1  
DQ2  
V
I
= 28 Vdc  
= 120 mA, I  
DD  
3rd Order  
-- 20  
-- 30  
-- 40  
-- 50  
-- 60  
-- 70  
-- 8 0  
= 90 mA  
31  
30  
29  
28  
27  
DQ1  
DQ2  
f = 1960 MHz, 100 kHz Tone Spacing  
I
I
= 120 mA  
= 115 mA  
DQ1  
DQ2  
5th Order  
7th Order  
I
I
= 120 mA  
= 90 mA  
DQ1  
DQ2  
I
I
= 60 mA  
= 90 mA  
I
I
= 120 mA  
= 45 mA  
DQ1  
DQ2  
DQ1  
DQ2  
I
I
= 120 mA  
= 65 mA  
DQ1  
DQ2  
V
= 28 Vdc  
DD  
26  
25  
Center Frequency = 1960 MHz  
100 kHz Tone Spacing  
1
10  
, OUTPUT POWER (WATTS) PEP  
100  
0.1  
1
10  
100  
P
P
, OUTPUT POWER (WATTS) PEP  
out  
out  
Figure 7. Two--Tone Power Gain versus  
Output Power  
Figure 8. Intermodulation Distortion Products  
versus Output Power  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS — 1930--1990 MHz  
47  
Ideal  
P3dB = 42.5 dBm (17.78 W)  
P1dB = 42 dBm (15.85 W)  
45  
43  
41  
39  
37  
Actual  
V
= 28 Vdc  
= 120 mA, I  
DD  
I
= 90 mA  
DQ1  
DQ2  
Pulsed CW, 12 μsec(on), 1% Duty Cycle  
f = 1960 MHz  
35  
-- 2  
0
2
4
6
8
10  
P , INPUT POWER (dBm)  
in  
Figure 9. Pulse CW Output Power versus Input  
Power  
36  
34  
60  
34  
V
I
= 28 Vdc, I  
= 90 mA, f = 1960 MHz  
= 120 mA  
DD  
DQ1  
-- 3 0 _C  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
DQ2  
50  
40  
25_C  
85_C  
G
ps  
T
= --30_C  
25_C  
C
32  
30  
28  
26  
24  
32 V  
28 V  
30  
20  
24 V  
85_C  
I
I
= 120 mA  
= 90 mA  
16 V  
DQ1  
20 V  
10  
0
PAE  
DQ2  
f = 1960 MHz  
V
= 12 V  
DD  
0
2
4
6
8
10 12 14 16 18 20 22 24  
0.1  
1
10  
100  
P
, OUTPUT POWER (WATTS) CW  
P
, OUTPUT POWER (WATTS) CW  
out  
out  
Figure 10. Power Gain and Power Added  
Efficiency versus CW Output Power  
Figure 11. Power Gain versus Output Power  
33  
V
= 28 Vdc, P = 1 W Avg., I  
= 120 mA, I  
= 90 mA  
DD  
out  
DQ1  
DQ2  
Two--Tone Measurements, Center Frequency = 1960 MHz  
32  
31  
T
= --30_C  
25_C  
C
30  
29  
28  
27  
26  
85_C  
1800  
1850  
1900  
f, FREQUENCY (MHz)  
1950  
2000  
Figure 12. Power Gain versus Frequency  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
7
TYPICAL CHARACTERISTICS — 1930--1990 MHz  
-- 45  
-- 50  
10  
8
50  
40  
30  
-- 3 0 _C  
T
EVM  
= 85_C  
C
T
= 85_C  
C
25_C  
25_C  
-- 55  
-- 60  
-- 65  
-- 70  
-- 75  
-- 80  
-- 8 5  
-- 3 0_C  
-- 3 0 _C  
6
25_C  
SR @ 400 kHz  
SR @ 600 kHz  
4
2
0
20  
10  
0
V
I
I
= 28 Vdc  
= 105 mA  
= 90 mA  
DD  
DQ1  
DQ2  
V
I
= 28 Vdc  
= 105 mA  
= 90 mA  
PAE  
DD  
85_C  
DQ1  
I
DQ2  
f = 1960 MHz  
EDGE Modulation  
f = 1960 MHz  
EDGE Modulation  
1
0.1  
10  
100  
0.1  
1
10  
100  
P
, OUTPUT POWER (WATTS) AVG.  
P
, OUTPUT POWER (WATTS) AVG.  
out  
out  
Figure 13. EVM and Power Added Efficiency  
versus Output Power  
Figure 14. Spectral Regrowth at 400 and 600 kHz  
versus Output Power  
8
10  
10  
10  
10  
10  
GSM TEST SIGNAL  
2nd Stage  
7
6
5
4
-- 1 0  
-- 2 0  
-- 3 0  
Reference Power  
VBW = 30 kHz  
Sweep Time = 70 ms  
VBW = 30 kHz  
1st Stage  
-- 4 0  
-- 5 0  
-- 6 0  
-- 7 0  
-- 8 0  
-- 9 0  
--100  
400 kHz  
400 kHz  
90  
100 110 120 130 140 150 160 170 180 190  
600 kHz  
600 kHz  
T , JUNCTION TEMPERATURE (°C)  
J
2
This above graph displays calculated MTTF in hours x ampere  
drain current. Life tests at elevated temperatures have correlated to  
-- 11 0  
better than ±10% of the theoretical prediction for metal failure. Divide  
2
Center 1.96 GHz  
200 kHz  
Span 2 MHz  
MTTF factor by I for MTTF in a particular application.  
D
Figure 15. MTTF Factor versus Junction Temperature  
Figure 16. EDGE Spectrum  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
8
1
2
3
4
5
6
7
8
NC  
NC 16  
Z11  
Z10  
Z9  
V
V
V
DS2  
15  
14  
13  
12  
11  
10  
RD1  
C5  
C9  
C11  
RG1  
Z12  
V
C13  
Z7  
DS1  
RF  
OUTPUT  
C10  
Z3  
Z4  
Z5 Z6  
Z8  
RF  
INPUT  
C12  
C6  
Z1  
Z2  
C1  
C2  
V
GS1  
Quiescent Current  
Temperature Compensation  
R1  
C7  
C3  
V
9
NC  
GS2  
R2  
C8  
C4  
Z1  
0.120x 0.044Microstrip  
0.257x 0.044Microstrip  
0.130x 0.170Microstrip  
0.070x 0.122Microstrip  
0.125x 0.122Microstrip  
0.095x 0.084Microstrip  
0.260x 0.085Microstrip  
Z8  
Z9  
Z10  
Z11  
Z12  
0.273x 0.044Microstrip  
0.917x 0.050Microstrip  
0.304x 0.050Microstrip  
0.710x 0.050Microstrip  
1.296x 0.400Microstrip  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
PCB  
Rogers 4350, 0.020, ε = 3.50  
r
Figure 17. MHV5IC1810NR2 Test Circuit Schematic — 1805--1880 MHz  
Table 7. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1805--1880 MHz  
Part  
Description  
0.8 pF Chip Capacitor  
Part Number  
ATC100A0R8BT500XT  
ATC100A270GT500XT  
ATC100A8R2CT500XT  
08055C103KAT  
Manufacturer  
ATC  
C1  
C2  
27 pF Chip Capacitor  
8.2 pF Chip Capacitors  
10 nF Chip Capacitors  
6.8 μF Chip Capacitors  
3.3 pF Chip Capacitors  
1 k, 1/8 W Chip Resistors  
ATC  
ATC  
AVX  
TDK  
ATC  
Vishay  
C3, C4, C5, C6  
C7, C8, C9  
C10, C11  
C12, C13  
R1, R2  
C4532X5R1H685MT  
ATC100A3R3BT500XT  
CRCW1K00FKEA  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
9
V
V
D1  
D2  
C11  
C10  
C5  
C9  
C2  
C13  
C6  
C12  
C1  
C3  
C7  
C4  
MHV5IC1810N  
Rev. 0  
C8  
R2  
R1  
V
V
GS2  
GS1  
Figure 18. MHV5IC1810NR2 Test Circuit Component Layout — 1805--1880 MHz  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
10  
TYPICAL CHARACTERISTICS — 1805--1880 MHz  
12  
10  
60  
50  
-- 45  
-- 50  
25_C  
T
EVM  
= 85_C  
C
25_C  
-- 55  
-- 60  
-- 65  
-- 70  
-- 75  
-- 80  
-- 8 5  
8
6
4
2
0
40  
30  
20  
10  
0
-- 3 0_C  
25_C  
T
= 85_C  
C
SR @ 400 kHz  
SR @ 600 kHz  
PAE  
V
I
I
= 28 Vdc  
= 105 mA  
= 90 mA  
DD  
DQ1  
DQ2  
V
I
I
= 28 Vdc  
= 105 mA  
= 90 mA  
DD  
DQ1  
DQ2  
-- 3 0 _C  
85_C  
f = 1840 MHz  
EDGE Modulation  
f = 1840 MHz  
EDGE Modulation  
-- 3 0 _C  
1
10  
, OUTPUT POWER (WATTS) AVG.  
100  
1
0.1  
10  
100  
P
P
, OUTPUT POWER (WATTS) AVG.  
out  
out  
Figure 19. Spectral Regrowth at 400 and 600 kHz  
versus Output Power  
Figure 20. Spectral Regrowth at 400 and 600 kHz  
versus Output Power  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
11  
Z = 50 Ω  
o
f = 2000 MHz  
Z
load  
f = 1800 MHz  
f = 2000 MHz  
Z
in  
f = 1800 MHz  
V
= 28 Vdc, I  
= 120 mA, I = 90 mA,P = 5 W Avg.  
DQ2 out  
DD  
DQ1  
f
Z
in  
Z
load  
MHz  
1800  
1820  
1840  
1860  
1880  
1900  
1920  
1940  
1960  
1980  
2000  
43.82 + j6.83  
43.67 + j7.10  
43.50 + j7.34  
43.31 + j7.55  
43.13 + j7.76  
42.96 + j7.96  
42.76 + j8.15  
42.56 + j8.34  
42.36 + j8.50  
42.16 + j8.65  
41.97 + j8.79  
3.49 + j8.58  
3.43 + j8.96  
3.36 + j9.33  
3.31 + j9.68  
3.24 + j10.04  
3.19 + j10.38  
3.14 + j10.72  
3.07 + j11.03  
3.04 + j11.36  
2.99 + j11.65  
2.94 + j11.94  
Z
in  
=
Test circuit impedance as measured from  
gate to ground.  
Z
load  
=
Test circuit impedance as measured  
from drain to ground.  
Output  
Device  
Matching  
Network  
Under Test  
Z
Z
in  
load  
Figure 21. Series Equivalent Input and Load Impedance  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
12  
PACKAGE DIMENSIONS  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
13  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
14  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
15  
PRODUCT DOCUMENTATION  
Refer to the following documents, Tools and software to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
1
Mar. 2011  
Figs. 3 and 17, Test Circuit Schematic, redrawn to reflect correct trace lengths and trace length  
measurements, p. 4, 9  
Updated Part Numbers in Tables 6, 7, Component Designations and Values, to RoHS compliant part  
numbers, p. 4, 9  
Added Product Documentation and Revision History, p. 16  
MHV5IC1810NR2  
RF Device Data  
Freescale Semiconductor  
16  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2006, 2011. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MHV5IC1810N  
Rev. 1,3/2011

相关型号:

ATC100A220JT

280W GaN WIDEBAND PULSED POWER
RFMD

ATC100A220JT150XT

RF Power LDMOS Transistors
FREESCALE

ATC100A3R3BT500XT

RF LDMOS Wideband Integrated Power Amplifier
NXP

ATC100A8R2CT500XT

RF LDMOS Wideband Integrated Power Amplifier
NXP

ATC100B

Porcelain Superchip Multilayer Capacitors
ETC

ATC100B0R1BT500XT

RF Power Field Effect Transistors
FREESCALE

ATC100B0R1BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B0R1JT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B0R2BT500XT

RF Power Field Effect Transistors
FREESCALE

ATC100B0R2BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B0R3BT500XT

RF Power Field Effect Transistors
FREESCALE

ATC100B0R3BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP