ATC100B0R2BT500XT [NXP]

RF LDMOS Wideband Integrated Power Amplifiers;
ATC100B0R2BT500XT
型号: ATC100B0R2BT500XT
厂家: NXP    NXP
描述:

RF LDMOS Wideband Integrated Power Amplifiers

文件: 总32页 (文件大小:1148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MW7IC18100N  
Rev. 3, 3/2009  
Freescale Semiconductor  
Technical Data  
RF LDMOS Wideband Integrated  
Power Amplifiers  
The MW7IC18100N wideband integrated circuit is designed with on-chip  
matching that makes it usable from 1805 to 2050 MHz. This multi-stage  
structure is rated for 24 to 32 Volt operation and covers all typical cellular base  
station modulations including GSM EDGE and CDMA.  
MW7IC18100NR1  
MW7IC18100GNR1  
MW7IC18100NBR1  
Final Application  
1990 MHz, 100 W, 28 V  
GSM/GSM EDGE  
RF LDMOS WIDEBAND  
Typical GSM Performance: VDD = 28 Volts, IDQ1 = 180 mA, IDQ2 = 1000 mA,  
Pout = 100 Watts CW, 1805-1880 MHz or 1930-1990 MHz  
Power Gain — 30 dB  
Power Added Efficiency — 48%  
INTEGRATED POWER AMPLIFIERS  
GSM EDGE Application  
Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 215 mA, IDQ2  
800 mA, Pout = 40 Watts Avg., 1805-1880 MHz or 1930-1990 MHz  
Power Gain — 31 dB  
=
CASE 1618-02  
TO-270 WB-14  
PLASTIC  
Power Added Efficiency — 35%  
Spectral Regrowth @ 400 kHz Offset = -63 dBc  
Spectral Regrowth @ 600 kHz Offset = -80 dBc  
EVM — 1.5% rms  
MW7IC18100NR1  
Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW  
CASE 1621-02  
TO-270 WB-14 GULL  
PLASTIC  
Output Power  
Stable into a 5:1 VSWR. All Spurs Below -60 dBc @ 1 mW to 120 Watts  
MW7IC18100GNR1  
CW Pout  
.
Features  
Characterized with Series Equivalent Large-Signal Impedance Parameters  
and Common Source Scattering Parameters  
CASE 1617-02  
TO-272 WB-14  
PLASTIC  
On-Chip Matching (50 Ohm Input, DC Blocked)  
Integrated Quiescent Current Temperature Compensation with  
Enable/Disable Function (1)  
MW7IC18100NBR1  
Integrated ESD Protection  
225°C Capable Plastic Package  
RoHS Compliant  
In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.  
NC  
1
2
V
DS1  
NC  
NC  
NC  
3
4
5
V
14  
13  
RF /V  
DS1  
out DS2  
RF  
RF  
6
7
8
9
10  
11  
12  
in  
in  
RF  
RF /V  
out DS2  
in  
NC  
RF /V  
out DS2  
V
GS1  
V
GS2  
V
V
GS1  
Quiescent Current  
Temperature Compensation  
V
DS1  
NC  
(1)  
GS2  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistors.  
Figure 1. Functional Block Diagram  
Figure 2. Pin Connections  
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control  
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.  
© Freescale Semiconductor, Inc., 2007-2009. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
-0.5, +65  
-0.5, +6  
-65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain-Source Voltage  
V
DSS  
Gate-Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
GSM Application  
(P = 100 W CW)  
out  
R
°C/W  
θ
JC  
Stage 1, 28 Vdc, I  
Stage 2, 28 Vdc, I  
= 180 mA  
= 1000 mA  
2.0  
0.51  
DQ1  
DQ2  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
1 (Minimum)  
A (Minimum)  
III (Minimum)  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD 22-A113, IPC/JEDEC J-STD-020  
3
260  
°C  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, P = 100 W CW, I  
= 180 mA, I = 1000 mA,  
DQ2  
DD  
out  
DQ1  
f = 1990 MHz.  
Power Gain  
G
27  
45  
30  
-15  
48  
31  
-10  
dB  
ps  
Input Return Loss  
Power Added Efficiency  
IRL  
PAE  
dB  
%
P
out  
@ 1 dB Compression Point, CW  
P1dB  
100  
112  
W
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 215 mA, I = 800 mA,  
DQ2  
DD  
DQ1  
P
out  
= 40 W Avg., 1805-1880 MHz or 1930-1990 MHz EDGE Modulation.  
Power Gain  
G
31  
35  
dB  
%
ps  
Power Added Efficiency  
PAE  
EVM  
SR1  
SR2  
Error Vector Magnitude  
1.5  
-63  
-80  
% rms  
dBc  
dBc  
Spectral Regrowth at 400 kHz Offset  
Spectral Regrowth at 600 kHz Offset  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access  
MTTF calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
4. Measurement made with device in straight lead configuration before any lead forming operation is applied.  
(continued)  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
2
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
C
Characteristic  
Typical Performances (In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, I  
Symbol  
Min  
Typ  
= 1000 mA, 1930-1990 MHz Bandwidth  
DQ2  
Max  
Unit  
= 180 mA, I  
F
DD  
DQ1  
Gain Flatness in 60 MHz Bandwidth @ P = 100 W CW  
G
0.37  
dB  
out  
Average Deviation from Linear Phase in 60 MHz Bandwidth  
Φ
0.502  
°
@ P = 100 W CW  
out  
Average Group Delay @ P = 100 W CW, f = 1960 MHz  
Delay  
2.57  
ns  
out  
Part-to-Part Insertion Phase Variation @ P = 100 W CW,  
ΔΦ  
63.65  
°
out  
f = 1960 MHz, Six Sigma Window  
Gain Variation over Temperature  
(-30°C to +85°C)  
ΔG  
0.048  
0.004  
dB/°C  
Output Power Variation over Temperature  
ΔP1dB  
dBm/°C  
(-30°C to +85°C)  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
3
+
C17  
V
DD1  
V
DD2  
C1  
1
2
NC  
DUT  
C10  
C3  
C6  
C7  
Z8  
3 NC  
4 NC  
5 NC  
6
Z3  
Z4  
RF  
INPUT  
RF  
OUTPUT  
14  
13  
C12  
C14  
Z13 Z14  
Z2  
Z5  
Z6  
Z10  
Z11 Z12  
Z15  
Z16  
Z1  
Z7  
C11  
7
C5  
NC  
8
9
V
GG1  
R1  
R2  
C13  
C15  
Quiescent Current  
Temperature  
Compensation  
Z9  
10  
11  
12  
V
GG2  
NC  
C4  
C8  
C9  
C16  
C2  
Z1  
Z2, Z5  
Z3  
Z4  
Z6  
Z7  
Z8, Z9  
Z10  
0.083x 0.505Microstrip  
0.083x 0.552Microstrip  
0.083x 0.252Microstrip  
0.083x 0.174Microstrip  
0.083x 1.261Microstrip  
0.060x 0.126Microstrip  
0.080x 1.569Microstrip  
0.880x 0.224Microstrip  
Z11  
Z12  
Z13  
Z14  
Z15  
Z16  
PCB  
0.880x 0.256Microstrip  
0.215x 0.138Microstrip  
0.215x 0.252Microstrip  
0.083x 0.298Microstrip  
0.083x 0.810Microstrip  
0.083x 0.250Microstrip  
Arlon CuClad 250GX-0300-55-22, 0.030, ε = 2.55  
r
Figure 3. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1900 MHz  
Table 6. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1900 MHz  
Part  
C1, C2, C3, C4, C5  
C6, C7, C8, C9  
C10, C11  
C12, C13  
C14  
Description  
Part Number  
ATC100B6R8BT500XT  
GRM55DR61H106KA88L  
ATC100B0R2BT500XT  
ATC100B0R5BT500XT  
ATC100B0R8BT500XT  
ATC100B1R5BT500XT  
C1206C225K4RAC  
Manufacturer  
6.8 pF Chip Capacitors  
ATC  
10 μF, 50 V Chip Capacitors  
0.2 pF Chip Capacitors  
Murata  
ATC  
0.5 pF Chip Capacitors  
ATC  
0.8 pF Chip Capacitor  
ATC  
C15  
1.5 pF Chip Capacitor  
ATC  
C16  
2.2 μF, 16 V Chip Capacitor  
470 μF, 63 V Electrolytic Capacitor, Radial  
10 KΩ, 1/4 W Chip Resistors  
Kemet  
Illinois Capacitor  
Vishay  
C17  
477KXM063M  
R1, R2  
CRCW12061001FKEA  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
4
C17  
C3  
C10  
C11  
C6 C7  
C1  
C12  
C13  
C15  
C5  
C14  
MW7IC18100N  
Rev. 2  
C2  
C8 C9  
R1  
R2  
C4  
C16  
Figure 4. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1900 MHz  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — 1900 MHz  
33  
32  
55  
50  
PAE  
45  
40  
35  
31  
30  
G
ps  
−5  
V
= 28 Vdc, P = 100 W CW  
out  
DD  
−10  
−15  
−20  
29  
28  
27  
I
= 180 mA, I  
= 1000 mA  
DQ1  
DQ2  
IRL  
30  
25  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
Figure 5. Power Gain, Input Return Loss and Power Added  
Efficiency versus Frequency @ Pout = 100 Watts CW  
32  
60  
G
ps  
31  
30  
29  
28  
27  
50  
40  
PAE  
−5  
30  
20  
10  
0
V
= 28 Vdc, P = 40 W Avg.  
out  
DD  
I
= 215 mA, I  
DQ2  
EDGE Modulation  
= 800 mA  
DQ1  
−10  
−15  
−20  
IRL  
EVM  
26  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
Figure 6. Power Gain, Input Return Loss, EVM and Power  
Added Efficiency versus Frequency @ Pout = 40 Watts Avg.  
32  
31  
30  
34  
I
= 1500 mA  
DQ2  
1250 mA  
I
= 270 mA  
DQ1  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1000 mA  
750 mA  
225 mA  
180 mA  
29  
28  
27  
500 mA  
135 mA  
90 mA  
V = 28 Vdc, I  
DD  
f = 1960 MHz  
= 180 mA  
10  
DQ1  
26  
25  
V
DD  
f = 1960 MHz  
= 28 Vdc, I  
= 1000 mA  
DQ2  
1
100  
200  
1
10  
100  
200  
P , OUTPUT POWER (WATTS) CW  
out  
P , OUTPUT POWER (WATTS) CW  
out  
Figure 7. Two-Tone Power Gain versus  
Output Power @ IDQ1 = 180 mA  
Figure 8. Two-Tone Power Gain versus  
Output Power @ IDQ2 = 1000 mA  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS — 1900 MHz  
−10  
−20  
−30  
−10  
V
DD  
f1 = 1960 MHz, f2 = 1960.1 MHz  
= 28 Vdc, I  
= 180 mA  
V
DD  
f1 = 1960 MHz, f2 = 1960.1 MHz  
= 28 Vdc, I  
= 1000 mA  
DQ1  
DQ2  
Two−Tone Measurements, 100 kHz Tone Spacing  
Two−Tone Measurements, 100 kHz Tone Spacing  
−20  
−30  
I
= 500 mA  
DQ2  
I
= 90 mA  
DQ1  
750 mA  
135 mA  
1500 mA  
180 mA  
−40  
−50  
−60  
−40  
−50  
−60  
225 mA  
1250 mA  
1000 mA  
270 mA  
1
10  
, OUTPUT POWER (WATTS) PEP  
100  
200  
1
10  
, OUTPUT POWER (WATTS) PEP  
out  
100  
200  
P
out  
P
Figure 9. Third Order Intermodulation Distortion  
versus Output Power @ IDQ1 = 180 mA  
Figure 10. Third Order Intermodulation Distortion  
versus Output Power @ IDQ2 = 1000 mA  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
V
I
= 28 Vdc, P = 80 W (PEP), I  
= 215 mA  
V
= 28 Vdc, I = 180 mA  
= 1000 mA, f1 = 1960 MHz, f2 = 1960.1 MHz  
DD  
out  
DQ1  
= 800 mA, Two−Tone Measurements  
DD  
DQ1  
−10  
DQ2  
I
DQ2  
Two−Tone Measurements, 100 kHz Tone Spacing  
(f1 + f2)/2 = Center Frequency of 1960 MHz  
−20  
−30  
IM3−U  
IM3−L  
−40  
−50  
IM5−U  
3rd Order  
IM5−L  
IM7−U  
−60  
−70  
−80  
5th Order  
IM7−L  
7th Order  
−80  
1
10  
, OUTPUT POWER (WATTS) PEP  
100  
400  
0.1  
1
10  
P
out  
TWO−TONE SPACING (MHz)  
Figure 11. Intermodulation Distortion  
Products versus Output Power  
Figure 12. Intermodulation Distortion  
Products versus Tone Spacing  
40  
35  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
10  
0
58  
57  
56  
55  
54  
Ideal  
−30_C  
P6dB = 51.74 dBm (149.27 W)  
G
ps  
T = −30_C  
C
25_C  
P3dB = 51.32 dBm (135.51 W)  
25_C  
85_C  
85_C  
P1dB = 50.6 dBm (114.8 W)  
53  
52  
51  
50  
49  
Actual  
V
= 28 Vdc  
= 180 mA  
= 1000 mA  
DD  
DQ1  
DQ2  
I
I
V
DD  
= 28 Vdc, I  
= 180 mA, I = 1000 mA  
DQ2  
DQ1  
PAE  
Pulsed CW, 12 μsec(on), 1% Duty Cycle  
f = 1960 MHz  
f = 1960 MHz  
48  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
1
10  
100  
200  
P , INPUT POWER (dBm)  
in  
P , OUTPUT POWER (WATTS) CW  
out  
Figure 13. Pulsed CW Output Power versus  
Input Power  
Figure 14. Power Gain and Power Added  
Efficiency versus Output Power  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
7
TYPICAL CHARACTERISTICS — 1900 MHz  
5
31  
30  
I
I
= 180 mA  
= 1000 mA  
DQ1  
V
= 28 Vdc  
= 215 mA, I  
DD1  
DQ2  
I
DQ1  
EDGE Modulation  
= 800 mA  
DQ2  
f = 1960 MHz  
4
3
2
1
0
29  
28  
27  
P
out  
= 50 W Avg.  
40 W Avg.  
30 W Avg.  
28 V  
32 V  
V
DD  
= 24 V  
100  
0
50  
150  
200  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
P , OUTPUT POWER (WATTS) CW  
out  
Figure 16. EVM versus Frequency  
Figure 15. Power Gain versus Output Power  
−40  
−50  
−60  
−70  
−80  
−55  
−60  
V
= 28 Vdc  
= 215 mA, I  
DD1  
25_C  
SR @ 400 kHz  
P
= 50 W Avg.  
out  
I
= 800 mA  
f = 1960 MHz, EDGE Modulation  
DQ1  
DQ2  
T = −30_C  
C
40 W Avg.  
30 W Avg.  
−65  
−70  
−75  
−80  
−85  
85_C  
V
DD1  
= 28 Vdc, V  
DD2  
= 215 mA, I  
= 28 Vdc  
= 815 mA  
I
DQ1  
DQ2  
f = 1960 MHz, EDGE Modulation  
30 W Avg.  
50 W Avg.  
40 W Avg.  
SR @ 600 kHz  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
1
10  
, OUTPUT POWER (WATTS) AVG.  
100  
200  
P
out  
Figure 18. Spectral Regrowth at 400 kHz  
versus Output Power  
Figure 17. Spectral Regrowth at 400 kHz and  
600 kHz versus Frequency  
−50  
−60  
−70  
−80  
−90  
16  
14  
12  
10  
8
80  
V
I
= 28 Vdc  
= 215 mA, I  
DD1  
25_C  
V
= 28 Vdc  
T = 85_C  
DD1  
DQ1  
DQ2  
C
70  
60  
50  
40  
30  
= 800 mA  
T = 85_C  
DQ1  
DQ2  
C
I
I
= 215 mA  
25_C  
f = 1960 MHz, EDGE Modulation  
= 800 mA  
f = 1960 MHz  
EDGE Modulation  
−30_C  
−30_C  
85_C  
25_C  
6
PAE  
4
20  
10  
0
2
0
EVM  
1
10  
, OUTPUT POWER (WATTS) AVG.  
100  
200  
1
10  
P , OUTPUT POWER (WATTS) AVG.  
out  
100  
200  
P
out  
Figure 20. EVM and Power Added Efficiency  
versus Output Power  
Figure 19. Spectral Regrowth at 600 kHz  
versus Output Power  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
8
TYPICAL CHARACTERISTICS — 1900 MHz  
32  
28  
24  
20  
16  
12  
0
36  
S21  
T = −30_C  
35  
C
−5  
34  
33  
32  
31  
30  
29  
S11  
−10  
−15  
−20  
−25  
25_C  
85_C  
V
= 28 Vdc, P = 40 W Avg.  
out  
DD  
I
= 180 mA, I  
= 1000 mA  
DQ1  
DQ2  
V
= 28 Vdc  
= 180 mA, I  
DD  
I
= 1000 mA  
2000  
DQ1  
DQ2  
1400  
1600  
1800  
2200  
2400  
2600  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
f, FREQUENCY (MHz)  
Figure 22. Power Gain versus Frequency  
Figure 21. Broadband Frequency Response  
9
10  
8
10  
1st Stage  
7
10  
2nd Stage  
6
10  
10  
5
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 28 Vdc, P = 100 W CW, and PAE = 48%.  
DD  
out  
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 23. MTTF versus Junction Temperature  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
9
GSM TEST SIGNAL  
−10  
−20  
−30  
Reference Power  
VWB = 30 kHz  
Sweep Time = 70 ms  
RBW = 30 kHz  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
400 kHz  
400 kHz  
600 kHz  
600 kHz  
−110  
Center 1.96 GHz  
200 kHz  
Span 2 MHz  
Figure 24. EDGE Spectrum  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
10  
Z = 50 Ω  
o
f = 2040 MHz  
f = 1880 MHz  
f = 1880 MHz  
Z
in  
Z
load  
f = 2040 MHz  
V
DD1  
= V  
= 28 Vdc, I  
= 180 mA, I = 1000 mA, P = 100 W CW  
DQ2 out  
DD2  
DQ1  
f
Z
W
Z
load  
W
in  
MHz  
1880  
1900  
1920  
1940  
1960  
1980  
2000  
2020  
2040  
67.48 - j17.89  
60.03 - j20.86  
53.65 - j21.94  
48.13 - j21.94  
43.52 - j21.22  
39.60 - j20.00  
36.14 - j18.52  
33.19 - j16.57  
30.96 - j14.58  
2.324 - j3.239  
2.234 - j3.105  
2.135 - j2.965  
2.037 - j2.818  
1.936 - j2.666  
1.851 - j2.509  
1.765 - j2.355  
1.669 - j2.193  
1.559 - j2.012  
Z
in  
=
Device input impedance as measured from  
gate to ground.  
Z
load  
=
Test circuit impedance as measured  
from drain to ground.  
Output  
Matching  
Network  
Device  
Under Test  
Z
Z
in  
load  
Figure 25. Series Equivalent Input and Load Impedance — 1900 MHz  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
11  
RF Device Data  
Freescale Semiconductor  
Table 7. Common Source S-Parameters (VDD = 28 V, IDQ1 = 180 mA, IDQ2 = 1000 mA, TC = 255C, 50 Ohm System)  
S
11  
S
21  
S
12  
S
22  
f
|S  
11  
|
∠ φ  
|S  
21  
|
∠ φ  
|S  
12  
|
∠ φ  
|S |  
22  
∠ φ  
MHz  
1500  
1550  
1600  
1650  
1700  
1750  
1800  
1850  
1900  
1950  
2000  
2050  
2100  
2150  
2200  
2250  
2300  
2350  
2400  
2450  
2500  
0.612  
0.557  
0.491  
0.410  
0.313  
0.216  
0.131  
0.117  
0.185  
0.253  
0.303  
0.328  
0.331  
0.273  
0.141  
0.050  
0.194  
0.270  
0.288  
0.274  
0.236  
118.5  
104.3  
88.33  
70.24  
48.99  
21.99  
-22.83  
-95.13  
-146.3  
-177.3  
160.4  
139.5  
117.9  
91.65  
64.27  
172.7  
163.4  
139.7  
118.9  
100.6  
83.35  
6.369  
11.42  
16.92  
23.21  
30.49  
32.64  
32.93  
32.62  
32.58  
32.45  
32.41  
32.33  
32.50  
32.84  
32.52  
28.92  
21.30  
14.62  
9.878  
6.771  
4.579  
69.06  
18.29  
-34.34  
-84.03  
-135.7  
168.8  
114.0  
0.002  
0.003  
0.005  
0.005  
0.006  
0.007  
0.006  
0.006  
0.006  
0.007  
0.007  
0.006  
0.008  
0.008  
0.008  
0.009  
0.007  
0.007  
0.007  
0.007  
0.007  
102.9  
85.09  
59.06  
28.40  
7.983  
-15.63  
-35.27  
-53.22  
-77.03  
-98.93  
-108.4  
-127.3  
-145.8  
-169.1  
162.7  
138.3  
112.6  
0.615  
0.666  
0.844  
0.931  
0.887  
0.700  
0.475  
0.332  
0.252  
0.165  
0.052  
0.070  
0.161  
0.257  
0.424  
0.641  
0.804  
0.879  
0.910  
0.911  
0.903  
47.74  
-41.54  
-113.4  
-163.4  
155.6  
120.3  
95.71  
82.10  
68.30  
47.02  
8.742  
-154.8  
179.9  
165.7  
150.3  
123.4  
91.99  
62.03  
34.57  
8.878  
-16.73  
65.01  
20.45  
-22.53  
-65.29  
-108.6  
-152.7  
160.2  
109.2  
56.72  
8.112  
-34.53  
-72.70  
-107.5  
-141.3  
97.74  
84.37  
70.79  
55.31  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
12  
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1900 MHz  
56  
Ideal  
P3dB = 52.72 dBm (187.06 W)  
P2dB = 52.43 dBm (175 W)  
55  
54  
53  
52  
P1dB = 51.93 dBm (155.89 W)  
Actual  
51  
50  
V
= 28 Vdc, I = 180 mA  
= 1000 mA, Pulsed CW  
DD  
DQ1  
I
DQ2  
12 μsec(on) 1% Duty Cycle  
f = 1990 MHz  
49  
17  
18  
19  
20  
21  
22  
24  
23  
P , INPUT POWER (dBm)  
in  
NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V  
Test Impedances per Compression Level  
Z
Z
load  
source  
Ω
Ω
P3dB  
40.2 - j30.91  
0.96 - j3.14  
Figure 26. Pulsed CW Output Power  
versus Input Power @ 28 V  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
13  
+
C17  
V
DD1  
V
DD2  
C1  
1
2
NC  
DUT  
C10  
C3  
C6  
C7  
Z8  
3 NC  
4 NC  
5 NC  
6
Z3  
Z4  
RF  
INPUT  
RF  
OUTPUT  
14  
13  
C12  
C14  
Z13 Z14  
Z2  
Z5  
Z6  
Z10  
Z11 Z12  
Z15  
Z16  
Z1  
Z7  
C11  
7
C5  
NC  
8
9
V
GG1  
R1  
R2  
C13  
C15  
Quiescent Current  
Temperature  
Compensation  
Z9  
10  
11  
12  
V
GG2  
NC  
C4  
C8  
C9  
C16  
C2  
Z1  
Z2, Z5  
Z3  
Z4  
Z6  
Z7  
Z8, Z9  
Z10  
0.083x 0.505Microstrip  
0.083x 0.552Microstrip  
0.083x 0.252Microstrip  
0.083x 0.174Microstrip  
0.083x 1.261Microstrip  
0.060x 0.126Microstrip  
0.080x 1.569Microstrip  
0.880x 0.224Microstrip  
Z11  
Z12  
Z13  
Z14  
Z15  
Z16  
PCB  
0.880x 0.256Microstrip  
0.215x 0.138Microstrip  
0.215x 0.252Microstrip  
0.083x 0.298Microstrip  
0.083x 0.810Microstrip  
0.083x 0.250Microstrip  
Arlon CuClad 250GX-0300-55-22, 0.030, ε = 2.55  
r
Figure 27. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1800 MHz  
Table 8. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1800 MHz  
Part  
C1, C2, C3, C4, C5  
C6, C7, C8, C9  
C10, C11  
C12, C13  
C14  
Description  
Part Number  
ATC100B6R8BT500XT  
GRM55DR61H106KA88L  
ATC100B0R2BT500XT  
ATC100B0R8BT500XT  
ATC100B1R2BT500XT  
ATC100B1R0BT500XT  
C1206C225K4RAC  
Manufacturer  
6.8 pF Chip Capacitors  
ATC  
10 μF, 50 V Chip Capacitors  
0.2 pF Chip Capacitors  
Murata  
ATC  
0.8 pF Chip Capacitors  
ATC  
1.2 pF Chip Capacitor  
ATC  
C15  
1.0 pF Chip Capacitor  
ATC  
C16  
2.2 μF, 16 V Chip Capacitor  
470 μF, 63 V Electrolytic Capacitor, Radial  
10 KΩ, 1/4 W Chip Resistors  
Kemet  
Illinois Capacitor  
Vishay  
C17  
477KXM063M  
R1, R2  
CRCW12061001FKEA  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
14  
C17  
C3  
C10  
C11  
C6 C7  
C1  
C12  
C13  
C14  
C5  
C15  
MW7IC18100N  
Rev. 2  
C2  
C8 C9  
R1  
R2  
C4  
C16  
Figure 28. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1800 MHz  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
15  
TYPICAL CHARACTERISTICS — 1800 MHz  
32  
31  
55  
50  
PAE  
45  
40  
35  
30  
29  
G
ps  
V
= 28 Vdc, P = 100 W CW  
out  
DD1  
−10  
−15  
−20  
−25  
I
= 180 mA, I  
= 1000 mA  
DQ1  
DQ2  
28  
27  
26  
IRL  
30  
25  
1760 1780 1800 1820 1840 1860 1880 1900 1920 1940  
f, FREQUENCY (MHz)  
Figure 29. Power Gain, Input Return Loss and Power Added  
Efficiency versus Frequency @ Pout = 100 Watts CW  
32  
60  
31  
30  
29  
50  
40  
G
ps  
V
I
= 28 Vdc, P = 40 W Avg.  
out  
DD1  
= 215 mA, I  
= 800 mA  
DQ1  
DQ2  
EDGE Modulation  
−10  
PAE  
30  
20  
10  
0
−15  
−20  
28  
27  
IRL  
−25  
−30  
26  
EVM  
25  
1760 1780 1800 1820 1840 1860 1880 1900 1920 1940  
f, FREQUENCY (MHz)  
Figure 30. Power Gain, Input Return Loss, EVM and Power  
Added Efficiency versus Frequency @ Pout = 40 Watts Avg.  
33  
36  
I
= 270 mA  
I
= 1500 mA  
DQ1  
V
DD  
f = 1840 MHz  
= 28 Vdc, I  
= 1000 mA  
DQ2  
DQ2  
35  
34  
33  
32  
31  
30  
29  
28  
1250 mA  
32  
31  
30  
29  
28  
27  
225 mA  
1000 mA  
750 mA  
180 mA  
135 mA  
500 mA  
V
DD  
f = 1840 MHz  
= 28 Vdc, I  
= 180 mA  
10  
DQ1  
90 mA  
27  
26  
1
100  
200  
1
10  
P , OUTPUT POWER (WATTS) CW  
out  
100  
200  
P
out  
, OUTPUT POWER (WATTS) CW  
Figure 31. Two-Tone Power Gain versus  
Output Power @ IDQ1 =180 mA  
Figure 32. Two-Tone Power Gain versus  
Output Power @ IDQ2 = 1000 mA  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
16  
TYPICAL CHARACTERISTICS — 1800 MHz  
−10  
−20  
−30  
−10  
V
DD  
f1 = 1840 MHz, f2 = 1840.1 MHz  
= 28 Vdc, I  
= 180 mA  
V
DD  
f1 = 1840 MHz, f2 = 1840.1 MHz  
= 28 Vdc, I  
= 1000 mA  
DQ1  
DQ2  
Two−Tone Measurements, 100 kHz Tone Spacing  
Two−Tone Measurements, 100 kHz Tone Spacing  
−20  
−30  
I
= 500 mA  
DQ2  
I
= 90 mA  
DQ1  
750 mA  
270 mA  
135 mA  
−40  
−50  
−60  
−40  
−50  
−60  
1000 mA  
1500 mA  
180 mA  
225 mA  
1250 mA  
1
10  
, OUTPUT POWER (WATTS) PEP  
100  
200  
1
10  
P , OUTPUT POWER (WATTS) PEP  
out  
100  
200  
P
out  
Figure 33. Third Order Intermodulation Distortion  
versus Output Power @ IDQ1 = 180 mA  
Figure 34. Third Order Intermodulation Distortion  
versus Output Power @ IDQ2 = 1000 mA  
0
−10  
−20  
−30  
−40  
−50  
−60  
V
I
= 28 Vdc, I = 180 mA  
= 1000 mA, f1 = 1840 MHz, f2 = 1840.1 MHz  
DD  
DQ1  
V
I
= 28 Vdc, P = 80 W (PEP), I  
= 180 mA  
DD  
out  
DQ1  
= 1000 mA, Two−Tone Measurements  
−10  
−20  
−30  
DQ2  
DQ2  
(f1 + f2)/2 = Center Frequency of 1840 MHz  
Two−Tone Measurements, 100 kHz Tone Spacing  
IM3−L  
IM3−U  
−40  
−50  
IM5−U  
IM5−L  
IM7−U  
IM7−L  
3rd Order  
−60  
−70  
−80  
5th Order  
7th Order  
1
10  
100  
400  
0.1  
1
10  
50  
P , OUTPUT POWER (WATTS) PEP  
out  
TWO−TONE SPACING (MHz)  
Figure 35. Intermodulation Distortion  
Products versus Output Power  
Figure 36. Intermodulation Distortion  
Products versus Tone Spacing  
40  
35  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
10  
0
58  
57  
56  
55  
54  
Ideal  
−30_C  
P6dB = 51.876 dBm (154.028 W)  
G
T = −30_C  
ps  
C
25_C  
25_C  
85_C  
P3dB = 51.34 dBm (136.144 W)  
P1dB = 50.539 dBm (113.21 W)  
85_C  
53  
52  
51  
50  
49  
Actual  
= 1000 mA  
V
= 28 Vdc  
= 180 mA  
= 1000 mA  
DD  
DQ1  
DQ2  
I
I
V
DD  
= 28 Vdc, I = 180 mA, I  
DQ1 DQ2  
PAE  
Pulsed CW, 12 μsec(on), 1% Duty Cycle  
f = 1840 MHz  
f = 1840 MHz  
48  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
1
10  
, OUTPUT POWER (WATTS) CW  
100  
200  
P , INPUT POWER (dBm)  
in  
P
out  
Figure 37. Pulsed CW Output Power versus  
Input Power  
Figure 38. Power Gain and Power Added  
Efficiency versus Output Power  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
17  
TYPICAL CHARACTERISTICS — 1800 MHz  
4
32  
31  
I
I
= 180 mA  
= 1000 mA  
V
= 28 Vdc  
= 215 mA, I  
DQ1  
DD  
I
DQ1  
EDGE Modulation  
= 800 mA  
DQ2  
DQ2  
f = 1840 MHz  
3
2
30  
29  
28  
27  
P
= 50 W Avg.  
out  
40 W Avg.  
1
0
28 V  
30 W Avg.  
V
DD  
= 24 V  
32 V  
0
50  
100  
150  
200  
1760 1780 1800 1820 1840 1860 1880 1900 1920 1940  
f, FREQUENCY (MHz)  
P , OUTPUT POWER (WATTS) CW  
out  
Figure 40. EVM versus Frequency  
Figure 39. Power Gain versus Output Power  
−40  
−50  
−60  
−70  
−80  
−55  
−60  
V
= 28 Vdc  
= 215 mA, I  
DD1  
25_C  
85_C  
I
= 800 mA  
f = 1840 MHz, EDGE Modulation  
DQ1  
DQ2  
P
= 50 W Avg.  
out  
T = −30_C  
SR @ 400 kHz  
C
40 W Avg.  
−65  
−70  
−75  
−80  
−85  
V
DD1  
= 28 Vdc, V  
DD2  
= 215 mA, I  
= 28 Vdc  
= 815 mA  
30 W Avg.  
I
DQ1  
DQ2  
f = 1840 MHz, EDGE Modulation  
30 W Avg. 50 W Avg.  
40 W Avg.  
SR @ 600 kHz  
1760 1780 1800 1820 1840 1860 1880 1900 1920 1940  
f, FREQUENCY (MHz)  
1
10  
, OUTPUT POWER (WATTS) AVG.  
100  
200  
P
out  
Figure 42. Spectral Regrowth at 400 kHz  
versus Output Power  
Figure 41. Spectral Regrowth at 400 kHz and  
600 kHz versus Frequency  
−50  
−60  
−70  
−80  
−90  
14  
12  
10  
8
70  
V
I
= 28 Vdc  
= 215 mA, I  
DD1  
V
= 28 Vdc  
25_C  
DD1  
DQ1  
DQ2  
−30_C  
25_C  
= 800 mA  
85_C  
DQ1  
DQ2  
60  
50  
40  
I
I
= 215 mA  
T = 85_C  
C
f = 1840 MHz, EDGE Modulation  
T = −30_C  
= 800 mA  
C
f = 1840 MHz  
EDGE Modulation  
25_C  
85_C  
−30_C  
6
30  
20  
PAE  
4
2
0
10  
0
EVM  
1
10  
, OUTPUT POWER (WATTS) AVG.  
100  
200  
1
10  
P , OUTPUT POWER (WATTS) AVG.  
out  
100  
200  
P
out  
Figure 43. Spectral Regrowth at 600 kHz  
versus Output Power  
Figure 44. EVM and Power Added Efficiency  
versus Output Power  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
18  
TYPICAL CHARACTERISTICS — 1800 MHz  
37  
36  
35  
34  
33  
32  
31  
30  
29  
T = −30_C  
C
25_C  
V
= 28 Vdc, P = 40 W Avg.  
out  
DD  
I
= 180 mA, I  
= 1000 mA  
DQ1  
DQ2  
85_C  
1760 1780 1800 1820 1840 1860 1880 1900 1920 1940  
f, FREQUENCY (MHz)  
Figure 45. Power Gain versus Frequency  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
19  
RF Device Data  
Freescale Semiconductor  
f = 1760 MHz  
Z = 75 Ω  
o
Z
in  
f = 1920 MHz  
f = 1760 MHz  
Z
load  
f = 1920 MHz  
V
DD1  
= V  
= 28 Vdc, I  
= 180 mA, I = 1000 mA, P = 100 W CW  
DQ2 out  
DD2  
DQ1  
f
Z
W
Z
load  
W
in  
MHz  
1760  
1780  
1800  
1820  
1840  
1860  
1880  
1900  
1920  
71.78 + j40.05  
79.83 + j31.13  
84.35 + j19.44  
84.75 + j7.234  
81.21 - j4.076  
74.76 - j12.32  
67.49 - j17.89  
60.03 - j20.86  
53.65 - j21.94  
2.983 - j3.974  
2.872 - j3.861  
2.757 - j3.745  
2.636 - j3.639  
2.535 - j3.506  
2.434 - j3.376  
2.324 - j3.239  
2.234 - j3.105  
2.135 - j2.965  
Z
in  
=
Device input impedance as measured from  
gate to ground.  
Z
load  
=
Test circuit impedance as measured  
from drain to ground.  
Output  
Matching  
Network  
Device  
Under Test  
Z
Z
in  
load  
Figure 46. Series Equivalent Input and Load Impedance — 1800 MHz  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
20  
RF Device Data  
Freescale Semiconductor  
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1800 MHz  
56  
Ideal  
P3dB = 52.46 dBm (176.19 W)  
55  
54  
53  
52  
P2dB = 52.19 dBm (165.57 W)  
P1dB = 51.72 dBm (148.59 W)  
Actual  
51  
50  
V
= 28 Vdc, I = 180 mA  
= 1000 mA, Pulsed CW  
DD  
DQ1  
I
DQ2  
12 μsec(on) 1% Duty Cycle  
f = 1880 MHz  
49  
17  
18  
19  
20  
21  
22  
24  
23  
P , INPUT POWER (dBm)  
in  
NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V  
Test Impedances per Compression Level  
Z
Z
load  
source  
Ω
Ω
P3dB  
83.04 - j2.44  
1.36 - j3.19  
Figure 47. Pulsed CW Output Power  
versus Input Power @ 28 V  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
21  
PACKAGE DIMENSIONS  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
22  
RF Device Data  
Freescale Semiconductor  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
23  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
24  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
25  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
26  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
27  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
28  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
29  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
30  
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages  
AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
May 2007  
June 2007  
Initial Release of Data Sheet  
Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature  
rating will be added to the Maximum Ratings table when parts’ Operating Junction Temperature is  
increased to 225°C.  
2
Apr. 2008  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related  
“Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C  
in Capable Plastic Package bullet, p. 1, 2  
Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2  
Updated PCB information to show more specific material details, Figs. 3, 27, Test Circuit Schematic, p. 4,  
14  
Updated Part Numbers in Tables 6, 8, Component Designations and Values, to RoHS compliant part  
numbers, p. 4, 14  
Replaced Case Outline 1617-01 with 1617-02, Issue A, p. 22-24. Revised cross-hatched area for  
exposed heat spreader. Added pin numbers 1, 12, 13, and 14 to Sheets 1 and 2. Corrected mm Min and  
Max values for dimension A1 to 0.99 and 1.09, respectively.  
Replaced Case Outline 1618-01 with 1618-02, Issue A, p. 25-27. Added pin numbers 1, 12, 13, and 14  
and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheet 1. Removed Pin 5  
designation from Sheet 2.  
Replaced Case Outline 1621-01 with 1621-02, Issue A, p. 28-30. Added pin numbers 1, 12, 13, and 14  
and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheets 1 and 3. Removed Pin 5  
designation from Sheet 2.  
3
Mar. 2009  
Changed Storage Temperature Range in Max Ratings table from -65 to +200 to -65 to +150 for  
standardization across products, p. 2.  
Updated Human Body Model ESD from Class 0 to 1 to reflect 2008 Human Body Model actual test data,  
p. 2  
Added footnote, Measurement made with device in straight lead configuration before any lead forming  
operation is applied, to Functional Tests table, p. 2.  
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1  
RF Device Data  
Freescale Semiconductor  
31  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2007-2009. All rights reserved.  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MW7IC18100N  
Rev. 3, 3/2009  

相关型号:

ATC100B0R3BT500XT

RF Power Field Effect Transistors
FREESCALE

ATC100B0R3BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B0R3JT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B0R4BT500XT

RF Power Field Effect Transistors
FREESCALE

ATC100B0R4JT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B0R5BT500XT

RF LDMOS Wideband Integrated Power Amplifiers
NXP

ATC100B0R5BT500XT

RF LDMOS Wideband Integrated Power Amplifier
FREESCALE

ATC100B0R5CT500XT

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

ATC100B0R6BT250XT

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

ATC100B0R6BT500XT

RF Power LDMOS Transistors
FREESCALE

ATC100B0R7BT500XT

RF Power LDMOS Transistors
FREESCALE

ATC100B0R8BT500XT

RF Power Field Effect Transistors
FREESCALE