935312823518 [NXP]

RISC Microprocessor;
935312823518
型号: 935312823518
厂家: NXP    NXP
描述:

RISC Microprocessor

文件: 总88页 (文件大小:4004K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MPC5121E  
Rev. 5, 02/2012  
MPC5121E/MPC5123  
516 TEPBGA  
27 mm x 27 mm  
MPC5121E/MPC5123  
Data Sheet  
The MPC5121e/MPC5123 integrates a high performance  
e300 CPU core based on the Power Architecture Technology  
• On-chip temperature sensor  
• IIM – IC Identification module  
®
with a rich set of peripheral functions focused on  
communications and systems integration.  
Major features of the MPC5121e/MPC5123 are:  
• e300 Power Architecture processor core  
• Power modes include doze, nap, sleep, deep sleep, and  
hibernate  
• AXE – Auxiliary Execution Engine  
• MBX Lite – 2D/3D graphics engine (not available in  
MPC5123)  
• DIU – Display interface unit  
• DDR1, DDR2, and LPDDR/mobile-DDR SDRAM  
memory controller  
• MEM – 128 KB on-chip SRAM  
• USB 2.0 OTG controller with integrated physical layer  
(PHY)  
• DMA subsystem  
• EMB – Flexible multi-function external memory bus  
interface  
• NFC – NAND flash controller  
• LPC – LocalPlus interface  
• 10/100Base Ethernet  
• PCI interface, version 2.3  
PATA Parallel ATA integrated development environment  
(IDE) controller  
• SATA Serial ATA controller with integrated physical  
layer (PHY)  
• SDHC – MMC/SD/SDIO card host controller  
• PSC – Programmable serial controller  
2
• I C – inter-integrated circuit communication interfaces  
• S/PDIF – Serial audio interface  
• CAN – Controller area network  
• BDLC – J1850 interface  
• VIU – Video Input, ITU-656 compliant  
• RTC – On-Chip real-time clock  
© Freescale Semiconductor, Inc., 2010-2012. All rights reserved.  
Table of Contents  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1
2
3.3.11 FEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3.3.12 USB ULPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
3.3.13 On-Chip USB PHY. . . . . . . . . . . . . . . . . . . . . . 60  
3.3.14 SDHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
3.3.15 DIU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
3.3.16 SPDIF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
3.3.17 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
3.3.18 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
3.3.19 J1850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
3.3.20 PSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
3.3.21 GPIOs and Timers . . . . . . . . . . . . . . . . . . . . . . 73  
3.3.22 Fusebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
3.3.23 IEEE 1149.1 (JTAG). . . . . . . . . . . . . . . . . . . . . 74  
3.3.24 VIU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
System Design Information . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
4.1 Power Up/Down Sequencing. . . . . . . . . . . . . . . . . . . . 76  
4.2 System and CPU Core AVDD Power Supply Filtering. 76  
4.3 Connection Recommendations . . . . . . . . . . . . . . . . . . 77  
4.4 Pull-Up/Pull-Down Resistor Requirements . . . . . . . . . 78  
4.4.1 Pull-Down Resistor Requirements for TEST pin78  
4.4.2 Pull-Up Requirements for the PCI Control Lines78  
4.5 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
4.5.1 TRST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
4.5.2 e300 COP/BDM Interface . . . . . . . . . . . . . . . . 79  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
5.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
5.2 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 83  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.1 516-TEPBGA Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.2 Pinout Listings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Electrical and Thermal Characteristics. . . . . . . . . . . . . . . . . .17  
3.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .17  
3.1.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . .17  
3.1.2 Recommended Operating Conditions . . . . . . . .18  
3.1.3 DC Electrical Specifications. . . . . . . . . . . . . . . .19  
3.1.4 Electrostatic Discharge . . . . . . . . . . . . . . . . . . .22  
3.1.5 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . .23  
3.1.6 Thermal Characteristics. . . . . . . . . . . . . . . . . . .24  
3.2 Oscillator and PLL Electrical Characteristics . . . . . . . .25  
3.2.1 System Oscillator Electrical Characteristics . . .26  
3.2.2 RTC Oscillator Electrical Characteristics. . . . . .26  
3.2.3 System PLL Electrical Characteristics. . . . . . . .26  
3.2.4 e300 Core PLL Electrical Characteristics . . . . .27  
3.3 AC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .28  
3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
3.3.2 AC Operating Frequency Data. . . . . . . . . . . . . .28  
3.3.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
3.3.4 External Interrupts . . . . . . . . . . . . . . . . . . . . . . .32  
3.3.5 SDRAM (DDR) . . . . . . . . . . . . . . . . . . . . . . . . .32  
3.3.6 PCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
3.3.7 LPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
3.3.8 NFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
3.3.9 PATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
3.3.10 SATA PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
3
4
5
6
MPC5121E/MPC5123 Data Sheet, Rev. 5  
2
Freescale Semiconductor  
Ordering Information  
Figure 1 shows a simplified MPC5121e/MPC5123 block diagram.  
Display DDR1/DDR2 Memory  
Functionally  
Multiplexed I/O  
not available in MPC5123  
AXE  
Engine  
8 KB  
Instruc-  
tion  
MBX Lite  
Graphics Engine with  
Vector Processing  
Multi-Port  
Memory Controller  
FEC  
LPC  
NFC  
PATA  
VIU DIU  
USB2  
+ PHY  
DMA  
64-Channel  
Cache  
128 KB  
SRAM  
USB2  
ULPI  
JTAG/COP  
SATA  
+ PHY  
RESET/  
CLOCK  
e300  
Power Architecture  
32 KB Instruction Cache  
32 KB Data Cache  
PCI  
Temp  
Fuse  
83 MHz (max) IP Bus  
Figure 1. Simplified MPC5121e/MPC5123 Block Diagram  
1
Ordering Information  
Table 1. MPC5121e Orderable Part Numbers  
Temperature  
(ambient)  
Freescale Part Number  
Speed (MHz)  
Qualification  
Package  
Availability  
MPC5121VY400B  
MPC5121VY400BR  
MPC5121YVY400B  
MPC5121YVY400BR  
SPC5121YVY400B  
SPC5121YVY400BR  
400  
400  
400  
400  
400  
400  
0 oC to 70 oC  
0 oC to 70 oC  
Consumer  
Consumer  
Industrial  
Industrial  
RoHS and Pb-free  
RoHS and Pb-free Tape and Reel  
RoHS and Pb-free Tray  
RoHS and Pb-free Tape and Reel  
Tray  
Automotive—AEC RoHS and Pb-free Tape and Reel  
Tray  
–40 oC to 85 oC  
–40 oC to 85 oC  
–40 oC to 85 oC  
–40 oC to 85 oC  
Automotive—AEC RoHS and Pb-free  
Table 2. MPC5123 Orderable Part Numbers  
Temperature  
Freescale Part Number  
Speed (MHz)  
Qualification  
Package  
Availability  
(ambient)  
MPC5123VY400B  
MPC5123VY400BR  
MPC5123YVY400B  
400  
400  
400  
0 oC to 70 oC  
0 oC to 70 oC  
–40 oC to 85 oC  
Consumer  
Consumer  
Industrial  
RoHS and Pb-free  
RoHS and Pb-free  
RoHS and Pb-free  
Tray  
Tape and Reel  
Tray  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
3
Ordering Information  
Freescale Part Number  
Table 2. MPC5123 Orderable Part Numbers (continued)  
Temperature  
Speed (MHz)  
Qualification  
Package  
Availability  
(ambient)  
MPC5123YVY400BR  
SPC5123YVY400B  
SPC5123YVY400BR  
400  
400  
400  
–40 oC to 85 oC  
–40 oC to 85 oC  
–40 oC to 85 oC  
Industrial  
RoHS and Pb-free  
Tape and Reel  
Tray  
Automotive—AEC RoHS and Pb-free  
Automotive—AEC RoHS and Pb-free  
Tape and Reel  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
4
Freescale Semiconductor  
Pin Assignments  
2
Pin Assignments  
This section details pin assignments.  
2.1  
516-TEPBGA Ball Map  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
SATA_  
RX_VS  
SA  
USB2_  
DRVVB  
US  
SATA_ SATA_  
PSC7_ PSC7_ PSC6_ PSC6_ PSC6_ PSC11 PSC10 PSC2_ PSC1_ PSC1_ PSC0_ CAN1_ GPIO2 RTC_X  
USB_D USB_D USB_T  
A
B
VSS  
VSS  
VSS  
RXN  
RXP  
4
3
4
2
0
_0  
_2  
3
3
1
1
TX  
8
TALO  
VSS  
M
P
PA  
USB2_  
VBUS_  
PWR_F  
AULT  
SATA_  
VSS RX_VS VSS  
SA  
USB_V  
VSS SSA_B  
IAS  
PSC8_  
3
PSC7_ PSC6_ VDD_I PSC11  
PSC10 PSC2_ VDD_I PSC0_  
_1  
GPIO3 CAN2_  
RX  
USB_X VDD_I  
TALO  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0
3
O
_1  
1
O
4
1
O
SATA_  
VSS VDDA_  
1P2  
AVDD_  
FUSE  
WR  
PSC_  
MCLK_  
IN  
SATA_ SATA_  
XTALO XTALI  
PSC9_ PSC8_ PSC7_  
PSC6_ PSC11 PSC10 PSC10 PSC2_ PSC1_ PSC0_  
GPIO3 CAN1_ RTC_X USB_V USB_V  
RX TALI DDA SSA  
USB_X  
TALI  
PCI_C  
LK  
C
D
VSS  
VSS  
VSS  
VSS  
0
2
2
1
_2  
_3  
_0  
0
0
3
0
SATA_  
SATA_ SATA_ SATA_  
VDDA_ VSS PLL_V VDDA_ VDDA_  
USB_V USB_P  
DDA_B LL_PW VSS  
IAS R3  
PSC9_ PSC9_ PSC8_ VDD_I VDD_I PSC11  
PSC2_ PSC1_ VDD_I PSC0_  
HIB_M VBAT_ USB_V USB_V  
PCI_R  
EQ2  
VSS  
VSS  
3
1
1
O
O
_4  
4
4
O
0
ODE  
RTC  
DDA  
BUS  
1P2  
SSA  
3P3  
VREG  
SATA_V SATA_P  
DDA_1 LL_VDD  
SATA_  
TXN  
SATA_R SATA_A PSC9_ PSC9_ PSC8_ PSC8_ PSC7_ PSC11 PSC10 PSC2_ PSC1_ PSC0_ CAN2_ GPIO2  
USB_U USB_V USB_V USB_R USB_PL PCI_G PCI_G PCI_R  
E
F
VSS  
ESREF NAVIZ  
4
2
4
0
1
_3  
_4  
2
2
2
TX  
9
ID  
SSA  
SSA  
REF  
L_GND  
NT2  
NT0  
EQ1  
P2  
A1P2  
SATA_  
TXP  
VDD_I  
O
VDD_I VDD_I  
VDD_I  
O
PCI_RS VDD_I PCI_A VDD_I PCI_A  
T_OUT D30 D28  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
O
O
O
O
SATA_  
TX_VS  
SA  
NFC_R NFC_ NFC_  
WE WP  
PCI_G PCI_R PCI_A PCI_A PCI_C/  
G
H
J
E
NT1  
EQ0  
D29  
D26  
BE3  
NFC_R PATA_ NFC_C NFC_A NFC_C  
VDD_I PCI_A  
PCI_A  
D24  
PCI_A  
D21  
VSS  
VSS  
VSS  
/B  
DACK  
E0  
LE  
LE  
O
D31  
PATA_I  
OCHR  
DY  
PATA_I  
OR  
PATA_I PATA_ VDD_I  
PCI_A PCI_A PCI_A PCI_A PCI_A  
D27 D25 D23 D20 D18  
NTRQ DRQ  
PATA_I  
SOLAT  
E
O
PATA_ VDD_I  
VDD_I PATA_I  
VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C  
PCI_ID PCI_A PCI_A PCI_A PCI_IR  
SEL D22 D19 D17 DY  
K
VSS  
VSS  
VSS  
VSS  
CE1  
O
O
OW  
ORE  
ORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ORE  
EMB_A EMB_A EMB_A EMB_A PATA_  
VDD_C  
ORE  
VDD_C  
ORE  
PCI_A VDD_I PCI_C/ VDD_I PCI_D  
D16 BE2 EVSEL  
L
M
N
P
R
T
D03  
D02  
D01  
D00  
CE2  
O
O
EMB_A  
D06  
EMB_A  
D05  
EMB_A  
D04  
VDD_C  
ORE  
VDD_C  
ORE  
PCI_T PCI_F PCI_S PCI_P PCI_S  
VSS  
VSS  
RDY  
RAME  
TOP  
ERR  
ERR  
EMB_A EMB_A EMB_A EMB_A  
D10 D09 D08 D07  
VDD_I  
O
VDD_C  
ORE  
VDD_C  
ORE  
VDD_I PCI_P  
AR  
PCI_C/  
BE1  
PCI_A  
D15  
VSS  
VSS  
VSS  
O
EMB_A EMB_A EMB_A EMB_A EMB_A VDD_I  
VDD_C  
ORE  
VDD_C  
ORE  
VDD_I PCI_C/ PCI_A PCI_A PCI_A PCI_A  
D15  
D14  
D11  
D13  
D12  
O
O
BE0  
D09  
D13  
D14  
D12  
EMB_A VDD_I EMB_A VDD_I EMB_A  
D17 D16 D19  
VDD_C  
ORE  
VDD_C  
ORE  
PCI_A PCI_A PCI_A PCI_A PCI_A  
D03 D06 D10 D11 D08  
O
O
EMB_A EMB_A EMB_A EMB_A EMB_A  
VDD_C  
ORE  
VDD_C  
ORE  
SYS_PL VDD_I PCI_A VDD_I PCI_A  
L_AVDD D05 D07  
VSS  
VSS  
VSS  
VSS  
D22  
D18  
D20  
D21  
D23  
O
O
EMB_A  
D25  
EMB_A  
D24  
EMB_A  
D29  
VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C  
SYS_PL PCI_IN PCI_A PCI_A PCI_A  
U
V
W
Y
VSS  
VSS  
ORE  
ORE  
ORE  
ORE  
ORE  
ORE  
ORE  
ORE  
L_AVSS  
TA  
D00  
D02  
D04  
EMB_A EMB_A EMB_A EMB_A EMB_A  
D26 D27 D28 D30 X01  
SRESE  
T
SYS_X  
TALI  
PCI_A  
D01  
VSS  
VSS  
EMB_A EMB_A EMB_A LPC_A LPC_C VDD_I  
VDD_I  
O
PORE HRES  
SYS_X  
TALO  
TDO  
TEST  
TMS  
D31  
X00  
X02  
X03  
S0  
O
SET  
ET  
LPC_C VDD_I LPC_C VDD_I LPC_O  
S2 S1  
J1850_  
TX  
CKSTP  
_OUT  
TDI  
VSS  
O
O
E
VDD_  
MEM_I  
O
VDD_ VDD_  
MEM_I MEM_I  
CORE  
_PLL_  
AVDD  
LPC_R LPC_A PSC4_ LPC_C PSC4_  
I2C2_S VDD_I J1850_ VDD_I  
AA  
AB  
AC  
AD  
VSS  
VSS  
VSS  
VSS  
VSS  
MA1  
VSS  
VSS  
TRST  
TCK  
WB  
CK  
1
LK  
3
DA  
O
RX  
O
O
O
VDD_  
SPDIF  
PSC4_  
0
PSC4_  
2
PSC3_  
1
MDQ1  
0
MVRE MDQ1 MDQ2 MDQ2 MDQ3  
I2C1_S I2C1_S  
VSS  
VSS  
MDQ1 MVTT0 MDQ5  
MA5 MEM_I MA14 MCKE _TXCL  
VSS  
IRQ1  
F
9
1
7
1
CL  
DA  
O
K
VDD_  
VDD_  
MEM_I  
O
VDD_  
MEM_I  
O
VDD_  
PSC5_ PSC4_ PSC5_ PSC3_  
MDQ1  
4
MDQS  
2
MDQ2  
5
MDQ3  
0
I2C0_S SPDIF I2C2_S  
MEM_I MDM0 MDQ8  
O
VSS  
VSS  
MBA1  
MBA0  
VSS  
MA0  
VSS  
MA7  
MA11 MEM_I MODT  
O
VSS  
IRQ0  
0
4
1
2
CL  
_RX  
CL  
VDD_  
MEM_I  
O
CORE  
MCS _PLL_  
AVSS  
PSC5_ PSC5_  
PSC3_ MDQS  
MDQ1 MDQS  
MDQ1 MDQ1 MDQ2 MDQ2 MDQS MDQ2  
SPDIF  
_TX  
I2C0_S  
DA  
VSS  
MDQ6  
MA4  
MA9  
MA13 MWE  
VSS  
2
3
3
0
1
1
6
8
0
3
3
9
VDD_  
VDD_  
MEM_I MVTT2 VSS  
O
VDD_  
VDD_  
VDD_I VDD_I PSC5_  
MDQ1  
2
MDQ2  
4
MDQ2  
8
VDD_I VDD_I  
AE  
AF  
MDQ2 MEM_I MDQ7  
O
VSS  
MDM1  
MVTT3 MEM_I  
O
MA2  
MCK  
MA6 MEM_I MA12 MA15  
O
VSS  
VSS  
O
O
4
O
O
VDD_I PSC3_ PSC3_  
MDQ1 MDQ1 MDQ1  
3
MDQ2 MDQ2  
2
VDD_I  
O
MDQ0 MDQ3 MDQ4 MDQ9 MVTT1  
MDM2  
MDM3 MCK  
MBA2  
MA3  
MA8  
MA10 MRAS MCAS  
O
0
4
5
7
6
Figure 2. Ball Map for the MPC5121e 516 TEPBGA Package  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
5
Pin Assignments  
2.2  
Pinout Listings  
Table 3 provides the pin-out listing for the MPC5121e/MPC5123.  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 1 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
DDR Memory Interface (67 Total)  
MDQ0  
MDQ1  
AF5  
AB6  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
MDQ2  
AE4  
MDQ3  
AF6  
MDQ4  
AF7  
MDQ5  
AB8  
MDQ6  
AD6  
MDQ7  
AE6  
MDQ8  
AC7  
MDQ9  
AF8  
MDQ10  
MDQ11  
MDQ12  
MDQ13  
MDQ14  
MDQ15  
MDQ16  
MDQ17  
MDQ18  
MDQ19  
MDQ20  
MDQ21  
MDQ22  
MDQ23  
MDQ24  
MDQ25  
MDQ26  
MDQ27  
MDQ28  
MDQ29  
MDQ30  
AB9  
AD7  
AE9  
AF10  
AC9  
AF11  
AD10  
AF12  
AD11  
AB12  
AD12  
AB13  
AF14  
AD13  
AE13  
AC13  
AF15  
AB14  
AE16  
AD15  
AC15  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
6
Freescale Semiconductor  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 2 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
MDQ31  
MDM0  
MDM1  
MDM2  
MDM3  
MDQS0  
MDQS1  
MDQS2  
MDQS3  
MBA0  
MBA1  
MBA2  
MA0  
AB15  
AC6  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
VDD_MEM_IO  
AE8  
AF13  
AF16  
AD5  
AD8  
AC11  
AD14  
AD16  
AC16  
AF19  
AD17  
AB16  
AE18  
AF20  
AD18  
AB17  
AE19  
AC18  
AF21  
AD19  
AF22  
AC19  
AE21  
AD20  
AB19  
AE22  
AD21  
AF23  
AF24  
AD22  
AB20  
AF17  
AF18  
MA1  
MA2  
MA3  
MA4  
MA5  
MA6  
MA7  
MA8  
MA9  
MA10  
MA11  
MA12  
MA13  
MA14  
MA15  
MWE  
MRAS  
MCAS  
MCS  
MCKE  
MCK  
MCK  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
7
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 3 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
MODT  
AC21  
DDR  
VDD_MEM_IO  
LPC Interface (8 Total)  
LPC_CLK  
LPC_OE  
AA4  
Y5  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
LPC_RW  
LPC_CS0  
LPC_CS1  
LPC_CS2  
LPC_ACK  
LPC_AX03  
AA1  
W5  
Y3  
Y1  
AA2  
W4  
EMB Interface (35 Total)  
EMB_AX02  
EMB_AX01  
EMB_AX00  
EMB_AD31  
EMB_AD30  
EMB_AD29  
EMB_AD28  
EMB_AD27  
EMB_AD26  
EMB_AD25  
EMB_AD24  
EMB_AD23  
EMB_AD22  
EMB_AD21  
EMB_AD20  
EMB_AD19  
EMB_AD18  
EMB_AD17  
EMB_AD16  
EMB_AD15  
EMB_AD14  
EMB_AD13  
EMB_AD12  
W3  
V5  
W2  
W1  
V4  
U5  
V3  
V2  
V1  
U1  
U3  
T5  
T1  
T4  
T3  
R5  
T2  
R1  
R3  
P1  
P2  
P4  
P5  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
8
Freescale Semiconductor  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 4 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
EMB_AD11  
EMB_AD10  
EMB_AD09  
EMB_AD08  
EMB_AD07  
EMB_AD06  
EMB_AD05  
EMB_AD04  
EMB_AD03  
EMB_AD02  
EMB_AD01  
EMB_AD00  
P3  
N1  
N2  
N3  
N4  
M1  
M3  
M5  
L1  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
L2  
L3  
L4  
PATA Interface (9 Total)  
PATA_CE1  
PATA_CE2  
K1  
L5  
K3  
J1  
K5  
J2  
J3  
J4  
H2  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
ATA name: CS0  
ATA name: CS1  
PATA_ISOLATE  
PATA_IOR  
ATA name: DIOR  
ATA name: DIOW  
ATA name: IORDY  
PATA_IOW  
PATA_IOCHRDY  
PATA_INTRQ  
PATA_DRQ  
ATA name: DMARQ  
ATA name: DMACK  
PATA_DACK  
NFC Interface (7 Total)  
NFC_WP  
NFC_R/B  
NFC_WE  
NFC_RE  
NFC_ALE  
NFC_CLE  
NFC_CE0  
G4  
H1  
G3  
G2  
H4  
H5  
H3  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
I2C Interface (6 Total)  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
AC23  
AD26  
AB22  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
9
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 5 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
I2C1_SDA  
I2C2_SCL  
I2C2_SDA  
AB23  
AC25  
AA22  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
IRQ Interface (2 Total)  
IRQ0  
IRQ1  
AC26  
AB25  
General IO  
General IO  
VDD_IO  
VDD_IO  
CAN Interface (4 Total)  
CAN1_RX  
CAN1_TX  
CAN2_RX  
CAN2_TX  
C19  
A18  
B19  
E16  
Analog Input  
General IO  
Analog Input  
General IO  
VBAT_RTC  
VDD_IO  
VBAT_RTC  
VDD_IO  
J1850 Interface (2 Total)  
J1850_TX  
J1850_RX  
Y22  
General IO  
General IO  
VDD_IO  
VDD_IO  
AA24  
SPDIF Interface (3 Total)  
SPDIF_TXCLK  
SPDIF_TX  
AB21  
AD24  
AC24  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
SPDIF_RX  
PCI (54 Total)  
PCI_INTA  
PCI_RST_OUT  
PCI_AD00  
PCI_AD01  
PCI_AD02  
PCI_AD03  
PCI_AD04  
PCI_AD05  
PCI_AD06  
PCI_AD07  
PCI_AD08  
PCI_AD09  
PCI_AD10  
PCI_AD11  
PCI_AD12  
U23  
F22  
U24  
V26  
U25  
R22  
U26  
T24  
R23  
T26  
R26  
P23  
R24  
R25  
P26  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
10  
Freescale Semiconductor  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 6 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
PCI_AD13  
PCI_AD14  
PCI_AD15  
PCI_AD16  
PCI_AD17  
PCI_AD18  
PCI_AD19  
PCI_AD20  
PCI_AD21  
PCI_AD22  
PCI_AD23  
PCI_AD24  
PCI_AD25  
PCI_AD26  
PCI_AD27  
PCI_AD28  
PCI_AD29  
PCI_AD30  
PCI_AD31  
PCI_C/BE0  
PCI_C/BE1  
PCI_C/BE2  
PCI_C/BE3  
PCI_PAR  
P24  
P25  
N26  
L22  
K25  
J26  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
K24  
J25  
H26  
K23  
J24  
H24  
J23  
G25  
J22  
F26  
G24  
F24  
H22  
P22  
N24  
L24  
G26  
N22  
M23  
M22  
K26  
M24  
L26  
K22  
M26  
M25  
G23  
E26  
D26  
1
PCI_FRAME  
PCI_TRDY  
PCI_IRDY  
PCI_STOP  
PCI_DEVSEL  
PCI_IDSEL  
PCI_SERR  
PCI_PERR  
PCI_REQ0  
PCI_REQ1  
PCI_REQ2  
1
1
1
1
1
1
1
1
1
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
11  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 7 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
PCI_GNT0  
PCI_GNT1  
PCI_GNT2  
PCI_CLK  
E25  
G22  
E24  
C26  
PCI  
PCI  
PCI  
PCI  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
PSC Interface (61 Total)  
PSC_MCLK_IN  
PSC0_0  
PSC0_1  
PSC0_2  
PSC0_3  
PSC0_4  
PSC1_0  
PSC1_1  
PSC1_2  
PSC1_3  
PSC1_4  
PSC2_0  
PSC2_1  
PSC2_2  
PSC2_3  
PSC2_4  
PSC3_0  
PSC3_1  
PSC3_2  
PSC3_3  
PSC3_4  
PSC4_0  
PSC4_1  
PSC4_2  
PSC4_3  
PSC4_4  
PSC5_0  
PSC5_1  
PSC5_2  
C17  
D16  
A17  
E15  
C16  
B16  
C15  
A16  
E14  
A15  
D14  
C14  
B14  
E13  
A14  
D13  
AF3  
AB5  
AC4  
AD4  
AF4  
AB1  
AA3  
AB3  
AA5  
AC2  
AC1  
AC3  
AD1  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
12  
Freescale Semiconductor  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 8 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
PSC5_3  
PSC5_4  
PSC6_0  
PSC6_1  
PSC6_2  
PSC6_3  
PSC6_4  
PSC7_0  
PSC7_1  
PSC7_2  
PSC7_3  
PSC7_4  
PSC8_0  
PSC8_1  
PSC8_2  
PSC8_3  
PSC8_4  
PSC9_0  
PSC9_1  
PSC9_2  
PSC9_3  
PSC9_4  
PSC10_0  
PSC10_1  
PSC10_2  
PSC10_3  
PSC10_4  
PSC11_0  
PSC11_1  
PSC11_2  
PSC11_3  
PSC11_4  
AD2  
AE3  
A11  
C10  
A10  
B9  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
A9  
B8  
E10  
C8  
A8  
A7  
E9  
D8  
C7  
B6  
E8  
C6  
D7  
E7  
D6  
E6  
C13  
B13  
A13  
C12  
E12  
A12  
B11  
C11  
E11  
D11  
JTAG (5 Total)  
2
TCK  
AB26  
General IO  
VDD_IO  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
13  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 9 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
3
TDI  
TDO  
TMS  
TRST  
Y23  
W22  
Y25  
General IO  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
3
3
AA26  
Test / Debug (2 Total)  
4
5
TEST  
W25  
Y26  
General IO  
General IO  
VDD_IO  
VDD_IO  
,
CKSTP_OUT  
System Control (3 Total)  
6
2
HRESET  
PORESET  
SRESET  
W24  
W23  
V22  
General IO  
General IO  
General IO  
VDD_IO  
VDD_IO  
VDD_IO  
,
4 2  
,
6 2  
,
System Clock (2 Total)  
SYS_XTALI  
SYS_XTALO  
V24  
Analog Input  
SYS_PLL_AVDD  
Oscillator Input  
W26  
Analog Output SYS_PLL_AVDD  
RTC (3 Total)  
Analog Input  
Oscillator Output  
RTC_XTALI  
RTC_XTALO  
HIB_MODE  
C20  
A20  
D18  
VBAT_RTC  
VBAT_RTC  
VBAT_RTC  
Oscillator Input  
Oscillator Output  
Analog Output  
Analog Output  
GP Input Only (4 Total)  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
A19  
E17  
C18  
B18  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
VBAT_RTC  
VBAT_RTC  
VBAT_RTC  
VBAT_RTC  
DDR Reference Voltage  
MVREF  
AB11  
Analog Input Voltage Reference for SSTL input pads  
USB – PHY without Power and Ground Supplies (7 Total)  
USB_XTALI  
USB_XTALO  
USB_DP  
C24  
B24  
A23  
A22  
A24  
Analog Input  
USB_PLL_PWR3  
Oscillator Input  
Analog Output USB_PLL_PWR3  
Oscillator Output  
Analog IO  
Analog IO  
USB_VDDA  
USB_VDDA  
USB_DM  
USB_TPA  
Analog Output  
USB PHY  
debug output  
USB_VBUS  
D21  
Analog IO  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
14  
Freescale Semiconductor  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 10 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
USB_UID  
E19  
Analog Input  
USB digital IOs (2 Total)  
USB2_VBUS_PWR_FA  
ULT  
B21  
A21  
General IO  
VDD_IO  
VDD_IO  
USB2_DRVVBUS  
General IO  
SATA PHY without Power and Ground Supplies (7 Total)  
SATA_XTALI  
SATA_XTALO  
SATA_ANAVIZ  
C3  
C2  
E5  
Analog Input SATA_VDDA_3P3  
Oscillator Input  
Analog Output SATA_VDDA_3P3 Oscillator Output  
Analog Output  
SATA PHY debug  
output  
SATA_TXN  
SATA_TXP  
SATA_RXP  
SATA_RXN  
E1  
F1  
A5  
A4  
Analog Output SATA_VDDA_1P2  
Analog Output SATA_VDDA_1P2  
Analog Input SATA_VDDA_1P2  
Analog Input SATA_VDDA_1P2  
Power and Ground Supplies (without SATA PHY and USB PHY)  
VDD_CORE  
K10, K11, K12, K13,  
K14, K15, K16, K17,  
L10, L17, M10, M17,  
N10, N17, P10, P17,  
R10, R17, T10, T17,  
U10, U11, U12, U13,  
U14, U15, U16, U17  
Power  
VDD_IO  
B10, B15, B25, D9,  
D10, D15, F11, F13,  
F14, F19, F23, F25,  
H21, J5, K2, K4, L23,  
L25, N6, N21, P6,  
P21, R2, R4, T23,  
T25, W6, W21, Y2,  
Y4, AA23, AA25, AE1,  
AE2, AE24, AE25,  
AF2, AF25  
Power  
VDD_MEM_IO  
AA8, AA13, AA14,  
AB18, AC5, AC10,  
AC14, AC20, AD9,  
AE5, AE10, AE15,  
AE20  
Power  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
15  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 11 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
VSS  
A2, A3, A25, B1,B2,  
B3, B5, B7, B12, B17,  
B20, B22, B26, C1,  
C4, C23, C25, D2,  
D12, D17, D24, D25,  
E18, F2, F3, F4, F5,  
F6, F8, F10, F16, F17,  
F21, G5, H6, H23,  
H25, K6, K21, L6, L11,  
L12, L13, L14, L15,  
L16, L21, M2, M4,  
M11, M12, M13, M14,  
M15, M16, N5, N11,  
N12, N13, N14, N15,  
N16,  
Ground  
VSS  
N23, N25, P11, P12,  
P13, P14, P15, P16,  
R11, R12, R13, R14,  
R15, R16, T6, T11,  
T12, T13, T14, T15,  
T16, T21, U2, U4, U6,  
U21, V23, V25, Y24,  
AA6, AA10, AA11,  
AA16, AA17, AA21,  
AB2, AB4, AB10,  
Ground  
AB24, AC8, AC12,  
AC17, AC22, AD3,  
AD25, AE7, AE12,  
AE17, AE23, AE26  
SYS_PLL_AVDD  
SYS_PLL_AVSS  
CORE_PLL_AVDD  
CORE_PLL_AVSS  
VBAT_RTC  
T22  
U22  
Analog Power  
Analog Ground  
Analog Power  
Analog Ground  
Power  
AA19  
AD23  
D19  
AVDD_FUSEWR  
MVTT0  
C9  
Power  
AB7  
AF9  
Analog Input SSTL(DDR2) Termination (ODT) Voltage  
Analog Input SSTL(DDR2) Termination (ODT) Voltage  
Analog Input SSTL(DDR2) Termination (ODT) Voltage  
Analog Input SSTL(DDR2) Termination (ODT) Voltage  
MVTT1  
MVTT2  
AE11  
AE14  
MVTT3  
Power and Ground Supplies (USB PHY)  
USB_PLL_GND  
USB_PLL_PWR3  
USB_RREF  
E23  
D23  
E22  
B23  
Analog Ground  
Analog Power  
Analog Power  
Analog Ground  
USB_VSSA_BIAS  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
16  
Freescale Semiconductor  
Pin Assignments  
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 12 of 12)  
Signal  
Package Pin Number  
Pad Type  
Power Supply  
Notes  
USB_VDDA_BIAS  
USB_VSSA  
D22  
Analog Power  
Analog Ground  
Analog Power  
C22, E20, E21  
C21, D20  
USB_VDDA  
Power and Ground Supplies (SATA PHY)  
SATA_RESREF  
SATA_VDDA_3P3  
SATA_VDDA_1P2  
SATA_VDDA_VREG  
SATA_PLL_VDDA1P2  
SATA_PLL_VSSA  
SATA_RX_VSSA  
SATA_TX_VSSA  
E4  
D4  
Analog Power  
Analog Power  
Analog Power  
Analog Power  
Analog Power  
Analog Ground  
Analog Ground  
Analog Ground  
C5, D1, E2  
D5  
E3  
D3  
A6, B4  
G1  
1
This pins should have an external pull-up resistor. Follow PCI specification and see System Design  
Information.  
2
3
4
5
6
This pin contains an enabled internal Schmitt trigger.  
These JTAG pins have internal pull-up P-FETs. This pin can not be configured.  
This pin is an input only. This pin can not be configured.  
This test pin must be tied to VSS  
.
This pin is an input or open-drain output. This pin can not be configured. There is an internal pull-up resistor  
implemented.  
NOTE  
This table indicates only the pins with permananently enabled internal pull-up, pull-down,  
or Schmitt trigger. Most of the digital I/O pins can be configured to enable internal pull-up,  
pull-down, or Schmitt trigger. See the MPC5121e Microcontroller Reference Manual, IO  
Control chapter.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
17  
Electrical and Thermal Characteristics  
3
Electrical and Thermal Characteristics  
3.1  
DC Electrical Characteristics  
3.1.1  
Absolute Maximum Ratings  
The tables in this section describe the MPC5121e/MPC5123 DC Electrical characteristics. Table 4 gives the absolute maximum  
ratings.  
1
Table 4. Absolute Maximum Ratings  
Characteristic  
Symbol  
Min  
Max  
Unit  
SpecID  
Supply voltage – e300 core and peripheral logic  
Supply voltage – I/O buffers  
VDD_CORE  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
1.47  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
2.6  
1.47  
1.47  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
D1.1  
D1.2  
VDD_IO  
,
VDD_MEM_IO  
Input reference voltage (DDR/DDR2)  
Termination Voltage (DDR2)  
MVREF  
MVTT  
Supply voltage – System APLL, System Oscillator  
Supply voltage – e300 APLL  
SYS_PLL_AVDD  
CORE_PLL_AVDD  
VBAT_RTC  
D1.3  
D1.4  
Supply voltage – RTC (Hibernation)  
Supply voltage – FUSE Programming  
Supply voltage – SATA PHY analog  
Supply voltage – SATA PHY voltage regulator  
Supply voltage – SATA PHY Tx/Rx  
Supply voltage – SATA PHY PLL  
D1.5  
AVDD_FUSEWR  
SATA_VDDA_3P3  
SATA_VDDA_VREG  
SATA_VDDA_1P2  
SATA_PLL_VDDA1P2  
USB_PLL_PWR3  
USB_VDDA  
D1.6  
D1.8  
D1.9  
D1.10  
D1.11  
D1.12  
D1.13  
D1.14  
D1.15  
D1.16  
Supply voltage – USB PHY PLL and OSC  
Supply voltage – USB PHY transceiver  
Supply voltage – USB PHY bandgap bias  
Input voltage – USB PHY cable  
USB_VDDA_BIAS  
USB_VBUS  
Input voltage (VDD_IO  
)
Vin  
VDD_IO  
+ 0.3  
Input voltage (VDD_MEM_IO  
)
Vin  
Vin  
–0.3  
–0.3  
VDD_MEM_IO  
+ 0.3  
V
V
D1.17  
D1.18  
Input voltage (VBAT_RTC)  
VBAT_RTC  
+ 0.3  
Input voltage overshoot  
Input voltage undershoot  
Storage temperature range  
Vinos  
Vinus  
Tstg  
1
1
V
V
D1.19  
D1.20  
D1.21  
55  
150  
oC  
1
Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses  
beyond those listed may affect device reliability or cause permanent damage.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
18  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.1.2  
Recommended Operating Conditions  
Table 5 gives the recommended operating conditions.  
Table 5. Recommended Operating Conditions  
3)  
Characteristic  
Symbol  
Min1  
Typ  
Max1  
Unit SpecID  
Supply voltage – e300 core and peripheral  
logic  
VDD_CORE  
1.33  
1.4  
1.47  
V
D2.1  
State Retention voltage – e300 core and  
peripheral logic 2  
1.08  
V
D2.2  
Supply voltage – standard I/O buffers  
VDD_IO  
3.0  
2.3  
1.7  
3.3  
2.5  
1.8  
3.6  
2.7  
1.9  
V
V
V
D2.3  
D2.4  
D2.5  
Supply voltage – memory I/O buffers (DDR)  
VDD_MEM_IO_DDR  
Supply voltage – memory I/O buffers (DDR2,  
LPDDR)  
VDD_MEM_IO_DDR2  
VDD_MEM_IO_LPDDR  
Input Reference Voltage (DDR/DDR2)  
MVREF  
0.49 ×  
VDD_MEM_IO  
0.50 ×  
VDD_MEM_IO VDD_MEM_IO  
0.51 ×  
V
V
V
D2.6  
D2.7  
D2.8  
Termination Voltage (DDR2)  
MVTT  
MVREF  
– 0.04  
MVREF  
MVREF  
+ 0.04  
Supply voltage – System APLL, System  
Oscillator  
SYS_PLL_AVDD  
3.0  
3.3  
3.6  
Supply voltage – e300 APLL  
CORE_PLL_AVDD  
VBAT_RTC  
3.0  
3.0  
3.3  
3.0  
1.7  
1.14  
1.33  
3.0  
3.0  
3.0  
1.4  
0
3.3  
3.3  
3.6  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
D2.9  
Supply voltage – RTC (Hibernation)3  
D2.10  
D2.11  
D2.13  
D2.14  
D2.15  
D2.16  
D2.17  
D2.18  
D2.19  
D2.20  
D2.21  
D2.22  
Supply voltage – FUSE Programming  
AVDD_FUSEWR  
3.6  
Supply voltage – SATA PHY analog and OSC SATA_VDDA_3P3  
Supply voltage – SATA PHY voltage regulator SATA_VDDA_VREG  
3.3  
3.6  
2.6  
Supply voltage – SATA PHY Tx/Rx  
Supply voltage – SATA PHY PLL  
SATA_VDDA_1P2  
SATA_PLL_VDDA1P2  
USB_PLL_PWR3  
USB_VDDA  
1.2  
1.4  
3.3  
3.3  
3.3  
1.47  
1.47  
3.6  
Supply voltage – USB PHY PLL and OSC  
Supply voltage – USB PHY transceiver  
Supply voltage – USB PHY bandgap bias  
Input voltage – USB PHY cable  
3.6  
USB_VDDA_BIAS  
USB_VBUS  
3.6  
3.6  
Input voltage – standard I/O buffers  
Input voltage – memory I/O buffers (DDR)  
Vin  
VDD_IO  
VinDDR  
0
VDD_MEM_IO  
_DDR  
Input voltage – memory I/O buffers (DDR2)  
Input voltage – memory I/O buffers (LPDDR)  
VinDDR2  
0
0
VDD_MEM_I  
V
V
D2.23  
D2.24  
O_DDR2  
VinLPDDR  
VDD_MEM_I  
O_LPDR  
Ambient operating temperature range  
Junction operating temperature range  
TA  
TJ  
–40  
–40  
+85  
oC D2.25  
oC D2.26  
+125  
1
2
3
These are recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.  
The State Retention voltage can be applied to VDD_CORE after the device is placed in Deep-Sleep mode.  
VBAT_RTC should not be supplied by a battery of voltage less than 3.0 V.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
19  
Electrical and Thermal Characteristics  
3.1.3  
DC Electrical Specifications  
Table 6 gives the DC Electrical characteristics for the MPC5121e/MPC5123 at recommended operating conditions.  
Table 6. DC Electrical Specifications  
Characteristic  
Condition  
Symbol  
Min  
Max  
Unit SpecID  
Input high voltage  
Input high voltage  
Input high voltage  
Input type = TTL VDD_IO  
VIH  
VIH  
VIH  
0.51 × VDD_IO  
MVREF + 0.15  
MVREF + 0.125  
V
V
V
D3.1  
D3.2  
D3.3  
Input type = TTL VDD_MEM_IO_DDR  
Input type = TTL  
VDD_MEM_IO_DDR2  
Input high voltage  
Input type =  
VIH  
0.7 ×  
V
D3.4  
TTL VDD_MEM_IO_LPDDR  
Input type = PCI VDD_IO  
Input type = Schmitt VDD_IO  
VDD_MEM_IO_LPDDR  
Input high voltage  
Input high voltage  
Input high voltage  
VIH  
VIH  
0.5 × VDD_IO  
0.65 × VDD_IO  
V
V
V
D3.5  
D3.6  
D3.7  
SYS_XTALI crystal mode1  
Bypass mode2  
CVIH  
Vxtal + 0.4V  
(VDD_IO/2) + 0.4V  
Input high voltage  
Input high voltage  
Input high voltage  
SATA_XTALI crystal mode  
Bypass mode  
SVIH  
UVIH  
RVIH  
Vxtal + 0.4V  
(VDD_IO/2) + 0.4V  
V
V
V
D3.8  
D3.9  
USB_XTALI crystal mode  
Bypass mode  
Vxtal + 0.4V  
(VDD_IO/2) + 0.4V  
RTC_XTALI crystal mode3  
(VBAT_RTC/5)  
+ 0.5V  
(VBAT_RTC/2)  
+ 0.4V  
D3.10  
Bypass mode4  
Input low voltage  
Input low voltage  
Input low voltage  
Input type = TTL VDD_IO  
VIL  
VIL  
VIL  
0.42 × VDD_IO  
MVREF – 0.15  
MVREF – 0.125  
V
V
V
D3.11  
D3.12  
D3.13  
Input type = TTL VDD_MEM_IO_DDR  
Input type = TTL  
VDD_MEM_IO_DDR2  
Input low voltage  
Input type =   
VIL  
0.3 ×  
V
D3.14  
TTL VDD_MEM_IO_LPDDR  
VDD_MEM_IO_LPDDR  
Input low voltage  
Input low voltage  
Input low voltage  
Input type = PCI VDD_IO  
VIL  
VIL  
0.3 × VDD_IO  
0.35 × VDD_IO  
V
V
V
D3.15  
D3.16  
D3.17  
Input type = Schmitt VDD_IO  
SYS_XTALI crystal mode  
Bypass mode  
CVIL  
Vxtal – 0.4  
(VDD_IO/2) – 0.4  
Input low voltage  
Input low voltage  
Input low voltage  
SATA_XTALI crystal mode  
Bypass mode  
SVIL  
UVIL  
RVIL  
IIN  
Vxtal – 0.4 V  
(VDD_IO/2) – 0.4  
V
V
V
D3.18  
D3.19  
D3.20  
USB_XTALI crystal mode  
Bypass mode  
Vxtal – 0.4  
(VDD_IO/2) – 0.4  
RTC_XTALI crystal mode  
Bypass mode  
(VBAT_RTC/5) – 0.5  
(VBAT_RTC/2) – 0.4  
Input leakage current Vin = 0 or  
2.5  
2.5  
µA D3.21  
µA D3.22  
VDD_IO/VDD_MEM_IO_DDR  
/2  
(depending on input type)5  
Input leakage current SYS_XTALI Vin = 0 or VDD_IO  
IIN  
20  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
20  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
Table 6. DC Electrical Specifications (continued)  
Characteristic  
Condition  
Symbol  
Min  
Max  
Unit SpecID  
Input leakage current RTC_XTALI Vin = 0 or VDD_IO  
IIN  
1.0  
µA D3.23  
µA D3.24  
Input current, pullup Pullup VDD_IO Vin = VIL  
resistor6  
IINpu  
25  
150  
Input current,  
Pulldown VDD_IO Vin = VIH  
IINpd  
25  
150  
µA D3.25  
pulldown resistor 8  
Output high voltage  
Output high voltage  
IOH is driver dependent7 VDD_IO  
VOH  
0.8 × VDD_IO  
1.90  
V
V
D3.26  
D3.27  
IOH is driver dependent7  
VDD_MEM_IO_DDR  
VOHDDR  
Output high voltage  
Output high voltage  
IOH is driver dependent7  
VDD_MEM_IO_DDR2  
VOHDDR2  
1.396  
V
V
D3.28  
D3.28  
IOH is driver dependent7  
VDD_MEM_IO_LPDDR  
VOHLPDDR  
VDD_MEM_IO  
– 0.28  
Output low voltage  
Output low voltage  
IOL is driver dependent7 VDD_IO  
VOL  
0.2 × VDD_IO  
0.36  
V
V
D3.30  
D3.31  
IOL is driver dependent7  
VDD_MEM_IO_DDR  
VOLDDR  
Output low voltage  
Output low voltage  
IOL is driver dependent7  
VDD_MEM_IO_DDR2  
VOLDDR2  
VOLLPDDR  
VOXMCK  
0.28  
0.28  
V
V
V
D3.32  
D3.33  
D3.34  
IOL is driver dependent7  
VDD_MEM_IO_LPDDR  
Differential cross point  
voltage   
0.5 ×  
0.5 ×  
VDD_MEM_IO – 0.125  
VDD_MEM_IO + 0.125  
(DDR MCK/MCK)  
DC Injection Current  
Per Pin8  
ICS  
Cin  
1.0  
1.0  
7
mA D3.35  
pF D3.36  
pF D3.37  
Input Capacitance  
(digital pins)  
Input Capacitance  
(analog pins)  
Cin  
10  
180  
On Die Termination  
(DDR2)  
RODT  
120  
D3.38  
1
This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case,  
Vextal – Vxtal - 400mV criteria has to be met for oscillator’s comparator to produce output clock.  
2
This parameter is meant for those who do not use quartz crystals or resonators, but signal generator clock to drive, in bypass  
mode. In that case, drive only the EXTAL pin not connecting anything to other pin for the oscillator’s comparator to produce  
output clock.  
3
4
This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case,  
drive one of the XTAL_IN or XTAL_OUT pins not connecting anything to other pin for the oscillator’s comparator to produce  
output clock.  
This parameter is meant for those who do not use quartz crystals or resonators, but signal generator clock to drive, in bypass  
mode. In that case, drive only the xtal_in pin not connecting anything to other pin for the oscillator’s comparator to produce  
output clock.  
5
6
Leakage current is measured with output drivers disabled and pull-up/pull-downs inactive.  
Pullup current is measured at VIL and pulldown current is measured at VIH.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
21  
Electrical and Thermal Characteristics  
7
See Table 7 for the typical drive capability of a specific signal pin based on the type of output driver associated with that pin  
as listed in Table 3.  
8
All injection current is transferred to VDD_IO/VDD_MEM_IO. An external load is required to dissipate this current to maintain the  
power supply within the specified voltage range.  
Total injection current for all digital input-only and all digital input/output pins must not exceed 10 mA. Exceeding this limit can  
cause disruption of normal operation.  
Table 7. I/O Pads—Drive Current, Slew Rate  
Drive Select/Slew  
Rate Control  
Rise time  
max (ns)  
Fall time Current Current  
max (ns) Ioh (mA) Iol (mA)  
Pad Type  
Supply Voltage  
SpecID  
General IO  
VDD_IO = 3.3V  
configuration 3 (11)  
configuration 2 (10)  
configuration 1 (01)  
configuration 0 (00)  
1.4  
9.8  
19  
140  
2
1.6  
12  
24  
183  
2
35  
35  
D3.41  
D3.42  
D3.43  
D3.44  
D3.45  
D3.46  
D3.47  
D3.48  
D3.49  
D3.50  
D3.51  
DDR  
VDD_MEM_IO = 2.5V (DDR) configuration 3 (011)  
VDD_MEM_IO = 1.8V (LPDDR) configuration 0 (000)  
configuration 1 (001)  
16.2  
4.6  
8.1  
5.3  
13.4  
11  
16.2  
4.6  
8.1  
5.3  
13.4  
17  
1
1
VDD_MEM_IO = 1.8V (DDR2) configuration 2 (010)  
configuration 6 (110)  
1
1
PCI  
VDD_IO = 3.3V  
configuration 1 (1)  
configuration 0 (0)  
1.4  
2
1.4  
2
1
Notes:  
1. General IO – Rise and Fall Times at Drive load 50pF.  
2. PCI – Rise and Fall Times at Drive load 10pF.  
3. DDR – for LPDDR/Mobile-DDR, slew rate is measured between 20% of VDD_MEM_IO and 80% of VDD_MEM_IO  
4. DDR – for DDR, DDR2, rising signals, slew rate is measured between VDD_MEM_IO × 0.5 and ViHAC. For falling signals, slew  
rate is measured between VDD_MEM_IO × 0.5 and ViLAC  
.
.
5. DDR – Rise and Fall Times terminated at the destination with 50 ohm to MVTT (0.5 × VDD_MEM_IO), with 4 pF representing the  
DDR input capacitance.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
22  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.1.4  
Electrostatic Discharge  
CAUTION  
This device contains circuitry that protects against damage due to high-static voltage or  
electrical fields. However, it is advised that normal precautions be taken to avoid  
application of any voltages higher than maximum-rated voltages. Operational  
reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (GND  
or VDD). Table 10 gives package thermal characteristics for this device.  
Table 8. ESD and Latch-Up Protection Characteristics  
Symbol  
Rating  
Min  
Max  
Unit  
SpecID  
VHBM Human Body Model (HBM) – JEDEC JESD22-A114-B  
VMM Machine Model (MM) – JEDEC JESD22-A115  
VCDM Charge Device Model (CDM) – JEDEC JESD22-C101  
2000  
200  
V
V
V
D4.1  
D4.2  
D4.3  
500  
3.1.5  
Power Dissipation  
Power dissipation of the MPC5121e/MPC5123 is caused by 4 different components: the dissipation of the internal or core  
digital logic (supplied by V , the dissipation of the analog circuitry (supplied by SYS_PLL_AVDD and  
DD_CORE)  
CORE_PLL_AVDD), the dissipation of the IO logic (supplied by V  
and V  
) and the dissipation of the PHYs  
DD_MEM_IO  
DD_IO  
(supplied by own supplies). Table 9 details typical measured core and analog power dissipation figures for a range of operating  
modes. However, the dissipation due to the switching of the IO pins can not be given in general, but must be calculated for each  
application case using the following formula:  
2
P
= P  
+
N C VDD_IO f  
Eqn. 1  
IO  
IOint  
M
where N is the number of output pins switching in a group M, C is the capacitance per pin, V  
is the IO voltage swing, f  
DD_IO  
is the switching frequency and P  
is the power consumed by the unloaded IO stage. The total power consumption of the  
IOint  
device must not exceed the value that would cause the maximum junction temperature to be exceeded.  
P
= P  
+ P  
+ P + PPHYs  
analog IO  
Eqn. 2  
total  
core  
Table 9. Power Dissipation  
Core Power Supply (VDD_CORE  
)
SpecID  
High-Performance  
Mode  
Unit  
e300 = 300 MHz, CSB = 200 MHz  
Operational1  
Deep-Sleep1  
Hibernation  
800  
1
mW  
mW  
uW  
D5.1  
D5.2  
D5.3  
20  
PLL/OSC Power Supplies (SYS_PLL_AVDD, CORE_PLL_AVDD)  
Typical 25 mW D5.4  
Unloaded I/O Power Supplies (VDD_IO, VDD_MEM_IO  
)
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
23  
Electrical and Thermal Characteristics  
Table 9. Power Dissipation (continued)  
Core Power Supply (VDD_CORE  
)
SpecID  
High-Performance  
Mode  
Unit  
e300 = 300 MHz, CSB = 200 MHz  
300  
Typical  
mW  
D5.5  
PHY Power Supplies (USB_VDDA, SATA_VDDA)  
Typical 200 mW  
D5.6  
1
Typical core power is measured at VDD_CORE = 1.4 V, Tj = 25 oC.  
NOTE  
The maximum power depends on the supply voltage, process corner,  
junction temperature, and the concrete application and clock  
configurations.  
The worst case power consumption could reach a maximum of 2000 mW.  
3.1.6  
Thermal Characteristics  
Table 10. Thermal Resistance Data  
TEPBGA  
Rating  
Board Layers  
Symbol TEPBGA  
Value  
Unit  
SpecID  
2
Junction to Ambient Natural Single layer board (1s)  
Convection1,2  
RJA  
31  
22  
25  
19  
24  
30  
°C/W  
D6.1  
Junction to Ambient Natural Four layer board (2s2p)  
Convection1,3  
RJMA  
RJMA  
RJMA  
17  
19  
14  
22  
24  
19  
°C/W  
°C/W  
°C/W  
D6.2  
D6.3  
D6.4  
Junction to Ambient (@200 Single layer board (1s)  
ft/min)1,3  
Junction to Ambient (@200 Four layer board (2s2p)  
ft/min)1,3  
Junction to Board4  
RJB  
RJC  
JT  
14  
9
9
7
7
14  
8
°C/W  
°C/W  
°C/W  
D6.5  
D6.6  
D6.7  
Junction to Case5  
Junction to Package Top6  
Natural Convection  
2
2
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5
6
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JT.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
24  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.1.6.1  
Heat Dissipation  
An estimation of the chip-junction temperature, T , can be obtained from the following equation:  
J
T
= T +(R  
P )  
Eqn. 3  
J
A
JA  
D
where:  
T
= ambient temperature for the package (ºC)  
A
R
= junction to ambient thermal resistance (ºC/W)  
JA  
P
= power dissipation in package (W)  
D
The junction to ambient thermal resistance is an industry standard value, which provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board, and the value  
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which  
value is correct depends on the power dissipated by other components on the board. The value obtained on a single layer board  
is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually  
appropriate if the board has low power dissipation and the components are well separated.  
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case  
to ambient thermal resistance:  
R
= R  
+R  
CA  
Eqn. 4  
JA  
JC  
where:  
R
R
R
= junction to ambient thermal resistance (ºC/W)  
= junction to case thermal resistance (ºC/W)  
= case to ambient thermal resistance (ºC/W)  
JA  
JC  
CA  
R
is device related and cannot be influenced by the user. You control the thermal environment to change the case to ambient  
JC  
thermal resistance, R  
. For instance, you can change the air flow around the device, add a heat sink, change the mounting  
CA  
arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This  
description is most useful for ceramic packages with heat sinks where some 90% of the heat flow is through the case to the heat  
sink to ambient. For most packages, a better model is required.  
A more accurate thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal  
resistance. The junction to case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated  
from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat  
is conducted to the printed circuit board. This model can be used for hand estimations or for a computational fluid dynamics  
(CFD) thermal model.  
To determine the junction temperature of the device in the application after prototypes are available, the Thermal  
Characterization Parameter () can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using the following equation:  
T
= T +(  P )  
Eqn. 5  
J
T
JT  
D
where:  
T
= thermocouple temperature on top of package (ºC)  
= thermal characterization parameter (ºC/W)  
T
JT  
P
= power dissipation in package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned, so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over approximately one mm of wire extending  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
25  
Electrical and Thermal Characteristics  
from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling  
effects of the thermocouple wire.  
3.2  
Oscillator and PLL Electrical Characteristics  
The MPC5121e/MPC5123 System requires a system-level clock input SYS_XTALI. This clock input may be driven directly  
from an external oscillator or with a crystal using the internal oscillator.  
There is a separate oscillator for the independent Real Time Clock (RTC) system.  
The MPC5121e/MPC5123 clock generation uses two phase locked loop (PLL) blocks.  
The system PLL (SYS_PLL) takes an external reference frequency and generates the internal system clock. The  
system clock frequency is determined by the external reference frequency and the settings of the SYS_PLL  
configuration.  
The e300 core PLL (CORE_PLL) generates a master clock for all of the CPU circuitry. The e300 core clock frequency  
is determined by the system clock frequency and the settings of the CORE_PLL configuration.  
The USB PHY contains its own oscillator with the input USB_XTALI and an embedded PLL.  
The SATA PHY contains its own oscillator with the input SATA_XTALI and an embedded PLL.  
3.2.1  
System Oscillator Electrical Characteristics  
Table 11. System Oscillator Electrical Characteristics  
Characteristic  
SYS_XTALI frequency  
Symbol  
Min  
Typical  
Max  
Unit  
SpecID  
fsys_xtal  
15.6  
33.3  
35.0  
MHz  
O1.1  
The system oscillator can work in oscillator mode or in bypass mode to support an external input clock as clock reference.  
tCYCLE  
tDUTY  
tDUTY  
tFALL  
tRISE  
CVIH  
CVIL  
VM  
VM  
VM  
SYS_XTALI CLK  
Figure 3. Timing Diagram—SYS_XTALI  
Table 12. SYS_XTALI Timing  
Description  
Sym  
tCYCLE  
tRISE  
Min  
Max  
Units  
SpecID  
SYS_XTALI cycle time1, 2  
SYS_XTALI rise time3  
SYS_XTALI fall time4  
SYS_XTALI duty cycle5  
64.1  
1
28.57  
ns  
ns  
ns  
%
O.1.2  
O.1.3  
O.1.4  
O.1.5  
4
4
tFALL  
1
tDUTY  
40  
60  
1
2
3
The SYS_XTALI frequency and system PLL settings must be chosen such that the resulting system frequencies do not exceed  
their respective maximum or minimum operating frequencies. See the MPC5121e Microcontroller Reference Manual.  
The MIN/Max cycle times are calculated using 1/fsys_xtal (MIN/MAX) where the fsys_xtal (MIN/MAX) (15.6/35 MHz) are taken from  
Table 11.  
Rise time is measured from 20% of vdd to 80% of VDD  
.
MPC5121E/MPC5123 Data Sheet, Rev. 5  
26  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
4
5
Fall time is measured from 20% of vdd to 80% of VDD  
.
SYS_XTALI duty cycle is measured at VM.  
3.2.2  
RTC Oscillator Electrical Characteristics  
Table 13. RTC Oscillator Electrical Characteristics  
Characteristic  
RTC_XTALI frequency  
Symbol  
Min  
Typical  
Max  
Unit  
SpecID  
frtc_xtal  
32.768  
kHz  
O2.1  
3.2.3  
System PLL Electrical Characteristics  
Table 14. System PLL Specifications  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
SpecID  
Sys PLL input clock frequency1  
fsys_xtal  
tjitter  
16  
33.3  
67  
10  
MHz  
ps  
O3.1  
O3.2  
O3.3  
O3.4  
O3.5  
O3.6  
O3.7  
Sys PLL input clock jitter2  
Sys PLL VCO frequency  
fVCOsys  
fVCOjitterDj  
fVCOjitterRj  
tlock1  
400  
800  
40  
MHz  
ps  
Sys PLL VCO output jitter (Dj), peak to peak / cycle  
Sys PLL VCO output jitter (Rj), RMS 1 sigma  
Sys PLL relock time—after power up3  
Sys PLL relock time—when power was on4  
12  
ps  
200  
170  
s  
tlock2  
s  
1
The SYS_XTALI frequency and PLL Configuration bits must be chosen such that the resulting system frequency, CPU (core)  
frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies.  
2
This represents total input jitter—short term and long term combined. Two different types of jitter can exist on the input to  
CORE_SYSCLK, systemic and true random jitter. True random jitter is rejected. Systemic jitter is passed into and through the  
PLL to the internal clock circuitry.  
3
4
PLL relock time is the maximum amount of time required for the PLL lock after a stable VDD and CORE_SYSCLK are reached  
during the power-on reset sequence.  
PLL relock time is the maximum amount of time required for the PLL lock after the PLL has been disabled and subsequently  
re-enabled during sleep modes.  
3.2.4  
e300 Core PLL Electrical Characteristics  
The internal clocking of the e300 core is generated from and synchronized to the system clock by means of a voltage-controlled  
core PLL.  
Table 15. e300 PLL Specifications  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
SpecID  
e300 frequency1  
fcore  
200  
400  
50  
5
400  
800  
200  
20  
MHz  
MHz  
MHz  
ns  
O4.1  
O4.3  
O4.4  
O4.5  
O4.6  
e300 PLL VCO frequency1  
e300 PLL input clock frequency  
e300 PLL input clock cycle time  
e300 PLL relock time2  
fVCOcore  
fCSB_CLK  
tCSB_CLK  
tlock  
200  
s  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
27  
Electrical and Thermal Characteristics  
1
The frequency and e300 PLL Configuration bits must be chosen such that the resulting system frequencies, CPU (core)  
frequency, and e300 PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies in  
Table 16. There is a hard coded relationship between fcore and fVCOcore (fcore = fVCOcore/2).  
2
PLL relock time is the maximum amount of time required for the PLL lock after a stable VDD and CORE_SYSCLK are reached  
during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently  
re-enabled during sleep modes.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
28  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.3  
AC Electrical Characteristics  
Overview  
3.3.1  
Hyperlinks to the indicated timing specification sections are provided in the following:  
AC Operating Frequency Data  
SDHC  
DIU  
Resets  
External Interrupts  
SDRAM (DDR)  
PCI  
SPDIF  
CAN  
2
I C  
LPC  
J1850  
PSC  
NFC  
PATA  
GPIOs and Timers  
Fusebox  
SATA PHY  
FEC  
IEEE 1149.1 (JTAG)  
VIU  
USB ULPI  
On-Chip USB PHY  
AC Test Timing Conditions:  
Unless otherwise noted, all test conditions are as follows:  
o
T = –40 to 85 C  
A
V
V
= 1.33 to 1.47 V  
= 3.0 to 3.6 V  
DD_CORE  
DD_IO  
Input conditions:  
All Inputs: tr, tf 1 ns  
Output Loading:  
All Outputs: 50 pF  
3.3.2  
AC Operating Frequency Data  
Table 16 provides the operating frequency information for the MPC5121e/MPC5123.  
Table 16. Clock Frequencies  
Min  
Max  
Units  
SpecID  
e300 Processor Core  
SDRAM Clock  
CSB Bus Clock  
IP Bus Clock  
PCI Clock  
200  
28.6  
50.0  
8.3  
400  
200  
200  
83  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
A1.1  
A1.2  
A1.3  
A1.4  
A1.5  
A1.6  
4.43  
2.08  
66  
LPC Clock  
83  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
29  
Electrical and Thermal Characteristics  
Table 16. Clock Frequencies (continued)  
Min  
Max  
Units  
SpecID  
NFC Clock  
DIU Clock  
2.08  
0.78  
0.78  
6.25  
83  
MHz  
MHz  
MHz  
MHz  
A1.7  
A1.8  
100  
66.6  
100  
SDHC Clock  
MBX Clock  
A1.9  
A1.10  
NOTES:  
1. The SYS_XTALI frequency, Sys PLL, and CORE PLL settings must be chosen so that the resulting e300 clk, csb_clk, MCK,  
frequencies do not exceed their respective maximum or minimum operating frequencies.  
2. The values are valid for the user operation mode. There can be deviations for test modes.  
3. The selection of the peripheral clock frequencies needs to take care about requirements for baud rates and minimum frequency  
limitation.  
4.The DDR data rate is 2× the DDR memory bus frequency.  
See the MPC5121e Microcontroller Reference Manual for more information on the clock subsystem.  
3.3.3  
Resets  
The MPC5121e/MPC5123 has three reset pins:  
PORESET—Power on Reset  
HRESET—Hard Reset  
SRESET—Software Reset  
These signals are asynchronous I/O signals and can be asserted at any time. The input side uses a Schmitt trigger and requires  
the same input characteristics as other MPC5121e/MPC5123 inputs, as specified in Section 3.1, “DC Electrical  
Characteristics.”  
As long as V is not stable the HRESET output is not stable.  
DD  
Table 17. Reset Rise / Fall Timing  
Description  
Min  
Max  
Unit  
SpecID  
PORESET1 fall time  
PORESET rise time  
HRESET2,3 fall time  
HRESET rise time  
SRESET fall time  
SRESET rise time  
1
1
1
1
1
1
ms  
ms  
ms  
ms  
ms  
ms  
A3.4  
A3.5  
A3.6  
A3.7  
A3.8  
A3.9  
1
Make sure that the PORESET does not carry any glitches. The  
MPC5121e/MPC5123 has no filter to prevent them from getting into the chip.  
2
3
HRESET and SRESET must have a monotonous rise time.  
The assertion of HRESET becomes active at Power on Reset without any  
SYS_XTALI clock.  
The timing relationship is shown in Figure 4.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
30  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
SYS_XTALI  
PORESET  
tHRVAL  
HRESET  
SRESET  
tSRVAL  
tS_POR_CONF  
tEXEC  
RST_CONF[31:0]  
ADDR[31:0]  
tH_POR_CONF  
Figure 4. Power-Up Behavior  
SYS_XTALI  
tPORHold  
PORESET  
HRESET  
tHRVAL  
tSRVAL  
SRESET  
tS_POR_CONF  
tEXEC  
RST_CONF[31:0]  
ADDR[31:0]  
tH_POR_CONF  
Figure 5. Power-On Reset Behavior  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
31  
Electrical and Thermal Characteristics  
SYS_XTALI  
PORESET  
tHRHOLD  
tHRVAL  
HRESET  
SRESET  
tSRVAL  
tHR_SR_Delay  
tEXEC  
RST_CONF[31:0]  
ADDR[31:0]  
no new fetch of the RST_CONF  
Figure 6. HRESET Behavior  
SYS_XTALI  
PORESET  
tSRHOLD  
HRESET  
SRESET  
tSRMIN  
tEXEC  
RST_CONF[31:0]  
ADDR[31:0]  
no new fetch of the RST_CONF  
Figure 7. SRESET Behavior  
Table 18. Reset Timing  
Description  
Value  
SYS_XTALI  
Symbol  
SpecID  
tPORHOLD  
tHRVAL  
tSRVAL  
Time PORESET must be held low before a qualified reset occurs  
Time HRESET is asserted after a qualified reset occurs  
Time SRESET is asserted after assertion of HRESET  
4 cycles  
26810 cycles  
32 cycles  
A3.10  
A3.11  
A3.12  
A3.13  
tEXEC  
Time between SRESET assertion and first core instruction fetch  
4 cycles  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
32  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
Table 18. Reset Timing (continued)  
Description  
Value  
SpecID  
Symbol  
SYS_XTALI  
tS_POR_CONF  
tH_POR_CONF  
Reset configuration setup time before assertion of PORESET  
Reset configuration hold time after assertion of PORESET  
1 cycle  
1 cycle  
A3.14  
A3.15  
A3.16  
A3.17  
A3.18  
A3.19  
tHR_SR_DELAY Time from falling edge of HRESET to falling edge of SRESET  
4 cycles  
4 cycles  
4 cycles  
1 cycles  
tHRHOLD  
tSRHOLD  
tSRMIN  
Time HRESET must be held low before a qualified reset occurs  
Time SRESET must be held low before a qualified reset occurs  
Time SRESET is asserted after it has been qualified  
3.3.4  
External Interrupts  
The MPC5121e/MPC5123 provides three different kinds of external interrupts:  
IRQ interrupts  
GPIO interrupts with simple interrupt capability (not available in power-down mode)  
WakeUp interrupts  
1
Table 19. IPIC Input AC Timing Specifications  
Description  
Symbol  
Min  
Unit  
SpecID  
IPIC inputs—minimum pulse witdh  
tPICWID  
2T  
ns  
A4.1  
1
T is the IP bus clock cycle. T = 12 ns is the minimum value (for the maximum IP bus freqency  
of 83 MHz).  
IPIC inputs must be valid for at least tPICWID to ensure proper operation in edge triggered mode.  
3.3.5  
SDRAM (DDR)  
The MPC5121e/MPC5123 memory controller supports three types of DDR devices:  
DDR-1 (SSTL_2 class II interface)  
DDR-2 (SSTL_18 interface)  
LPDDR/Mobile-DDR (1.8V I/O supply voltage)  
JEDEC standards define the minimum set of requirements for complient memory devices:  
— JEDEC STANDARD, DDR2 SDRAM SPECIFICATION, JESD79-2C, May 2006  
— JEDEC STANDARD, Double Data Rate (DDR) SDRAM Specification, JESD79E, May 2005  
— JEDEC STANDARD, Low Power Double Data Rate (LPDDR) SDRAM Specification, JESD79-4, May 2006  
The MPC5121e/MPC5123 supports the configuration of two output drive strengths for DDR2 and LPDDR:  
Full drive strength  
Half drive strengh (intended for ligther loads or point-to-point environments)  
The MPC5121e/MPC5123 memory controller supports dynamic on-die termination in the host device and in the DDR2 memory  
device.  
This section includes AC specifications for all DDR SDRAM pins. The DC parameters are specified in the DC Electrical  
Characteristics.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
33  
Electrical and Thermal Characteristics  
3.3.5.1  
DDR and DDR2 SDRAM AC Timing Specifications  
Table 20. DDR and DDR2 (DDR2-400) SDRAM Timing Specifications  
At recommended operating conditions with VDD_MEM_IO of 5%  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
SpecID  
Clock cycle time, CL=x  
CK HIGH pulse width  
CK LOW pulse width  
tCK  
tCH  
5000  
0.47  
ps  
A5.1  
A5.3  
A5.4  
A5.5  
1 2  
0.53  
0.53  
0.25  
tCK  
tCK  
tCK  
,
1 2  
tCL  
0.47  
,
2 3  
Skew between MCK and DQS  
transitions  
tDQSS  
0.25  
,
2 3  
Address and control output setup  
time relative to MCK rising edge  
tOS(base)  
tOH(base)  
tDS1(base)  
tDH1(base)  
tDQSQ  
(tCK/2 – 750)  
(tCK/2 – 750)  
(tCK/4 – 500)  
(tCK/4 – 500)  
–(tCK/4 – 600)  
TBD  
ps  
ps  
ps  
ps  
ps  
ps  
,
A5.6  
A5.7  
2 3  
Address and control output hold  
time relative to MCK rising edge  
,
2 3  
DQ and DM output setup time  
relative to DQS  
,
A5.8  
2 3  
DQ and DM output hold time relative  
to DQS  
,
A5.9  
2
DQS-DQ skew for DQS and  
associated DQ inputs  
(tCK/4 – 600)  
TBD  
A5.10  
A5.11  
DQS window start position related to  
CAS read command  
tDQSEN  
1,2,3,4,5  
1
2
3
4
5
Measured with clock pin loaded with differential 100 termination resistor.  
All transitions measured at mid-supply (VDD_MEM_IO/2).  
Measured with all outputs except the clock loaded with 50 termination resistor to VDD_MEM_IO/2.  
In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.  
Window position is given for tDQSEN = 2.0 tCK. For other values of tDQSEN, window position is shifted accordingly.  
Figure 8 shows the DDR SDRAM write timing.  
tCL  
tCH  
MCK  
DQS  
tCK  
tDQSS  
DQ, DM(out)  
tDS  
tDH  
Figure 8. DDR Write Timing  
Figure 9 and Figure 10 shows the DDR SDRAM read timing.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
34  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
DQS(in)  
Any DQ(in)  
tDQSQ  
tDQSQ  
Figure 9. DDR Read Timing, DQ vs DQS  
Command  
Address  
Read  
tOS  
tOH  
DQS (in)  
tDQSEN (min)  
tDQSEN  
Figure 10. DDR Read Timing, DQSEN  
Figure 11 provides the AC test load for the DDR bus.  
Output  
VDD_MEM_IO/2  
Z0 = 50   
RL = 50   
Figure 11. DDR AC Test Load  
3.3.6  
PCI  
The PCI interface on the MPC5121e/MPC5123 is designed to PCI Version 2.3 and supports 33 and 66 MHz PCI operations.  
See the PCI Local Bus Specification; the component section specifies the electrical and timing parameters for PCI components  
with the intent that components connect directly together whether on the planar or an expansion board, without any external  
buffers or other glue logic. Parameters apply at the package pins, not at expansion board edge connectors.  
The PCI_CLK is used as output clock, the MPC5121e/MPC5123 is a PCI host device only.  
Figure 12 shows the clock waveform and required measurement points for 3.3 V signaling environments. Table 21 summarizes  
the clock specifications.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
35  
Electrical and Thermal Characteristics  
tcyc  
thigh  
tlow  
0.6Vcc  
0.5Vcc  
0.4Vcc  
0.3Vcc  
0.4Vcc, p-to-p  
(minimum)  
PCI CLK  
0.2Vcc  
Figure 12. PCI CLK Waveform  
2
Table 21. PCI CLK Specifications  
66 MHz1  
33 MHz  
Sym  
Description  
Units SpecID  
Min2  
Max  
Min  
Max  
tcyc  
thigh  
tlow  
PCI CLK Cycle Time1,3  
PCI CLK High Time  
PCI CLK Low Time  
PCI CLK Slew Rate2  
15  
6
30  
4
30  
11  
11  
1
4
ns  
ns  
A6.1  
A6.2  
A6.3  
A6.4  
6
ns  
1.5  
V/ns  
1
2
3
In general, all 66 MHz PCI components must work with any clock frequency up to 66 MHz. CLK  
requirements vary depending upon whether the clock frequency is above 33 MHz.  
Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met  
across the minimum peak-to-peak portion of the clock waveform as shown in Figure 12.  
The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system  
jitter.  
1
Table 22. PCI Timing Parameters  
66 MHz  
33 MHz  
Sym  
Description  
Units  
SpecID  
Min2  
Max  
Min  
Max  
tval  
CLK to Signal Valid Delay –  
bused signals1,2,3  
2
2
2
6
2
2
2
11  
ns  
ns  
A6.5  
A6.6  
tval(ptp) CLK to Signal Valid Delay – point  
to point1,2,3  
6
12  
ton  
toff  
tsu  
Float to Active Delay1  
Active to Float Delay1  
14  
28  
ns  
ns  
ns  
A6.7  
A6.8  
A6.9  
Input Setup Time to CLK – bused  
signals3,4  
3
5
0
7
10,12  
0
tsu(ptp) Input Setup Time to CLK – point  
to point3,4  
ns  
ns  
A6.10  
A6.11  
th  
Input Hold Time from CLK4  
1
2
3
See the timing measurement conditions in the PCI Local Bus Specification. It is important that all driven  
signal transitions drive to their Voh or Vol level within one Tcyc.  
Minimum times are measured at the package pin with the load circuit, and maximum times are measured  
with the load circuit as shown in the PCI Local Bus Specification.  
REQ# and GNT# are point-to-point signals and have different input setup times than do bused signals. GNT#  
and REQ# have a setup of 5 ns at 66 MHz. All other signals are bused.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
36  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
See the timing measurement conditions in the PCI Local Bus Specification.  
For Measurement and Test Conditions, see the PCI Local Bus Specification.  
4
3.3.7  
LPC  
The Local Plus Bus is the external bus interface of the MPC5121e/MPC5123. A maximum of eight configurable chip selects  
(CS) are provided. There are two main modes of operation: non-MUXed and MUXED. The reference clock is the LPC CLK.  
The maximum bus frequency is 83 MHz.  
Definition of Acronyms and Terms:  
WS = Wait State  
DC = Dead Cycle  
HC = Hold Cycle  
DS = Data Size in Bytes  
BBT = Burst Bytes per Transfer  
AL = Address latch enable Length  
ALT = Chip select/Address Latch Timing  
t
= LPC clock period  
LPCck  
Table 23. LPC Timing  
Sym  
Description  
Min  
Max  
Units SpecID  
tOD CS[x], ADDR, R/W, TSIZ, DATA (wr),  
TS, OE valid after LPC CLK  
0
5
ns  
A7.1  
(Output Delay related to LPC CLK)  
t1  
t2  
Non-MUXed non-Burst CS[x] pulse  
width  
(2 + WS) × tLPCck  
tLPCck – tOD  
(2 + WS) × tLPCck  
tLPCck + tOD  
ns  
ns  
A7.2  
A7.3  
ADDR, R/W, TSIZ, DATA (wr) valid  
before CS[x] assertion  
t3  
t4  
OE assertion after CS[x] assertion  
tLPCck – tOD  
tLPCck – tOD  
tLPCck + tOD  
ns  
ns  
A7.4  
A7.5  
ADDR, R/W, TSIZ, Data (wr) hold after  
CS[x] negation  
(HC + 1) × tLPCck + tOD  
t5  
t6  
t7  
t8  
TS pulse width  
tLPCck  
tLPCck  
ns  
ns  
ns  
ns  
A7.6  
A7.7  
A7.8  
A7.9  
DATA (rd) setup before LPC CLK  
DATA (rd) input hold  
4
0
(DC + 1) × tLPCck  
Non-MUXed read Burst CS[x] pulse  
width  
(2 + WS + BBT/DS) × tLPCck (2 + WS + BBT/DS) × tLPCck  
t9  
Burst ACK pulse width  
(BBT/DS) × tLPCck  
0
(BBT/DS) × tLPCck  
ns  
ns  
ns  
A7.10  
A7.11  
A7.12  
t10 Burst DATA (rd) input hold  
t11 Read Burst ACK assertion after CS[x]  
assertion  
(2 + WS) × tLPCck  
(2 + WS) × tLPCck  
t12 Non-muxed write Burst CS[x] pulse  
width  
(2.5 + WS + BBT/DS) × tLPCck (2.5 + WS + BBT/DS) × tLPCck  
ns  
ns  
A7.13  
A7.14  
t13 Write Burst ADDR, R/W, TSIZ, DATA  
(wr) hold after CS[x] negation  
0.5 × tLPCck – tOD  
(HC + 0.5) × tLPCck + tOD  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
37  
Electrical and Thermal Characteristics  
Table 23. LPC Timing (continued)  
Min  
Sym  
Description  
Max  
Units SpecID  
t14 Write Burst ACK assertion after CS[x]  
assertion  
(2.5 + WS) × tLPCck – tOD  
(2.5 + WS) × tLPCck + tOD  
ns  
A7.15  
t15 Write Burst DATA valid  
tLPCck – tOD  
ns  
ns  
A7.16  
A7.17  
t16 Non-MUXed Mode: asynchronous write  
Burst ADDR valid before write DATA  
valid  
0.5 × tLPCck – tOD  
0.5 × tLPCck + tOD  
t17 MUXed Mode: ADDR cycle  
t18 MUXed Mode: ALE cycle  
AL × 2 × tLPCck – tOD  
AL × tLPCck  
AL × 2 × tLPCck  
AL × tLPCck  
tLPCck  
ns  
ns  
ns  
A7.18  
A7.19  
A7.20  
t19 Non-MUXed Mode Page Burst: ADDR  
cycle  
tLPCck – tOD  
t20 Non-MUXed Mode Page Burst: Burst  
DATA (rd) input setup before next ADDR  
cycle  
tOD + t6  
ns  
ns  
A7.21  
A7.22  
t21 Non-MUXed Mode Page Burst: Burst  
DATA (rd) input hold after next ADDR  
cycle  
0
t22 MUXed Mode: non-Burst CS[x] pulse  
width  
(ALT × (AL × 2) + 2 + WS)  
× tLPCck  
(ALT × (AL × 2) + 2 + WS)  
× tLPCck  
ns  
ns  
ns  
A7.23  
A7.24  
A7.25  
t23 MUXed Mode: read Burst CS[x] pulse  
width  
[ALT (AL × 2) + 2 + WS  
+ BBT/DS] × tLPCck  
[ALT × (AL × 2)+2+WS  
+BBT/DS] × tLPCck  
t24 MUXed Mode: write Burst CS[x] pulse  
width  
[ALT × (AL × 2) + 2.5 + WS  
+ BBT/DS] × tLPCck  
[ALT × (AL × 2)+2.5+WS  
+BBT/DS] × tLPCck  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
38  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.3.7.1  
Non-MUXed Mode  
3.3.7.1.1  
Non-MUXed Non-Burst Mode  
tLPCck  
LPC CLK  
t1  
CS[x]  
ADDR  
t2  
t3  
t4  
OE  
R/W  
DATA (wr)  
t6  
t7  
DATA (rd)  
ACK  
t5  
TS  
TSIZ[1:0]  
Figure 13. Timing Diagram – Non-MUXed Non-Burst Mode  
NOTE  
ACK is asynchonous input signal and has no timing requirements. ACK needs to be  
deasserted after CS[x] is deasserted.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
39  
Electrical and Thermal Characteristics  
3.3.7.1.2  
Non-MUXed Synchronous Read Burst Mode  
LPC_CLK  
t8  
CS[x]  
t2  
t4  
Valid Address  
ADDR  
TS  
t5  
t3  
OE  
R/W  
t10  
t6  
t7  
DATA (rd)  
ACK  
t11  
t9  
Figure 14. Timing Diagram – Non-MUXed Synchronous Read Burst Mode  
3.3.7.1.3  
Non-MUXed Synchronous Write Burst Mode  
LPC_CLK  
CS[x]  
t12  
t2  
t13  
Valid Address  
ADDR  
t5  
TS  
R/W  
t15  
t15  
DATA (wr)  
ACK  
t9  
t14  
Figure 15. Timing Diagram – Non-MUXed Synchronous Write Burst  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
40  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.3.7.1.4  
Non-MUXed Asynchronous Read Burst Mode (Page Mode)  
LPC_CLK  
CS[x]  
t8  
t2  
t4  
Valid Address (Page address)  
Valid Address  
ADDR[31:n+1]  
ADDR[n:0]  
t19  
Valid Address  
t5  
TS  
t3  
OE  
t20  
t6  
t21  
t10  
R/W  
t7  
DATA (rd)  
t11  
t9  
ACK  
Figure 16. Timing Diagram – Non-MUXed Asynchronous Read Burst  
3.3.7.1.5  
Non-MUXed Aynchronous Write Burst Mode  
LPC_CLK  
CS[x]  
t12  
t2  
t13  
Valid Address (Page address)  
Valid Address  
ADDR[31:n+1]  
ADDR[n:0]  
Valid Address  
t16  
t5  
TS  
R/W  
DATA (wr)  
ACK  
t15  
t15  
t9  
t14  
Figure 17. Timing Diagram – Non-MUXed Aynchronous Write Burst  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
41  
Electrical and Thermal Characteristics  
3.3.7.2  
MUXed Mode  
3.3.7.2.1  
MUXed Non-Burst Mode  
LPC_CLK  
t17  
AD[31:0] (wr)  
Address  
Valid Write Data  
t6 t7  
AD[31:0] (rd)  
Address  
t4  
R/W  
ALE  
t18  
t5  
TS  
t22  
CS[x]  
t3  
OE  
ACK  
TSIZ[1:0]  
Figure 18. Timing Diagram – MUXed Non-Burst Mode  
NOTE  
ACK is asynchonous input signal and has no timing requirements. ACK needs to be  
deasserted after CS[x] is deasserted.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
42  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.3.7.2.2  
MUXed Synchronous Read Burst Mode  
LPC_CLK  
t7  
t6  
t10  
t17  
AD[31:0] (rd)  
Address  
t18  
ALE  
TS  
t5  
t23  
CSx  
OE  
t3  
R/W  
ACK  
t9  
t11  
Figure 19. Timing Diagram – MUXed Synchronous Read Burst  
3.3.7.2.3  
MUXed Synchronous Write Burst Mode  
LPC_CLK  
AD[31:0] (wr)  
ALE  
t17  
Address  
t18  
t15  
t15 t13  
t5  
TS  
t24  
CSx  
R/W  
t14  
t9  
ACK  
Figure 20. Timing Diagram – MUXed Synchronous Write Burst  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
43  
Electrical and Thermal Characteristics  
3.3.8  
NFC  
The NAND flash controller (NFC) implements the interface to standard NAND Flash memory devices. This section describes  
the timing parameters of the NFC.  
NFC_CLE  
tCLH  
tCLS  
tCS  
tCH  
NFC_CE[1:0]  
tWP  
NFC_WE  
NFC_ALE  
tALS  
tALH  
tDS  
tDH  
NFIO[7:0]  
command  
Figure 21. Command Latch Cycle Timing  
NFC_CLE  
tCLS  
tCH  
tCS  
NFC_CE[1:0]  
tWC  
tWH  
tWP  
NFC_WE  
NFC_ALE  
tALH  
tALS  
tDS  
tDH  
NFIO[7:0]  
Address  
Figure 22. Address Latch Cycle Timing  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
44  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
NFC_CLE  
tCLS  
tCS  
NFC_CE[1:0]  
tWC  
tWH  
tWP  
NFC_WE  
NFC_ALE  
tDS  
Data to NF  
tDH  
NFIO[15:0]  
Figure 23. Write Data Latch Timing  
NFC_CLE  
NFC_CE[1:0]  
tRC  
tREH  
tRP  
NFC_RE  
tREA  
tAR  
tRHZ  
NFC_ALE  
NFIO[15:0]  
R/B  
Data from NF  
tRR  
Figure 24. Read Data Latch Timing  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
45  
Electrical and Thermal Characteristics  
NFC_RE  
tss  
NFIO[15:0]  
NFC SYMMETRIC MODE(SYM=1)  
Figure 25. Read Data Latch Timing in Symmetric Mode  
1
Table 24. NFC Timing Characteristics in asymmetric mode(SYM=0)  
Timing  
parameter  
Description  
NFC_CLE setup Time  
Min. value  
Max. value  
Unit SpecID  
tCLS  
tCLH  
tCS  
T + 1  
T – 1  
2T – 1  
3T  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A8.1  
A8.2  
NFC_CLE Hold Time  
NFC_CE[1:0] Setup Time  
NFC_CE[1:0] Hold Time  
NFC_WP Pulse Width  
NFC_ALE Setup Time  
NFC_ALE Hold Time  
Data Setup Time  
A8.3  
tCH  
A8.4  
tWP  
tALS  
tALH  
tDS  
T – 1  
T – 1  
T – 1  
T – 2  
T – 1  
2T  
A8.5  
A8.6  
A8.7  
A8.8  
tDH  
Data Hold Time  
A8.9  
tWC  
tWH  
tRR  
Write Cycle Time  
A8.10  
A8.11  
A8.12  
A8.13  
A8.14  
A8.15  
NFC_WE Hold Time  
Ready to NFC_RE Low  
NFC_RE Pulse Width  
READ Cycle Time  
T – 1  
5T + 2  
1.5T – 1  
2T  
tRP  
tRC  
tREH  
NFC_RE High Hold Time  
0.5T  
1
T is the flash clock cycle.  
T = 45 ns, frequency = 22 MHz (boot configuration, IP bus = 66 MHz)  
T = 36 ns, frequency = 27 MHz (maximum configurable frequency, IP bus = 83 MHz)  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
46  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
1
Table 25. NFC Timing Characteristics in Symmetric mode(SYM=1)  
Timing  
Parameter  
Description  
NFC_CLE Setup time  
Min. value  
Max. value  
Unit  
SpecID  
tCLS  
tCLH  
tCS  
T
T
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A8.21  
A8.22  
A8.23  
A8.24  
A8.25  
A8.26  
A8.27  
A8.28  
A8.29  
A8.30  
A8.31  
A8.32  
A8.33  
A8.34  
A8.35  
A8.36  
NFC_CLE Hold time  
NFC_CE[1:0] Setup time  
NFC_CE[1:0] Hold time  
NFC_WE Pulse width  
NFC_ALE Setup time  
NFC_ALE Hold time  
Data Setup time  
T-2  
tCH  
1.5T-1  
0.5T+1  
T
tWP  
tALS  
tALH  
tDS  
T
0.5T-3  
0.5T  
T
tDH  
Data Hold time  
tWC  
tWH  
tRR  
Write Cycle time  
NFC_WE Hold time  
Ready to NFC_RE low  
NFC_RE pulse width  
Read Cycle time  
0.5T-1  
5T+2  
0.5T  
T
tRP  
tRC  
tREH  
tSS  
NFC_RE High hold time  
NFC Read Data setup time  
0.5T  
9.6  
1
T is the flash clock cycle.  
T = 45 ns, frequency = 22 MHz (boot configuration, IP bus = 66 MHz)  
T = 36 ns, frequency = 27 MHz (maximum configurable frequency, IP bus = 83 MHz)  
3.3.9  
PATA  
The MPC5121e/MPC5123 ATA Controller (PATA) is completely software programmable. It can be programmed to operate  
with ATA protocols using their respective timing, as described in the ANSI ATA-4 specification. The ATA interface is  
completely asynchronous in nature. Signal relationships are based on specific fixed timing in terms of timing units  
(nanoseconds).  
ATA data setup and hold times, with respect to Read/Write strobes, are software programmable inside the ATA Controller. Data  
setup and hold times are implemented using counters. The counters count the number of ATA clock cycles needed to meet the  
ANSI ATA-4 timing specifications. For details, see the ANSI ATA-4 specification and how to program an ATA Controller and  
ATA drive for different ATA protocols and their respective timing. See the MPC5121e Microcontroller Reference Manual.  
The MPC5121e/MPC5123 ATA Host Controller design makes data available coincidentally with the active edge of the WRITE  
strobe in PIO and Multiword DMA modes.  
Write data is latched by the drive at the inactive edge of the WRITE strobe. This gives ample setup-time beyond that  
required by the ATA-4 specification.  
Data is held unchanged until the next active edge of the WRITE strobe. This gives ample hold-time beyond that  
required by the ATA-4 specification.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
47  
Electrical and Thermal Characteristics  
All ATA transfers are programmed in terms of system clock cycles (IP bus clocks) in the ATA Host Controller timing registers.  
This puts constraints on the ATA protocols and their respective timing modes in which the ATA Controller can communicate  
with the drive.  
Faster ATA modes (i.e., UDMA 0, 1, 2) are supported when the system is running at a sufficient frequency to provide adequate  
data transfer rates. Adequate data transfer rates are a function of the following:  
The MPC5121e/MPC5123 operating frequency (IP bus clock frequency)  
Internal MPC5121e/MPC5123 bus latencies  
Other system load dependent variables  
The ATA clock is the same frequency as the IP bus clock in MPC5121e/MPC5123. See the MPC5121e Microcontroller  
Reference Manual.  
NOTE  
All output timing numbers are specified for nominal 50 pF loads.  
3.3.9.1  
PATA Timing Parameters  
In the timing equations, some timing parameters are used. These parameters depend on the implementation of the ATA interface  
in silicon, the bus transceiver used, the cable delay and cable skew. The parameters shown in Table 3-26 specify the ATA timing.  
Table 3-26. PATA Timing Parameters  
Name  
Meaning  
Controlled by  
Value SpecID  
T
PATA Bus clock period  
MPC5121E/MPC5123 15 ns  
A9.1  
A9.2  
A9.3  
A9.4  
ti_ds  
ti_dh  
tco  
Set-up time ATA_DATA to ATA_IORDY edge (UDMA-in only)  
Hold time ATA_IORDY edge to ATA_DATA (UDMA-in only)  
MPC5121E/MPC5123  
MPC5121E/MPC5123  
MPC5121E/MPC5123  
2 ns  
5 ns  
2 ns  
Propagation delay bus clock L-to-H to: ATA_CS0, ATA_CS1, ATA_DA2,  
ATA_DA1, ATA_DA0, ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA,  
ATA_BUFFER_EN  
tsu  
tsui  
thi  
Set-up time ATA_DATA to bus clock L-to-H  
Set-up time ATA_IORDY to bus clock H-to-L  
Hold time ATA_IORDY to bus clock H to L  
MPC5121E/MPC5123  
MPC5121E/MPC5123  
MPC5121E/MPC5123  
2 ns  
2 ns  
2 ns  
A9.5  
A9.6  
A9.7  
A9.8  
tskew1 Max difference in propagation delay bus clock L-to-H to any of following MPC5121E/MPC5123 1.7 ns  
signals: ATA_CS0, ATA_CS1, ATA_DA2, ATA_DA1, ATA_DA0,  
ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA (WRITE),  
ATA_BUFFER_EN  
tskew2 Max difference in buffer propagation delay for any of following signals:  
ATA_CS0, ATA_CS1, ATA_DA2, ATA_DA1, ATA_DA0, ATA_DIOR,  
ATA_DIOW, ATA_DMACK, ATA_DATA (WRITE), ATA_BUFFER_EN  
Transceiver  
A9.9  
tskew3 Max difference in buffer propagation delay for any of following signals:  
ATA_IORDY, ATA_DATA (read)  
Transceiver  
A9.10  
tbuf  
Max buffer propagation delay  
Transceiver  
Cable  
A9.11  
A9.12  
A9.13  
tcable1 Cable propagation delay for ata_data  
tcable2 Cable propagation delay for control signals: ATA_DIOR, ATA_DIOW,  
ATA_IORDY, ATA_DMACK  
Cable  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
48  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
Table 3-26. PATA Timing Parameters (continued)  
Name  
Meaning  
Controlled by  
Value SpecID  
tskew4 Max difference in cable propagation delay between: ATA_IORDY and  
ATA_DATA (read)  
Cable  
A9.14  
tskew5 Max difference in cable propagation delay between: ATA_DIOR,  
ATA_DIOW, ATA_DMACK and ATA_CS0, ATA_CS1, ATA_DA2,  
ATA_DA1, ATA_DA0, ATA_DATA (write)  
Cable  
Cable  
A9.15  
A9.16  
Max difference in cable propagation delay without accounting for ground  
bounce  
tskew6  
3.3.9.2  
PIO Mode Timing  
A timing diagram for the PIO read mode is given in Figure 26.  
t1  
t2r  
t9  
ADDR  
t5  
DIOR  
t6  
Read Data (15:0)  
tA  
IORDY  
IORDY  
trd1  
Figure 26. PIO Read Mode Timing  
To fulfill read mode timing, the different timing parameters given in Table 3-27 must be observed.  
Table 3-27. Timing Parameters PIO Read  
PIO Read  
ATA  
Parameter  
Mode Timing  
Parameter  
Value  
How to meet  
SpecID  
t1  
t1  
t2r  
t9  
t1(min) = (time_1 × T) – (tskew1 + tskew2 + tskew5  
)
calculate and programming  
time_1. 1  
A9.20  
A9.21  
A9.22  
t2  
t2(min) = (time_2r × T) – (tskew1 + tskew2 + tskew5  
)
calculate and programming  
time_2r. 1  
t9  
t9(min) = (time_9 × T) – (tskew1 + tskew2 + tskew6  
)
calculate and programming  
time_9. 1  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
49  
Electrical and Thermal Characteristics  
Table 3-27. Timing Parameters PIO Read (continued)  
PIO Read  
Mode Timing  
Parameter  
ATA  
Parameter  
Value  
How to meet  
SpecID  
t5  
t6  
tA  
t5  
t6  
tA  
t5(min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2  
If not met, increase time_2r  
A9.23  
A9.24  
A9.25  
0
tA(min) = (1.5 + time_ax) × T –   
calculate and programming  
time_ax. 1  
(tco + tsui + tcable2 + tcable2 + 2 × tbuf  
)
trd  
trd1  
trd1(max) = (–trd) + (t + t  
trd1(min) = (time_pio_rdx – 0.5 )  
)  
skew4  
calculate and programming  
time_pio_rdx. 1  
A9.26  
A9.27  
skew3  
×
T – (t + t )  
su  
hi  
+ t  
(time_pio_rdx – 0.5) × T > t + t + t  
su  
hi  
skew3  
skew4  
t0  
t0(min) = (time_1 + time_2 + time_9) × T  
time_1, time_2r, time_9  
1
See the MPC5121e Microcontroller Reference Manual.  
In PIO write mode, timing waveforms are somewhat different as shown in Figure 27.  
t1 t2r  
t9  
ADDR  
DIOR  
DIOW  
buffer_en  
Write Data (15:0)  
ton  
tA  
tB  
t4 toff  
t1  
IORDY  
IORDY  
Figure 27. PIO Write Mode Timing  
To fulfill this timing, several parameters need to be observed as shown in Table 3-28.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
50  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
Table 3-28. Timing Parameters PIO Write  
Value  
PIO Write  
ModeTiming  
Parameter  
ATA  
Parameter  
How to meet  
time_1. 1  
SpecID  
t1  
t2  
t1  
t1(min) = time_1 × T – (tskew1 + tskew2 + tskew5)  
t2(min) = time_2w × T – (tskew1 + tskew2 + tskew5)  
A9.30  
A9.31  
t2r  
calculate and programming  
time_2w. 1  
t9  
t3  
t9  
t9(min) = time_9 × T – (tskew1 + tskew2 + tskew6)  
time_9. 1  
A9.32  
A9.33  
t3(min) = (time_2w – time_on) × T  
If not met, increase time_2w  
– (tskew1 + tskew2 + tskew5)  
t4  
t4  
t4(min) = time_4 × T – tskew1  
calculate and programming  
time_4. 1  
A9.34  
A9.35  
tA  
tA  
tA = (1.5 + time_ax) × T   
– (tco + tsui + tcable2 + tcable2 + 2 × tbuf)  
calculate and programming  
time_ax. 1  
t0  
t0(min) = (time_1 + time_2 + time_9) × T  
time_1, time_2r, time_9  
A9.36  
A9.37  
Avoid bus contention when switching buffer on   
by making ton long enough  
Avoid bus contention when switching buffer off   
by making toff long enough  
A9.38  
1
See the MPC5121e Microcontroller Reference Manual.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
51  
Electrical and Thermal Characteristics  
3.3.9.3  
Timing in Multiword DMA Mode  
Timing in multiword DMA mode is given in Figure 28 and Figure 29.  
tk1  
DMARQ  
ADDR  
DMACK  
DIOR  
tm  
td  
tk  
tkjn  
Read Data (15:0)  
tgr  
tfr  
Figure 28. MDMA Read Timing  
tk1  
DMARQ  
ADDR  
DMACK  
buffer_en  
DIOW  
tm  
ton  
td1  
tk  
td  
tkjn  
toff  
Write Data (15:0)  
Figure 29. MDMA Write Timing  
To meet this timing, a number of timing parameters must be controlled as shown in Table 3-29.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
52  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
Table 3-29. Timing Parameters MDMA Read and Write  
MDMA  
Read/Write  
Timing  
ATA  
Parameter  
Value  
How to meet  
SpecID  
Parameter  
tm, ti  
tm  
td, td1  
tk  
tm(min) = ti(min) = (time_m × T) – (tskew1 + tskew2 + tskew5  
)
calculate and  
programming  
time_m. 1  
A9.40  
td  
t
= t  
= (time_d × T) – (tskew1  
+
tskew2  
+ )  
tskew6  
calculate and  
programming  
time_d. 1  
A9.41  
A9.42  
d1(min)  
d(min)  
tk  
tk(min) = (time_k × T) – ( skew1  
t
+
tskew2  
+
)
calculate and  
programming  
time_k. 1  
tskew6  
t0  
tgr  
t0(min) = (time_d + time_k) × T  
time_d, time_k  
time_d. 1  
A9.43  
A9.44  
tg(read)  
tgr(min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2  
tgr(min-drive) = td – te(drive)  
tf(read)  
tg(write)  
tf(write)  
tL  
tfr  
tfr(min-drive) = 0  
A9.45  
A9.46  
A9.47  
A9.48  
tg(min-write) = time_d × T – ( skew1  
t
+
tskew2  
tskew2  
+
tskew5  
)
time_d  
tf(min-write) = time_k × T – ( skew1  
t
+
+
)
time_k  
tskew6  
tL(max) = [(time_d + time_k – 2) × T]  
time_d, time_k  
– [tsu + tco + (2 × tbuf) + (2 × tcable2)]  
tn, tj  
tkjn  
tn = tj = tkjn = [max(time_k,. time_jn) × T]  
calculate and  
programming  
time_jn. 1  
A9.49  
A9.50  
– ( skew1  
t
+
tskew2  
+
)
tskew6  
ton  
toff  
ton = (time_on × T) – tskew1  
toff = (time_off × T) – tskew1  
1
See the MPC5121e Microcontroller Reference Manual.  
3.3.9.4  
UDMA In Timing Diagrams  
UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing diagrams for UDMA in are  
given:  
Figure 30 gives timing for UDMA in transfer start  
Figure 31 gives timing for host terminating UDMA in transfer  
Figure 32 gives timing for device terminating UDMA in transfer.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
53  
Electrical and Thermal Characteristics  
tack  
ADDR  
DMARQ  
DMACK  
DIOR  
tenv  
DIOW  
tc1  
tc1  
IORDY  
Data Read  
tds  
tdh  
Figure 30. UDMA In Transfer Start Timing Diagram  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
54  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
ADDR  
tack  
DMARQ  
DMACK  
DIOR  
trp  
DIOW  
tmli  
tmli  
ton tdzfs  
tc1  
tx1  
tc1  
IORDY  
tzah  
tzah  
Data Read  
tcvh  
toff  
tds  
tdh  
Data Write  
buffer_en  
Figure 31. UDMA In Host Terminates Transfer  
ADDR  
DMARQ  
DMACK  
tack  
DIOR  
DIOW  
tmli  
tc1  
tc1  
tss1 tli5  
IORDY  
tmli  
ton tdzfs tcvh toff  
Data Read  
tds  
tdh  
tzah  
tzah  
Data Write  
buffer_en  
Figure 32. UDMA In Device Terminates Transfer  
Timing parameters are explained in Table 30.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
55  
Electrical and Thermal Characteristics  
Table 30. Timing Parameters UDMA in Burst  
UDMA In  
Timing  
Parameter  
ATA  
Parameter  
Value  
How to Meet  
SpecID  
tack  
tack  
tack(min) = (time_ack × T) – (tskew1 + tskew2  
)
calculate and  
A9.51  
A9.52  
programming time_ack. 1  
tenv  
tenv  
tenv(min) = (time_env × T) – (tskew1 + tskew2)  
tenv(max) = (time_env × T) + (tskew1 + tskew2  
calculate and  
)
programming time_env. 1  
tds  
tdh  
tds1  
tdh1  
tc1  
tds – (tskew3) – ti_ds > 0  
tskew3, ti_ds, ti_dh should A9.53  
be low enough  
tdh – (tskew3) – ti_dh > 0  
A9.54  
tcyc  
(tcyc – tskew ) > T  
Bus clock period T big  
enough  
A9.55  
A9.56  
A9.57  
A9.58  
A9.59  
A9.60  
A9.61  
A9.62  
trp  
trp  
trp(min) = time_rp × T – (tskew1 + tskew2 + tskew6  
)
calculate and  
1
1
programming time_rp  
.
2
tx1  
(time_rp × T) – [tco + tsu + 3T + (2 × tbuf) + (2 × tcable2)]  
trfs (drive)  
>
calculate and  
programming time_rp  
.
tmli  
tmli1  
tzah  
tdzfs  
tcvh  
tmli1(min) = (time_mlix + 0.4) × T  
calculate and  
programming time_mlix. 1  
tzah  
tdzfs  
tcvh  
tzah(min) = (time_zah + 0.4) × T  
calculate and  
programming time_zah. 1  
tdzfs = (time_dzfs × T) – (tskew1 + tskew2  
)
calculate and  
programming time_dzfs. 1  
tcvh = (time_cvh × T) – (tskew1 + tskew2  
)
calculate and  
programming time_cvh. 1  
ton3  
toff  
ton = (time_on × T) – tskew1  
toff = (time_off × T) – tskew1  
1
2
See the MPC5121e Microcontroller Reference Manual.  
A special timing requirement in the ATA host requires the internal DIOW to go only high three clocks after the last active edge  
on the DSTROBE signal. The equation given on this line tries to capture this constraint.  
3
Make ton and toff large enough to avoid bus contention.  
3.3.9.5  
UDMA Out Timing Diagrams  
UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing diagrams for UDMA out are  
given:  
Figure 33 gives timing for UDMA out transfer start  
Figure 34 gives timing for host terminating UDMA out transfer  
Figure 35 gives timing for device terminating UDMA out transfer  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
56  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
tack  
ADDR  
DMARQ  
DMACK  
DIOW  
tenv  
DIOR  
tcyc  
tcyc  
buffer_en  
ton  
tdzfs  
tdvs  
tdvh  
tdvs  
Data Write  
IORDY  
tli1  
trfs1  
Figure 33. UDMA Out Transfer Start Timing Diagram  
ADDR  
tack  
DMARQ  
DMACK  
DIOW  
tss  
DIOR  
tcyc  
tcyc1  
tli2  
tdzfs_mli  
tcvh  
toff  
Data Write  
IORDY  
tli3  
buffer_en  
Figure 34. UDMA Out Host Terminates Transfer  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
57  
Electrical and Thermal Characteristics  
r
ADDR  
tack  
DMARQ  
tli2  
DMACK  
DIOW  
DIOR  
trfs1  
tcyc  
tdzfs_mli  
tcvh  
toff  
Data Write  
IORDY  
buffer_en  
Figure 35. UDMA Out Device Terminates Transfer  
Timing parameters are explained in Table 31.  
Table 31. Timing Parameters UDMA Out Burst  
Value  
UDMA Out  
Timing  
Parameter  
ATA  
Parameter  
How to meet  
SpecID  
tack  
tenv  
tdvs  
tdvh  
tcyc  
t2cyc  
tack  
tenv  
tdvs  
tdvh  
tcyc  
tack(min) = (time_ack × T) – (tskew1 + tskew2  
)
calculate and program A9.63  
time_ack. 1  
tenv(min) = (time_env × T) – (tskew1 + tskew2)  
tenv(max) = (time_env × T) + (tskew1 + tskew2  
calculate and program A9.64  
1
)
time_env.  
tdvs = (time_dvs × T) – (tskew1 + tskew2  
)
calculate and program A9.65  
1
time_dvs  
.
tdvs = (time_dvh × T) – (tskew1 + tskew2  
)
calculate and program A9.66  
1
time_dvh  
.
tcyc = time_cyc × T – (tskew1 + tskew2  
t2cyc = time_cyc × 2 × T  
)
calculate and program A9.67  
1
time_cyc  
.
calculate and program A9.68  
1
time_cyc  
.
trfs1  
trfs1  
tdzfs  
trfs1 = 1.6 × T + tsui + tco + tbuf + tbuf  
A9.69  
tdzfs = time_dzfs × T – (tskew1  
)
calculate and program A9.70  
time_dzfs  
1
.
tss  
tss  
tdzfs_mli  
tli1  
tss = time_ss × T – (tskew1 + tskew2  
)
calculate and program  
time_ss. 1  
A9.71  
A9.72  
A9.73  
tmli  
tli  
tdzfs_mli = max(time_dzfs, time_mli) × T –  
(tskew1 + tskew2  
)
tli1 > 0  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
58  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
Table 31. Timing Parameters UDMA Out Burst (continued)  
UDMA Out  
ATA  
Parameter  
Timing  
Value  
How to meet  
SpecID  
Parameter  
tli  
tli  
tli2  
tli3  
tli2 > 0  
tli3 > 0  
A9.74  
A9.75  
tcvh  
tcvh  
tcvh = (time_cvh × T) – (tskew1 + tskew2  
)
calculate and program A9.76  
1
time_cvh  
.
ton  
toff  
ton = time_on × T – tskew1  
toff = time_off × T – tskew1  
A9.77  
1
See the MPC5121e Microcontroller Reference Manual.  
3.3.10 SATA PHY  
1.5 Gbps SATA PHY Layer  
See “Serial ATA: High Speed Serialized AT Attachment” Revision 1.0a, 7-January-2003.  
3.3.11 FEC  
AC Test Timing Conditions:  
Output Loading  
All Outputs: 25 pF  
Table 32. MII Rx Signal Timing  
Symbol  
Description  
Min  
Max  
Unit  
SpecID  
1
2
3
4
RXD[3:0], RX_DV, RX_ER to RX_CLK setup  
RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
RX_CLK pulse width high  
5
ns  
ns  
A11.1  
A11.2  
A11.3  
A11.4  
5
35%  
35%  
65%  
65%  
RX_CLK Period1  
RX_CLK Period1  
RX_CLK pulse width low  
1
RX_CLK shall have a frequency of 25% of data rate of the received signal. See the IEEE 802.3 Specification.  
3
RX_CLK (Input)  
4
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
1
2
Figure 36. Ethernet Timing Diagram – MII Rx Signal  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
59  
Electrical and Thermal Characteristics  
Table 33. MII Tx Signal Timing  
Min  
Symbol  
Description  
Max  
Unit  
SpecID  
5
TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER  
3
ns  
A11.5  
invalid  
6
7
8
TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER valid  
TX_CLK pulse width high  
TX_CLK pulse width low  
25  
ns  
A11.6  
A11.7  
A11.8  
35%  
35%  
65%  
65%  
TX_CLK Period1  
TX_CLK Period1  
1
The TX_CLK frequency shall be 25% of the nominal transmit frequency, e.g., a PHY operating at 100 Mb/s must provide  
a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See  
the IEEE 802.3 Specification.  
7
TX_CLK (Input)  
5
8
TXD[3:0] (Outputs)  
TX_EN  
TX_ER  
6
Figure 37. Ethernet Timing Diagram – MII Tx Signal  
Table 34. MII Async Signal Timing  
Symbol  
Description  
Min  
Max  
Unit  
SpecID  
9
CRS, COL minimum pulse width  
1.5  
TX_CLK Period  
A11.9  
CRS, COL  
9
Figure 38. Ethernet Timing Diagram – MII Async  
Table 35. MII Serial Management Channel Signal Timing  
Symbol  
Description  
Min  
Max  
Unit  
SpecID  
10  
11  
12  
13  
14  
15  
MDC falling edge to MDIO output delay  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high1  
0
25  
ns  
ns  
ns  
ns  
ns  
ns  
A11.10  
A11.11  
A11.12  
A11.13  
A11.14  
A11.15  
10  
0
160  
160  
400  
MDC pulse width low1  
MDC period2  
1
MDC is generated by MPC5121e/MPC5123 with a duty cycle of 50% except when MII_SPEED in the FEC  
MII_SPEED control register is changed during operation. See the MPC5121e/MPC5123 Reference Manual.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
60  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
The MDC period must be set to a value of less than or equal to 2.5 MHz (to be compliant with the IEEE MII  
2
characteristic) by programming the FEC MII_SPEED control register. See the MPC5121e/MPC5123 Reference  
Manual.  
13  
14  
MDC (Output)  
15  
10  
MDIO (Output)  
MDIO (Input)  
11  
12  
Figure 39. Ethernet Timing Diagram – MII Serial Management  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
61  
Electrical and Thermal Characteristics  
3.3.12 USB ULPI  
This section specifies the USB ULPI timing.  
For more information refer to UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1, October 20, 2004.  
Clock  
TSC  
THC  
Control In  
(dir, nxt)  
TSD  
THD  
Data In  
(8-bit)  
TDC  
TDC  
Control Out  
(stp)  
TDD  
Data Out  
(8-bit)  
Figure 40. ULPI Timing Diagram  
Table 36. Timing Specifications – ULPI  
Symbol  
TCK  
Description  
Min  
Max  
Units  
SpecID  
Clock Period  
15  
6.0  
ns  
ns  
ns  
ns  
A12.1  
A12.2  
A12.3  
A12.4  
TSC, TSD Setup time (control in, 8-bit data in)  
THC, THD Hold time (control in, 8-bit data in)  
TDC, TDD Output delay (control out, 8-bit data out)  
0.0  
9.0  
NOTE  
Output timing is specified at a nominal 50 pF load.  
3.3.13 On-Chip USB PHY  
The USB PHY is an USB2.0 compatible PHY integrated on-chip. See Chapter 7 in the USB Specification Rev. 2.0 at  
www.usb.org.  
3.3.14 SDHC  
Figure 41 shows the timings of the SDHC.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
62  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
SD4  
SD2  
SD5  
SD1  
MMCx_CLK  
SD3  
MMCx_CMD  
MMCx_DAT_0  
MMCx_DAT_1  
MMCx_DAT_2  
MMCx_DAT_3  
Output from SDHC to card  
Input from card to SDHC  
SD6  
MMCx_CMD  
MMCx_DAT_0  
MMCx_DAT_1  
MMCx_DAT_2  
MMCx_DAT_3  
SD7 SD8  
Figure 41. SDHC Timing Diagram  
Table 37 lists the timing parameters.  
.
Table 37. MMC/SD Interface Timing Parameters  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SpecID  
1
SD1 Clock Frequency (Low Speed)  
fPP  
fPP  
0
0
400  
kHz  
A14.1  
A14.2  
2
Clock Frequency (SD/SDIO Full  
Speed/High Speed)  
25/50  
MHz  
3
Clock Frequency (MMC Full Speed/High  
Speed)  
fPP  
0
20/52  
400  
MHz  
A14.3  
4
Clock Frequency (Identification Mode)  
SD2 Clock Low Time (Full Speed/High Speed)  
SD3 Clock High Time (Full Speed/High Speed)  
SD4 Clock Rise Time (Full Speed/High Speed)  
SD5 Clock Fall Time (Full Speed/High Speed)  
fOD  
100  
10/7  
10/7  
kHz  
ns  
A14.4  
A14.5  
A14.6  
A14.7  
A14.8  
tWL  
tWH  
tTLH  
tTHL  
ns  
10/3  
10/3  
ns  
ns  
SDHC Output / Card Inputs CMD, DAT (Reference to CLK)  
SD6 SDHC Output Delay tOD  
TH5 – 3  
SDHC Input / Card Outputs CMD, DAT (Reference to CLK)  
TH+3  
ns  
A14.9  
SD7 SDHC Input Setup Time  
SD8 SDHC Input Hold Time  
tISU  
tIH  
2.5  
2.5  
ns  
ns  
A14.10  
A14.11  
1
2
3
4
5
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal data transfer mode for SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz.  
In normal data transfer mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz.  
In card identification mode, card clock must be 100 kHz ~ 400 kHz, voltage ranges from 2.7 to 3.6 V.  
Suggested ClockPeriod = T, CLK_DIVIDER (in SDHC Clock Rate Register) = D, then TH = [(D + 1)/2]/(D + 1) × T  
where the value is rounded.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
63  
Electrical and Thermal Characteristics  
3.3.15 DIU  
The DIU is a display controller designed to manage the TFT LCD display.  
3.3.15.1 Interface to TFT LCD Panels, Functional Description  
Figure 42 shows the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with  
positive polarity. The sequence of events for active matrix interface timing is:  
DIU_CLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode,  
DIU_CLK runs continuously. This signal frequency could be from 5 to 100 MHz depending on the panel type.  
DIU_HSYNC causes the panel to start a new line. It always encompasses at least one DIU_CLK pulse.  
DIU_VSYNC causes the panel to start a new frame. It always encompasses at least one DIU_HSYNC pulse.  
DIU_DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display.  
When disabled, the data is invalid and the trace is off.  
DIU_VSYNC  
DIU_HSYNC  
LINE 1  
LINE 3  
LINE 4  
LINE n-1 LINE n  
LINE 2  
DIU_HSYNC  
DIU_DE  
1
2
3
m
m-1  
DIU_CLK  
DIU_LD[23:0]  
Figure 42. Interface Timing Diagram for TFT LCD Panels  
3.3.15.2 Interface to TFT LCD Panels, Electrical Characteristics  
Figure 43 shows the horizontal timing (timing of one line), including the horizontal sync pulse and the data. All parameters  
shown in the diagram are programmable. This timing diagram corresponds to positive polarity of the DIU_CLK signal  
(meaning the data and sync. signals change at the rising edge of it) and active-high polarity of the DIU_HSYNC, DIU_VSYNC  
and DIU_DE signal. You can select the polarity of the DIU_HSYNC and DIU_VSYNC signal via the SYN_POL register,  
whether active-high or active-low, the default is active-high. The DIU_DE signal is always active-high. And, pixel clock  
inversion and a flexible programmable pixel clock delay is also supported, programed via the DIU Clock Config Register  
(DCCR) in the system clock module.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
64  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
tHSP  
Start of line  
tPWH  
tFPH  
tSW  
tBPH  
tPCP  
DIU_CLK  
Invalid Data  
2
3
DELTA_X  
Invalid Data  
1
DIU_LD[23:0]  
DIU_HSYNC  
DIU_DE  
Figure 43. TFT LCD Interface Timing Diagram – Horizontal Sync Pulse  
Figure 44 shows the vertical timing (timing of one frame), including the vertical sync pulse and the data. All parameters shown  
in the diagram are programmable.  
tVSP  
tSH  
tFPV  
tBPV  
tPWV  
tHSP  
Start of Frame  
DIU_HSYNC  
DIU_LD[23:0]  
(Line Data)  
Invalid Data  
2
3
DELTA_Y  
Invalid Data  
1  
DIU_VSYNC  
DIU_DE  
Figure 44. TFT LCD Interface Timing Diagram – Vertical Sync Pulse  
Table 38 shows timing parameters of signals.  
Table 38. LCD Interface Timing Parameters – Pixel Level  
Name  
Description  
Value  
Unit  
SpecID  
tPCP  
tPWH  
tBPH  
Display Pixel Clock Period  
HSYNC Pulse Width  
151  
ns  
ns  
ns  
A15.1  
A15.2  
A15.3  
PW_H × tPCP  
BP_H × tPCP  
HSYNC Back Porch Width  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
65  
Electrical and Thermal Characteristics  
Table 38. LCD Interface Timing Parameters – Pixel Level (continued)  
Name  
Description  
Value  
Unit  
SpecID  
tFPH  
tSW  
HSYNC Front Porch Width  
Screen Width  
FP_H × tPCP  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.4  
A15.5  
A15.6  
A15.7  
A15.8  
A15.9  
A15.10  
A15.11  
DELTA_X × tPCP  
tHSP  
tPWV  
tBPV  
tFPV  
tSH  
HSYNC (Line) Period  
VSYNC Pulse Width  
VSYNC Back Porch Width  
VSYNC Front Porch Width  
Screen Height  
(PW_H + BP_H + DELTA_X + FP_H) × tPCP  
PW_V × tHSP  
BP_V × tHSP  
FP_V × tHSP  
DELTA_Y × tHSP  
tVSP  
VSYNC (Frame) Period  
(PW_V + BP_V + DELTA_Y + FP_H) × tHSP  
1
Display interface pixel clock period immediate value (in nanosecond).  
The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register; The PW_H, BP_H, and FP_H  
parameters are programmed via the HSYN_PARA register; And the PW_V, BP_V and FP_V parameters are programmed via  
the VSYN_PARA register. See appropriate section in the reference manual for detailed descriptions on these parameters.  
Figure 45 shows the synchronous display interface timing for access level, and Table 39 lists the timing parameters.  
tCHD  
tCSU  
DIU_HSYNC  
DIU_VSYNC  
DIU_DE  
DIU_CLK  
tCKH  
tCKL  
tDHD  
tDSU  
DIU_LD[23:0]  
Figure 45. LCD Interface Timing Diagram – Access Level  
Table 39. LCD Interface Timing Parameters – Access Level  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
SpecID  
tCKH  
tCKL  
tDSU  
tDHD  
tCSU  
tCHD  
LCD Interface Pixel Clock High Time  
LCD Interface Pixel Clock Low Time  
LCD Interface Data Setup Time  
tPCP × 0.4  
tPCP × 0.4  
5.0  
tPCP × 0.5  
tPCP × 0.6  
ns  
ns  
ns  
ns  
ns  
ns  
A15.12  
A15.13  
A15.14  
A15.15  
A15.16  
A15.17  
tPCP × 0.5  
tPCP × 0.6  
LCD Interface Data Hold Time  
6.0  
LCD Interface Control Signal Setup Time  
LCD Interface Control Signal Hold Time  
5.0  
6.0  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
66  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
3.3.16 SPDIF  
The Sony/Philips Digital Interface (SPDIF) timing is totally asynchronous, therefore there is no need for relationship with the  
clock.  
3.3.17 CAN  
The CAN functions are available as TX and CAN3/4_RX pins at normal IO pads and as CAN1/2 RX pins at the VBAT_RTC  
domain. There is no filter for the WakeUp dominant pulse. Any High-to-Low edge can cause WakeUp, if configured.  
3.3.18 I2C  
2
2
This section specifies the timing parameters of the Inter-Integrated Circuit (I C) interface. Refer to the I C Bus Specification.  
2
Table 40. I C Input Timing Specifications – SCL and SDA  
Symbol  
Description  
Min  
Max  
Units  
SpecID  
1
2
4
6
7
8
9
Start condition hold time  
Clock low time  
2
8
IP-Bus Cycle1  
IP-Bus Cycle1  
ns  
A18.1  
A18.2  
A18.3  
A18.4  
A18.5  
A18.6  
A18.7  
Data hold time  
0.0  
4
Clock high time  
Data setup time  
IP-Bus Cycle1  
0.0  
2
ns  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
IP-Bus Cycle1  
IP-Bus Cycle1  
2
1
Inter Peripheral Clock is defined in the MPC5121e/MPC5123 Reference Manual.  
2
Table 41. I C Output Timing Specifications – SCL and SDA  
Symbol  
Description  
Min  
Max  
Units  
SpecID  
11  
21  
33  
41  
51  
61  
71  
81  
91  
Start condition hold time  
Clock low time  
6
IP-Bus Cycle2  
IP-Bus Cycle2  
ns  
A18.8  
A18.9  
10  
7
SCL/SDA rise time  
Data hold time  
7.9  
A18.10  
A18.11  
A18.12  
A18.13  
A18.14  
A18.15  
A18.16  
IP-Bus Cycle2  
SCL/SDA fall time  
Clock high time  
10  
2
7.9  
ns  
IP-Bus Cycle2  
IP-Bus Cycle2  
IP-Bus Cycle2  
IP-Bus Cycle2  
Data setup time  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
20  
10  
1
Programming IFDR with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to  
scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and  
division values programmed in IFDR.  
2
3
Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA  
takes to reach a high level depends on external signal capacitance and pull-up resistor values.  
Inter Peripheral Clock is defined in the MPC5121e/MPC5123 Reference Manual.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
67  
Electrical and Thermal Characteristics  
NOTE  
Output timing is specified at a nominal 50 pF load.  
6
2
5
SCL  
SDA  
3
9
1
4
7
8
2
Figure 46. Timing Diagram – I C Input/Output  
3.3.19 J1850  
See the MPC5121e/MPC5123 Reference Manual.  
3.3.20 PSC  
The Programmable Serial Controllers (PSC) support different modes of operation (UART, Codec, AC97, SPI). UART is an  
asynchronous interface, there is no AC characteristic.  
2
3.3.20.1 Codec Mode (8,16,24 and 32-bit)/I S Mode  
2
Table 42. Timing Specifications – 8,16, 24, and 32-bit CODEC/I S Master Mode  
Symbol  
Description  
Min  
Typ  
Max  
Units SpecID  
1
2
3
4
5
6
7
8
Bit Clock cycle time, programmed in CCS register  
Clock duty cycle  
40.0  
45  
50  
55  
ns  
A20.1  
A20.2  
A20.3  
A20.4  
A20.5  
A20.6  
A20.7  
A20.8  
1
%
Bit Clock fall time  
7.9  
7.9  
8.4  
8.4  
9.3  
ns  
ns  
ns  
ns  
ns  
ns  
Bit Clock rise time  
FrameSync valid after clock edge  
FrameSync invalid after clock edge  
Output Data valid after clock edge  
Input Data setup time  
6.0  
1
Bit Clock cycle time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
68  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
1
BitClk Output  
(CLKPOL=0)  
3
2
2
4
3
BitClk Output  
(CLKPOL=1)  
4
6
5
FrameSync Output  
(SyncPol = 1)  
FrameSync Output  
(SyncPol = 0)  
7
TxD  
Output  
8
RxD  
Input  
2
Figure 47. Timing Diagram – 8, 16, 24, and 32-bit CODEC/I S Master Mode  
2
Table 43. Timing Specifications – 8, 16, 24, and 32-bit CODEC/I S Slave Mode  
Symbol  
Description  
Min  
Typ  
Max  
Units  
SpecID  
1
2
3
4
5
6
Bit Clock cycle time  
Clock duty cycle  
40.0  
50  
ns  
A20.9  
A20.10  
A20.11  
A20.12  
A20.13  
A20.14  
1
%
FrameSync setup time  
1.0  
ns  
ns  
ns  
ns  
Output Data valid after clock edge  
Input Data setup time  
14.0  
1.0  
1.0  
Input Data hold time  
1
Bit Clock cycle time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
69  
Electrical and Thermal Characteristics  
1
BitClk Input  
(CLKPOL=0)  
2
2
BitClk Input  
(CLKPOL=1)  
FrameSync Input  
(SyncPol = 1)  
3
FrameSync Input  
(SyncPol = 0)  
4
TxD  
Output  
5
RxD  
Input  
6
2
Figure 48. Timing Diagram – 8,16, 24, and 32-bit CODEC/I S Slave Mode  
3.3.20.2 AC97 Mode  
Table 44. Timing Specifications – AC97 Mode  
Symbol  
Description  
Min  
Typ  
Max  
Units  
SpecID  
1
2
3
4
5
6
7
Bit Clock cycle time  
Clock pulse high time  
Clock pulse low time  
81.4  
40.7  
40.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A20.15  
A20.16  
A20.17  
A20.18  
A20.19  
A20.20  
A20.21  
FrameSync valid after rising clock edge  
Output Data valid after rising clock edge  
Input Data setup time  
13.0  
14.0  
1.0  
1.0  
Input Data hold time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
70  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
1
BitClk  
(CLKPOL=0)  
Input  
3
2
4
FrameSync  
(SyncPol = 1)  
Output  
5
Sdata_out  
Output  
6
7
Sdata_in  
Input  
Figure 49. Timing Diagram – AC97 Mode  
3.3.20.3 SPI Mode  
Table 45. Timing Specifications – SPI Master Mode, Format 0 (CPHA = 0)  
Symbol  
Description  
Min  
Max  
Units SpecID  
1
2
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay, programable in the PSC CCS register  
Output Data valid after Slave Select (SS)  
Output Data valid after SCK  
30.0  
15.0  
30.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A20.26  
A20.27  
A20.28  
A20.29  
A20.30  
A20.31  
A20.32  
A20.33  
A20.34  
A20.35  
A20.36  
3
4
8.9  
8.9  
5
6
Input Data setup time  
6.0  
1.0  
7
Input Data hold time  
8
Slave disable lag time  
TSCK  
9
Sequential Transfer delay, programmable in the PSC CTUR / CTLR register  
Clock falling time  
15.0  
10  
11  
7.9  
7.9  
Clock rising time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
71  
Electrical and Thermal Characteristics  
1
11  
10  
10  
11  
SCK  
(CLKPOL=0)  
Output  
2
2
SCK  
(CLKPOL=1)  
Output  
9
8
3
SS  
Output  
5
4
MOSI  
Output  
6
6
MISO  
Input  
7
7
Figure 50. Timing Diagram – SPI Master Mode, Format 0 (CPHA = 0)  
Table 46. Timing Specifications – SPI Slave Mode, Format 0 (CPHA = 0)  
Symbol  
Description  
Min  
Max  
Units  
SpecID  
1
2
3
4
5
6
7
8
9
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay  
30.0  
15.0  
1.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A20.37  
A20.38  
A20.39  
A20.40  
A20.41  
A20.42  
A20.43  
A20.44  
A20.45  
Input Data setup time  
Input Data hold time  
Output data valid after SS  
14.0  
14.0  
Output data valid after SCK  
Slave disable lag time  
0.0  
30.0  
Minimum Sequential Transfer delay = 2 × IP Bus clock cycle time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
72  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
9
8
3
SS  
Input  
5
4
MOSI  
Input  
7
6
MISO  
Output  
Figure 51. Timing Diagram – SPI Slave Mode, Format 0 (CPHA = 0)  
Table 47. Timing Specifications – SPI Master Mode, Format 1 (CPHA = 1)  
Symbol  
Description  
Min  
Max  
Units  
SpecID  
1
2
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay, programable in the PSC CCS register  
Output data valid  
30.0  
15.0  
30.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A20.46  
A20.47  
A20.48  
A20.49  
A20.50  
A20.51  
A20.52  
A20.53  
A20.54  
A20.55  
3
4
8.9  
5
Input Data setup time  
6.0  
1.0  
6
Input Data hold time  
7
Slave disable lag time  
TSCK  
8
Sequential Transfer delay, programable in the PSC CTUR / CTLR register  
Clock falling time  
15.0  
9
7.9  
7.9  
10  
Clock rising time  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
73  
Electrical and Thermal Characteristics  
1
10  
9
9
SCK  
(CLKPOL=0)  
Output  
2
2
10  
SCK  
(CLKPOL=1)  
Output  
3
8
7
SS  
Output  
4
MOSI  
Output  
5
MISO  
Input  
6
Figure 52. Timing Diagram – SPI Master Mode, Format 1 (CPHA = 1)  
Table 48. Timing Specifications – SPI Slave Mode, Format 1 (CPHA = 1)  
Symbol  
Description  
Min  
Max  
Units  
SpecID  
1
2
3
4
5
6
7
8
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK duty cycle  
Slave select clock delay  
30.0  
15.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A20.56  
A20.57  
A20.58  
A20.59  
A20.60  
A20.61  
A20.62  
A20.63  
Output data valid  
14.0  
Input Data setup time  
2.0  
Input Data hold time  
1.0  
Slave disable lag time  
0.0  
Minimum Sequential Transfer delay = 2 × IP-Bus clock cycle time  
30.0  
NOTE  
Output timing is specified at a nominal 50 pF load.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
74  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
8
7
3
SS  
Input  
5
6
MOSI  
Input  
4
MISO  
Output  
Figure 53. Timing Diagram – SPI Slave Mode, Format 1 (CPHA = 1)  
3.3.21 GPIOs and Timers  
The MPC5121e/MPC5123 contains several sets of I/Os that do not require special setup, hold, or valid requirements. The  
external events (GPIO or timer inputs) are asynchronous to the system clock. The inputs must be valid for at least tIOWID to  
ensure proper capture by the internal IP clock.  
Table 49. GPIO/Timers Input AC Timing Specifications  
Symbol  
Description  
Min  
Unit  
SpecID  
tIOWID  
GPIO/Timers inputs—minimum pulse width  
2T1  
ns  
A21.1  
1
T is the IP bus clock cycle. T= 12 ns is the minimum value (for the maximum IP bus frequency of 83 MHz).  
3.3.22 Fusebox  
Table 50 gives the Fusebox specification.  
Table 50. Fusebox Characteristics  
Description  
Symbol  
Min  
Max  
Units  
SpecID  
tFUSEWR Program time1 for Fuse  
125  
us  
A22.1  
A22.2  
IFUSEWR Program current to program one fuse bit  
10  
mA  
1
The program length is defined by the value defined in the EPM_PGM_LENGTH bits of the IIM module.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
75  
Electrical and Thermal Characteristics  
3.3.23 IEEE 1149.1 (JTAG)  
Table 51. JTAG Timing Specification  
Symbol  
Characteristic  
TCK frequency of operation  
Min  
Max  
Unit  
SpecID  
1
0
40  
1.08  
0
25  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A23.1  
A23.2  
A23.3  
A23.4  
A23.5  
A23.6  
A23.7  
A23.8  
A23.9  
A23.10  
A23.11  
A23.12  
A23.13  
A23.14  
TCK cycle time  
2
TCK clock pulse width measured at 1.5V  
3
TCK rise and fall times  
4
TRST setup time to tck falling edge1  
TRST assert time  
10  
5
30  
30  
15  
15  
5
6
Input data setup time2  
5
7
Input data hold time  
15  
0
8
TCK to output data valid3  
TCK to output high impedance3  
TMS, TDI data setup time.  
TMS, TDI data hold time.  
TCK to TDO data valid.  
9
0
10  
11  
12  
13  
5
1
0
TCK to TDO high impedance.  
0
1
2
3
TRST is an asynchronous signal. The setup time is for test purposes only.  
Non-test, other than TDI and TMS, signal input timing with respect to TCK.  
Non-test, other than TDO, signal output timing with respect to TCK.  
1
2
2
VM  
VM  
VM  
TCK  
3
3
VM = Midpoint Voltage  
Figure 54. Timing Diagram – JTAG Clock Input  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
76  
Freescale Semiconductor  
Electrical and Thermal Characteristics  
TCK  
4
TRST  
5
Figure 55. Timing Diagram – JTAG TRST  
TCK  
6
7
Input Data Valid  
Data Inputs  
8
Output Data Valid  
Data Outputs  
9
Data Outputs  
Figure 56. Timing Diagram – JTAG Boundary Scan  
TCK  
10  
11  
Input Data Valid  
TDI, TMS  
12  
13  
Output Data Valid  
TDO  
TDO  
Figure 57. Timing Diagram – Test Access Port  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
77  
Electrical and Thermal Characteristics  
3.3.24 VIU  
The Video Input Unit (VIU) is an interface which accepts the ITU656 format compatible video stream.  
Figure 58 shows the VIU interface timing and Table 52 lists the timing parameters.  
VIU_PIX_CLK  
fPIX_CLK  
tDHD  
tDSU  
VIU_DATA[9:0]  
Figure 58. VIU Interface Timing Diagram  
Table 52. VIU Interface Timing Parameters  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
SpecID  
fPIX_CK  
tDSU  
VIU Pixel Clock Frequency  
VIU Data Setup Time  
VIU Data Hold Time  
83  
MHz  
ns  
A24.1  
A24.2  
A24.3  
2.5  
2.5  
tDHD  
ns  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
78  
Freescale Semiconductor  
System Design Information  
4
System Design Information  
4.1  
Power Up/Down Sequencing  
Power sequencing between the 1.4 V power supply V  
current during power up phase.  
and the remaining supplies is required to prevent excessive  
DD_CORE  
The required power sequence is as follows:  
Use 12 V/millisecond or slower time for all supplies.  
Power up V , PLL_AV , V (if not applied permanently), V , USB PHY, and SATA PHY  
DD_MEM_IO  
DD_IO  
DD  
BAT_RTC  
supplies first in any order and then power up V  
. If required, AV  
should be powered up afterwards.  
DD_CORE  
DD_FUSEWR  
All the supplies must reach the specified operating conditions before the PORESET can be released.  
For power down, drop AV to 0 V first, drop V to 0 V, and then drop all other supplies.  
DD_FUSEWR  
DD_CORE  
V
should not exceed V  
, V  
, V  
, or PLL_AV s by more than 0.4 V at any time,  
BAT_RTC DD  
DD_CORE  
DD_IO  
DD_MEM_IO  
including power-up.  
4.2  
System and CPU Core AVDD Power Supply Filtering  
Each of the independent PLL power supplies require filtering external to the device. The following drawing Figure 59 is a  
recommendation for the required filter circuit.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize noise coupled from  
DD  
nearby circuits.  
All traces should be as low impedance as possible, especially ground pins to the ground plane.  
The filter for System/Core PLLV to V should be connected to the power and ground planes, respectively, not fingers of the  
DD  
SS  
planes.  
In addition to keeping the filter components for System/Core PLLV as close as practical to the body of the MPC5121e as  
DD  
previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital switching noise  
onto the portion of that supply between the filter and the MPC5121e.  
R1 = 10   
AVDD device pin  
Power supply  
source  
C1 = 1 F  
C2 = 0.1 F  
Figure 59. Power Supply Filtering  
The capacitors for C2 in Figure 59 should be rated X5R or better due to temperature performance. It is recommended to add a  
bypass capacitance of at least 1 µF for the V  
pin.  
BAT_RTC  
4.3  
Connection Recommendations  
To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to  
. Unused active high inputs should be connected to V . All NC (no-connect) signals must remain unconnected.  
V
DD_IO  
SS  
Power and ground connections must be made to all external V and V pins of the MPC5121e/MPC5123.  
DD  
SS  
The unused AV  
power should be connected to V directly or via a resistor.  
SS  
DD_FUSEWR  
For DDR or LPDDR modes the unused pins MVTT[3:0] for DDR2 Termination voltage can be unconnected.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
79  
System Design Information  
The SATA PHY needs to be powered even if it is not used in an application. In this case, you should not enable the SATA  
oscillator and the SATA PHY by software.  
SATA_XTALI  
SATA_XTALO  
MPC5121e/  
MPC5123  
VSS  
NC  
SATA_ANAVIZ  
SATA_RESREF  
NC  
NC  
SATA_TXP  
SATA_TXN  
NC  
NC  
SATA_RXP  
SATA_RXN  
NC  
NC  
SATA_VDDA_3P3  
SATA_VDDA_1P2  
SATA_VDDA_VREG  
VDD_IO  
VDD_CORE  
1.7–2.6 V  
VDD_CORE  
SATA_PLL_VDDA1P2  
SATA_PLL_VSSA  
SATA_RX_VSSA  
SATA_TX_VSSA  
VSS  
VSS  
VSS  
Figure 60. Recommended Connection for Pins of Unused SATA PHY  
USB_XTALI  
USB_XTALO  
VSS  
NC  
MPC5121e/MPC5123  
USB_TPA  
NC  
USB_DP  
USB_DN  
Weak pull-up or pull-down  
USB_VBUS  
USB_UID  
VDD_IO  
VSS  
USB_PLL_GND  
USB_PLL_PWR3  
USB_RREF  
VSS  
VSS  
VSS  
VSS  
USB_VSSA_BIAS  
USB_VDDA_BIAS  
VSS  
VSS  
USB_VSSA  
USB_VDDA  
VDD_IO  
Figure 61. Recommended connection for pins of unused USB PHY  
4.4  
Pull-Up/Pull-Down Resistor Requirements  
The MPC5121e/MPC5123 requires external pull-up or pull-down resistors on certain pins.  
4.4.1  
Pull-Down Resistor Requirements for TEST pin  
The MPC5121e/MPC5123 requires a pull-down resistor on the test pin TEST.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
80  
Freescale Semiconductor  
System Design Information  
4.4.2  
Pull-Up Requirements for the PCI Control Lines  
PCI control signals always require pull-up resistors on the motherboard (not the expansion board) to ensure that they contain  
stable values when no agent is actively driving the bus. This includes PCI_FRAME, PCI_TRDY, PCI_IRDY, PCI_DEVSEL,  
PCI_STOP, PCI_SERR, PCI_PERR, and PCI_REQ.  
Refer to the PCI Local Bus specification.  
4.5  
JTAG  
The MPC5121e/MPC5123 provides you with an IEEE 1149.1 JTAG interface to facilitate board/system testing. It also provides  
a Common On-Chip Processor (COP) Interface, which shares the IEEE 1149.1 JTAG port.  
The COP Interface provides access to the MPC5121e/MPC5123’s embedded e300 processor and to other on-chip resources.  
This interface provides a means for executing test routines and for performing software development and debug functions.  
4.5.1  
TRST  
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1  
specification but is provided on all processors that implement the Power Architecture. To obtain a reliable power-on reset  
performance, the TRST signal must be asserted during power-on reset.  
4.5.1.1  
TRST and PORESET  
The JTAG interface can control the direction of the MPC5121e/MPC5123 I/O pads via the boundary scan chain. The JTAG  
module must be reset before the MPC5121e/MPC5123 comes out of power-on reset; do this by asserting TRST before  
PORESET is released.  
For more details refer to the Reset and JTAG Timing Specification.  
PORESET  
Required assertion of TRST  
TRST  
Optional assertion of TRST  
Figure 62. PORESET vs. TRST  
4.5.2  
e300 COP/BDM Interface  
There are two possibilities to connect the JTAG interface: using it with a COP connector and without a COP connector.  
4.5.2.1  
Boards Interfacing the JTAG Port via a COP Connector  
The MPC5121e/MPC5123 functional pin interface and internal logic provides access to the embedded e300 processor core  
through the Freescale standard COP/BDM interface. Table 53 gives the COP/BDM interface signals. The pin order shown  
reflects only the COP/BDM connector order.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
81  
System Design Information  
Table 53. COP/BDM Interface Signals  
Internal  
External  
Pull Up/Down  
BDM Pin # MPC5121e/MPC5123 I/O Pin BDM Connector  
I/O1  
Pull Up/Down  
16  
15  
14  
13  
12  
11  
10  
9
CKSTP_OUT  
GND  
ckstp_out  
KEY  
I
10 kPull-up  
O
O
O
O
O
I
HRESET  
hreset  
GND  
sreset  
N/C  
Pull-up  
10 kPull-up  
10 kPull-up  
SRESET  
Pull-up  
TMS  
tms  
Pull-up  
10 kPull-up  
10 kPull-up  
10 kPull-up  
8
CKSTP_IN  
TCK  
ckstp_in  
tck  
7
Pull-up  
6
VDD2  
halted3  
trst  
5
See Note3  
4
TRST  
Pull-up  
Pull-up  
10 kPull-up  
10 kPull-up  
O
O
O
I
3
TDI  
tdi  
2
See Note4  
qack4  
1
TDO  
tdo  
1
With respect to the emulator tool’s perspective:  
Input is really an output from the embedded e300 core.  
Output is really an input to the core.  
2
3
4
From the board under test, power sense for chip power.  
HALTED is not available from e300 core.  
Input to the e300 core to enable/disable soft-stop condition during breakpoints. MPC5121e/MPC5123  
internally ties CORE_QACK to GND in its normal/functional mode (always asserted).  
For a board with a COP (common on-chip processor) connector that accesses the JTAG interface and needs to reset the JTAG  
module, only wiring TRST and PORESET is not recommended.  
To reset the MPC5121e/MPC5123 via the COP connector, the HRESET pin of the COP should be connected to the HRESET  
pin of the MPC5121e/MPC5123. The circuitry shown in Figure 63 allows the COP to assert HRESET or TRST separately,  
while any other board sources can drive PORESET.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
82  
Freescale Semiconductor  
System Design Information  
PORESET  
PORESET  
HRESET  
COP Header  
10 k  
HRESET  
SRESET  
VDD_IO  
VDD_IO  
SRESET  
VDD_IO  
13  
11  
16  
10 k  
10 k  
COP Connector  
Physical Pinout  
TRST  
TMS  
TCK  
4
TRST  
1
3
2
4
14  
10 k  
VDD_IO  
TMS  
9
5
6
12  
10 k  
7
8
VDD_IO  
TCK  
7
VDD_IO  
9
10  
12  
K
2
6
TDO  
TDI  
TDO  
1
3
11  
13  
15  
10 k  
VDD_IO  
TDI  
10 k  
16  
CKSTP_OUT  
CKSTP_IN  
VDD_IO  
15  
8
CKSTP_OUT  
10 k  
VDD_IO  
CKSTP_IN (LPC_CLK)  
halted  
5(3)  
2(4)  
10  
NC  
qack  
NC  
NC  
Figure 63. COP Connector Diagram  
4.5.2.2  
Boards Without COP Connector  
If the JTAG interface is not used, TRST should be tied to PORESET, so that it is asserted when the system reset signal  
(PORESET) is asserted. This ensures that the JTAG scan chain is initialized during power on. Figure 64 shows the connection  
of the JTAG interface without COP connector.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
83  
System Design Information  
PORESET  
PORESET  
HRESET  
10 k  
HRESET  
SRESET  
VDD_IO  
VDD_IO  
SRESET  
10 k  
TRST  
10 k  
VDD_IO  
TMS  
10 k  
VDD_IO  
TCK  
10 k  
VDD_IO  
TDI  
CKSTP_OUT  
TDO  
Figure 64. TRST Wiring for Boards without COP Connector  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
84  
Freescale Semiconductor  
Package Information  
5
Package Information  
This section details package parameters and dimensions. The MPC5121e/MPC5123 is available in a Thermally Enhanced  
Plastic Ball Grid Array (TEPBGA), see Section 5.1, “Package Parameters,” and Section 5.2, “Mechanical Dimensions,” for  
information on the TEPBGA.  
5.1  
Package Parameters  
Table 54. TEPBGA Parameters  
Package outline  
Interconnects  
27 mm 27 mm  
516  
1.00 mm  
Pitch  
Module height (typical)  
Solder Balls  
2.25 mm  
96.5 Sn/3.5Ag (VY package)  
0.6 mm  
Ball diameter (typical)  
5.2  
Mechanical Dimensions  
Figure 65 shows the mechanical dimensions and bottom surface nomenclature of the MPC5121e/MPC5123 516 PBGA  
package.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
Freescale Semiconductor  
85  
Package Information  
Figure 65. Mechanical Dimension and Bottom Surface Nomenclature of the MPC5121e/MPC5123 TEPBGA  
1
All dimensions are in millimeters.  
2
Dimensions and tolerances per ASME Y14.5M-1994.  
3
Maximum solder ball diameter measured parallel to datum A.  
4
Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
86  
Freescale Semiconductor  
Product Documentation  
6
Product Documentation  
This Data Sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these  
types are available at: http://www.freescale.com.  
Table 55 provides a revision history for this document.  
Table 55. Document Revision History  
Revision  
Substantive Change(s)  
Rev. 0, DraftA  
Rev. 0, DraftB  
Rev. 0, DraftC  
Rev. 1  
First Draft (5/2008)  
Second Draft (5/2008)  
Third Draft (7/2008)  
Advance Information (10/2008)  
Rev. 2  
Technical Data (2/2009)  
Rev. 3  
Technical Data (2/2009). Corrected Table 5, Footnote 3.  
Rev. 3.1  
Technical Data (12/2009). Interim release for removing AVDD_FUSERD  
throughout document, changing pin D9 to VDD_IO, and adding D9 to list of  
pins for VDD_IO.  
Rev. 4  
Rev 5  
Technical Data (1/2010). Minor editorial and graphical updates.   
No technical updates.  
— Updated table “DDR and DDR2 SDRAM Timing Specification”, removed  
the row of ‘MCK AC differential crosspoint voltage' .  
— Updated table “Thermal Resistance Data”.  
— Added table “NFC Timing Characteristics in Symmetric Mode ”and  
added figure “Read data latch timing in Symmetric Mode”.  
—Published as Rev. 5  
MPC5121E/MPC5123 Data Sheet, Rev. 5  
87  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Beijing 100022   
China   
+86 10 5879 8000  
© Freescale Semiconductor, Inc. 2010-2012. All rights reserved.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Document Number: MPC5121E  
Rev. 5  
02/2012  

相关型号:

935312838518

RISC Microcontroller
NXP

935312883528

Interface Circuit
NXP

935312883557

Interface Circuit
NXP

935312895147

Telecom Circuit
NXP

935312939557

RISC Microprocessor
NXP

935312967557

Microprocessor
NXP

935313007528

Interface Circuit
NXP

935313028518

RISC Microcontroller
NXP

935313038557

RISC Microcontroller
NXP

935313052528

Switching Regulator
NXP

935313052557

Switching Regulator
NXP

935313087557

Power Supply Support Circuit
NXP