935312838518 [NXP]

RISC Microcontroller;
935312838518
型号: 935312838518
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总122页 (文件大小:1525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5646C  
Rev.6, 02/2014  
MPC5646C  
(28 mm x 28 mm)  
208-pin LQFP  
256 MAPBGA  
(17 mm x 17 mm)  
MPC5646C  
Microcontroller Data Sheet  
176-pin LQFP  
(24 mm x 24 mm)  
On-chip modules available within the family  
include the following features:  
e200z4d, e200z0h, or both.  
Crossbar switch architecture for concurrent  
access to peripherals, flash memory, and  
SRAM from multiple bus masters  
e200z4d dual issue, 32-bit core Power  
Architecture compliant CPU  
32 channel eDMA controller with  
DMAMUX  
— Up to 120 MHz  
— 4 KB, 2/4-Way Set Associative  
Instruction Cache  
Timer supports input/output channels  
providing 16-bit input capture, output  
compare, and PWM functions (eMIOS)  
Variable length encoding (VLE)  
— Embedded floating-point (FPU) unit  
— Supports Nexus3+  
2 analog-to-digital converters (ADC): one  
10-bit and one 12-bit  
e200z0h single issue, 32-bit core Power  
Architecture compliant CPU  
Cross Trigger Unit (CTU) to enable  
synchronization of ADC conversions with a  
timer event from the eMIOS or from the PIT  
— Up to 80 MHz  
Variable length encoding (VLE)  
— Supports Nexus3+  
Up to 8 serial peripheral interface (DSPI)  
modules  
Up to 10 serial communication interface  
(LINFlex) modules  
Up to 3 MB on-chip flash memory: flash  
page buffers to improve access time  
Up to 6 full CAN (FlexCAN) modules with  
64 MBs each  
Up to 256 KB on-chip SRAM  
64 KB on-chip data flash memory to  
support EEPROM emulation  
CAN Sampler to catch ID of CAN message  
2
1 inter IC communication interface (I C)  
Up to 16 semaphores across all slave ports  
User selectable MBIST  
module  
Up to 177 (LQFP) or 199 (BGA)  
configurable general purpose I/O pins  
Low-power modes supported: STOP,  
HALT, STANDBY  
1 System Timer Module (STM) with four  
32-bit compare channels  
16 region Memory Protection Unit (MPU)  
Dual-core Interrupt Controller (INTC).  
Interrupt sources can be routed to  
Up to 8 periodic interrupt timers (PIT) with  
32-bit counter resolution  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2009-2014. All rights reserved.  
Table of Contents  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
4.11.2 Electromagnetic interference (EMI) . . . . . . . . . 67  
4.11.3 Absolute maximum ratings (electrical sensitivity)67  
4.12 Fast external crystal oscillator (4–40 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
4.13 Slow external crystal oscillator (32 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 73  
4.15 Fast internal RC oscillator (16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
4.16 Slow internal RC oscillator (128 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 76  
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
4.18 Fast Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . 87  
4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV,  
RX_ER, and RX_CLK). . . . . . . . . . . . . . . . . . . 87  
1.1 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . .10  
3.1 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.3 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .41  
4.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.2.1 NVUSRO [PAD3V5V(0)] field description . . . . .42  
4.2.2 NVUSRO [PAD3V5V(1)] field description . . . . .42  
4.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .42  
4.4 Recommended operating conditions . . . . . . . . . . . . . .44  
4.5 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .47  
4.5.1 Package thermal characteristics . . . . . . . . . . . .47  
4.5.2 Power considerations. . . . . . . . . . . . . . . . . . . . .48  
4.6 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .48  
4.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
4.6.2 I/O input DC characteristics. . . . . . . . . . . . . . . .49  
4.6.3 I/O output DC characteristics. . . . . . . . . . . . . . .50  
4.6.4 Output pin transition times. . . . . . . . . . . . . . . . .52  
4.6.5 I/O pad current specification . . . . . . . . . . . . . . .53  
4.7 RESET electrical characteristics. . . . . . . . . . . . . . . . . .55  
4.8 Power management electrical characteristics. . . . . . . .57  
4.8.1 Voltage regulator electrical characteristics . . . .57  
4.8.2 VDD_BV options . . . . . . . . . . . . . . . . . . . . . . . .59  
4.8.3 Voltage monitor electrical characteristics. . . . . .60  
4.9 Low voltage domain power consumption . . . . . . . . . . .61  
4.10 Flash memory electrical characteristics . . . . . . . . . . . .63  
4.10.1 Program/Erase characteristics. . . . . . . . . . . . . .63  
4.10.2 Flash memory power supply DC characteristics65  
4.10.3 Flash memory start-up/switch-off timings . . . . .66  
4.11 Electromagnetic compatibility (EMC) characteristics . .66  
4.11.1 Designing hardened software to avoid noise  
2
3
4
4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN,  
TX_ER, TX_CLK). . . . . . . . . . . . . . . . . . . . . . . 87  
4.18.3 MII Async Inputs Signal Timing (CRS and COL)88  
4.18.4 MII Serial Management Channel Timing (MDIO and  
MDC)89  
4.19 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
4.19.1 Current consumption . . . . . . . . . . . . . . . . . . . . 91  
4.19.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 93  
4.19.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . 101  
4.19.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . 103  
Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 105  
5.1.1 176 LQFP package mechanical drawing . . . . 105  
5.1.2 208 LQFP package mechanical drawing . . . . 108  
5.1.3 256 MAPBGA package mechanical drawing . 113  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
5
6
7
MPC5646C Data Sheet, Rev.6  
2
Freescale Semiconductor  
Other Features  
System clocks sources  
— 4–40 MHz external crystal oscillator  
— 16 MHz internal RC oscillator  
— FMPLL  
— Additionally, there are two low power oscillators: 128 kHz internal RC oscillator, 32 kHz  
external crystal oscillator  
Real Time Counter (RTC) with clock source from internal 128 kHz or 16 MHz oscillators or  
external 4–40 MHz crystal  
— Supports autonomous wake-up with 1 ms resolution with max timeout of 2 seconds  
— Optional support from external 32 kHz crystal oscillator, supporting wake-up with 1 second  
resolution and max timeout of 1 hour  
1 Real Time Interrupt (RTI) with 32-bit counter resolution  
1 Safety Enhanced Software Watchdog Timer (SWT) that supports keyed functionality  
1 dual-channel FlexRay Controller with 128 message buffers  
1 Fast Ethernet Controller (FEC)  
On-chip voltage regulator (VREG)  
Cryptographic Services Engine (CSE)  
Offered in the following standard package types:  
— 176-pin LQFP, 24 24 mm, 0.5 mm Lead Pitch  
— 208-pin LQFP, 28 28 mm, 0.5 mm Lead Pitch  
— 256-ball MAPBGA, 17 17mm, 1.0 mm Lead Pitch  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
3
Introduction  
1
Introduction  
1.1  
Document Overview  
This document describes the features of the family and options available within the family members, and  
highlights important electrical and physical characteristics of the MPC5646C device. To ensure a complete  
understanding of the device functionality, refer also to the MPC5646C Reference Manual.  
1.2  
Description  
The MPC5646C is a new family of next generation microcontrollers built on the Power Architecture  
embedded category. This document describes the features of the family and options available within the  
family members, and highlights important electrical and physical characteristics of the device.  
The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the  
scalability needed to implement platform approaches and delivers the performance required by  
increasingly sophisticated software architectures. The advanced and cost-efficient host processor core of  
the MPC5646C automotive controller family complies with the Power Architecture embedded category,  
which is 100 percent user-mode compatible with the original Power Architecture user instruction set  
architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing  
optimized for low power consumption. It also capitalizes on the available development infrastructure of  
current Power Architecture devices and is supported with software drivers, operating systems and  
configuration code to assist with users implementations.  
MPC5646C Data Sheet, Rev.6  
4
Freescale Semiconductor  
1
Table 1. MPC5646C family comparison  
Feature  
MPC5644B  
176 208  
MPC5644C  
MPC5645B  
176 208  
MPC5645C  
MPC5646B  
176 208  
MPC5646C  
Package  
176  
208  
256  
176  
208  
256  
176  
208  
256  
LQFP LQFP LQFP LQFP BGA LQFP LQFP LQFP LQFP BGA LQFP LQFP LQFP LQFP BGA  
CPU  
e200z4d  
e200z4d + e200z0h  
e200z4d  
e200z4d + e200z0h  
e200z4d  
e200z4d + e200z0h  
Execution speed2  
Upto120 MHz  
(e200z4d)  
Up to 120 MHz  
(e200z4d)  
Upto120 MHz  
(e200z4d)  
Up to 120 MHz  
(e200z4d)  
Upto120 MHz  
(e200z4d)  
Up to 120 MHz  
(e200z4d)  
Up to 80 MHz  
Up to 80 MHz  
Up to 80 MHz  
(e200z0h)3  
(e200z0h)3  
(e200z0h)3  
Code flash memory  
Data flash memory  
SRAM  
1.5 MB  
192 KB  
2 MB  
4 x16 KB  
256 KB  
16-entry  
32 ch  
3 MB  
128 KB  
160 KB  
192 KB  
256 KB  
MPU  
eDMA4  
10-bit ADC  
dedicated5,6  
27 ch 33 ch 27 ch  
33 ch  
10 ch  
27 ch 33 ch 27 ch  
19 ch  
33 ch  
10 ch  
27 ch 33 ch 27 ch  
33 ch  
10 ch  
shared with  
12-bit ADC7  
12-bit ADC  
dedicated8  
5 ch 10 ch 5 ch  
5 ch 10 ch 5 ch  
5 ch 10 ch 5 ch  
shared with  
10-bit ADC7  
19 ch  
64 ch  
CTU  
Total timer I/O9 eMIOS  
SCI (LINFlexD)  
SPI (DSPI)  
64 ch, 16-bit  
10  
8
CAN (FlexCAN)10  
6
FlexRay  
Yes  
Yes  
STCU11  
1
Table 1. MPC5646C family comparison (continued)  
Feature  
MPC5644B  
176 208  
MPC5644C  
MPC5645B  
176 208  
MPC5645C  
MPC5646B  
176 208  
MPC5646C  
Package  
176  
208  
256  
176  
208  
256  
176  
208  
256  
LQFP LQFP LQFP LQFP BGA LQFP LQFP LQFP LQFP BGA LQFP LQFP LQFP LQFP BGA  
Ethernet  
No  
Yes  
177  
No  
Yes  
177  
No  
Yes  
177  
I2C  
1
32 kHz oscillator (SXOSC)  
Yes  
147  
GPIO12  
147  
177  
147  
199  
147  
177  
199  
147  
177  
147  
199  
Debug  
JTAG  
Nexus  
3+  
JTAG  
Nexus  
3+  
JTAG  
Nexus  
3+  
Cryptographic Services  
Engine (CSE)  
Optional  
NOTES:  
1
Feature set dependent on selected peripheral multiplexing; table shows example.  
2
3
Based on 125 C ambient operating temperature and subject to full device characterisation.  
The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs  
to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose.  
4
5
6
DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.  
Not shared with 12-bit ADC, but possibly shared with other alternate functions.  
There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4  
dedicated ANX channels.  
7
8
9
16x precision channels (ANP) and 3x standard (ANS).  
Not shared with 10-bit ADC, but possibly shared with other alternate functions.  
As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference  
manual for information on the channel configuration and functions.  
10 CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.  
11 STCU controls MBIST activation and reporting.  
12 Estimated I/O count for proposed packages based on multiplexing with peripherals.  
Block diagram  
2
Block diagram  
Figure 1 shows the detailed block diagram of the MPC5646C.  
FEC  
JTAGC  
CSE  
SRAM  
Code Flash Data Flash  
1.5 MB 64 KB  
JTAG Port  
2
2
128 KB  
2  
FlexRay  
Nexus Port  
Nexus 3+  
e200z0h  
Nexus  
Instructions  
(Master)  
SRAM  
controller  
NMI0  
NMI1  
Flash memory  
controller  
Data  
(Master)  
Instructions  
(Master)  
Data  
Voltage  
regulator  
e200z4d  
(Master)  
(Slave)  
Nexus 3+  
NMI0  
NMI1  
Clocks  
(Slave)  
(Slave)  
Interrupt requests  
from peripheral  
blocks  
DMAMUX  
MPU  
registers  
INTC  
eDMA  
CMU  
CAN  
Sampler  
STCU  
( Master)  
FMPLL  
8
16 x  
Semaphores  
MC_RGM MC_CGM MC_ME MC_PCU  
Peripheral Bridge  
WKPU  
PIT RTI  
ECSM  
SSCM  
RTC/API 4  
STM  
BAM  
SWT  
(2)  
(1)  
10  
LINFlexD  
SIUL  
Reset Control  
27 ch or 33 ch  
10-bit  
ADC  
10 ch  
12-bit  
ADC  
8
6   
FlexCAN  
2
32 ch  
2
CTU  
I C  
1
1
DSPI  
eMIOS  
Interrupt  
Request  
External  
Interrupt  
Request  
IMUX  
GPIO &  
Pad Control  
(3)  
(3)  
I/O  
ADC  
BAM  
CSE  
CAN  
CMU  
CTU  
Analog-to-Digital Converter  
Boot Assist Module  
Cryptographic Services Engine  
Controller Area Network (FlexCAN)  
Clock Monitor Unit  
Cross Triggering Unit  
Legend:  
JTAGC  
JTAG controller  
LINFlexD Local Interconnect Network Flexible with DMA support  
MC_ME Mode Entry Module  
MC_CGM Clock Generation Module  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
DMAMUX DMA Channel Multiplexer  
DSPI  
eDMA  
FlexCAN Controller Area Network controller modules  
FEC  
MPU  
Nexus  
NMI  
Memory Protection Unit  
Nexus Development Interface  
Non-Maskable Interrupt  
Deserial Serial Peripheral Interface  
enhanced Direct Memory Access  
PIT_RTI Periodic Interrupt Timer with Real-Time Interrupt  
RTC/API Real-Time Clock/ Autonomous Periodic Interrupt  
Fast Ethenet Controller  
eMIOS  
ECSM  
FMPLL  
FlexRay  
I2C  
Enhanced Modular Input Output System  
Error Correction Status Module  
Frequency-Modulated Phase-Locked Loop  
FlexRay Communication Controller  
Inter-integrated Circuit Bus  
SIUL  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
Software Watchdog Timer  
Self Test Control Unit  
SRAM  
SSCM  
STM  
SWT  
STCU  
WKPU  
IMUX  
INTC  
Internal Multiplexer  
Interrupt Controller  
Wakeup Unit  
1) 10 dedicated channels plus up to 19 shared channels  
2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared channels. See the device-comparison table.  
3)  
. See the device-comparison table.  
Notes:  
16 x precision channels (ANP) are mapped on input only I/O cells.  
Figure 1. MPC5646C block diagram  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
7
Block diagram  
Table 2 summarizes the functions of the blocks present on the MPC5646C.  
Table 2. MPC5646C series block summary  
Block  
Function  
Analog-to-digital converter (ADC) Converts analog voltages to digital values  
Boot assist module (BAM)  
A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Clock monitor unit (CMU)  
Cross triggering unit (CTU)  
Monitors clock source (internal and external) integrity  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Cryptographic Security Engine  
(CSE)  
Supports the encoding and decoding of any kind of data  
Crossbar (XBAR) switch  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width  
DMA Channel Multiplexer  
(DMAMUX)  
Allows to route DMA sources (called slots) to DMA channels  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Error Correction Status Module  
(ECSM)  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset status  
register, wakeup control for exiting sleep modes, and optional features such as  
information on memory errors reported by error-correcting codes  
Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host processor  
(eDMA)  
via “n” programmable channels.  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Flash memory  
Provides non-volatile storage for program code, constants and variables  
FlexCAN (controller area network) Supports the standard CAN communications protocol  
FMPLL (frequency-modulated  
phase-locked loop)  
Generates high-speed system clocks and supports programmable frequency  
modulation  
FlexRay (FlexRay communication Provides high-speed distributed control for advanced automotive applications  
controller)  
Fast Ethernet Controller (FEC)  
Ethernet Media Access Controller (MAC) designed to support both 10 and 100  
Mbps Ethernet/IEEE 802.3 networks  
Internal multiplexer (IMUX) SIUL Allows flexible mapping of peripheral interface on the different pins of the device  
subblock  
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of  
data exchange between devices  
Interrupt controller (INTC)  
Provides priority-based preemptive scheduling of interrupt requests for both  
e200z0h and e200z4d cores  
JTAG controller  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
MPC5646C Data Sheet, Rev.6  
8
Freescale Semiconductor  
Block diagram  
Table 2. MPC5646C series block summary (continued)  
Function  
Block  
LinFlexD (Local Interconnect  
Network Flexible with DMA  
support)  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Memory protection unit (MPU)  
Provides hardware access control for all memory references generated in a  
device  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Power control unit (MC_PCU)  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
Mode entry module (MC_ME)  
Provides a mechanism for controlling the device operational mode and  
modetransition sequences in all functional states; also manages the power  
control unit, reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Non-Maskable Interrupt (NMI)  
Handles external events that must produce an immediate response, such as  
power down detection  
Nexus Development Interface  
(NDI)  
Provides real-time development capabilities for e200z0h and e200z4d core  
processor  
Periodic interrupt timer/ Real Time Produces periodic interrupts and triggers  
Interrupt Timer (PIT_RTI)  
Real-time counter (RTC/API)  
A free running counter used for time keeping applications, the RTC can be  
configured to generate an interrupt at a predefined interval independent of the  
mode of operation (run mode or low-power mode). Supports autonomous  
periodic interrupt (API) function to generate a periodic wakeup request to exit a  
low power mode or an interrupt request  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
System status and configuration Provides system configuration and status data (such as memory size and status,  
module (SSCM)  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Semaphores  
Provides a set of output compare events to support AutoSAR and operating  
system tasks  
Provides the hardware support needed in multi-core systems for sharing  
resources and provides a simple mechanism to achieve lock/unlock operations  
via a single write access.  
Wake Unit (WKPU)  
Supports external sources that can generate interrupts or wakeup events, of  
which can cause non-maskable interrupt requests or wakeup events.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
9
Package pinouts and signal descriptions  
3
Package pinouts and signal descriptions  
The available LQFP pinouts and the MAPBGA ballmaps are provided in the following figures. For  
functional port pin description, see Table 4.  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PJ[4]  
PA[11]  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PA[10]  
2
PA[9]  
3
PA[8]  
4
PA[7]  
5
PE[13]  
PF[14]  
VDD_HV_A  
VSS_HV  
PH[15]  
PH[13]  
PH[14]  
PI[6]  
6
7
PF[15]  
8
VDD_HV_B  
VSS_HV  
PG[0]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PG[1]  
PI[7]  
PH[3]  
PG[5]  
PH[2]  
PG[4]  
PH[1]  
PG[3]  
PH[0]  
PG[2]  
PG[12]  
PG[13]  
PA[3]  
PA[2]  
PE[0]  
PA[1]  
PI[13]  
PE[1]  
PI[12]  
PE[8]  
176 LQFP  
Top view  
PI[11]  
PE[9]  
VDD_LV  
VSS_LV  
PI[8]  
PE[10]  
PA[0]  
PE[11]  
VSS_HV  
VDD_HV_A  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VRC_CTRL  
PG[9]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PB[11]  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
98  
97  
PD[11]  
PD[10]  
PD[9]  
96  
PG[6]  
95  
PB[0]  
94  
PB[7]  
PB[1]  
93  
PB[6]  
PF[9]  
92  
PB[5]  
PF[8]  
91  
VDD_HV_ADC0  
VSS_HV_ADC0  
PF[12]  
PC[6]  
90  
89  
NOTE  
1) VDD_HV_B supplies the IO voltage domain for the  
pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7],  
PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2],  
PH[1], PH[0], PG[12], PG[13], and PA[3].  
2)Availability of port pin alternate functions depends  
on product selection.  
Figure 2. 176-pin LQFP configuration  
MPC5646C Data Sheet, Rev.6  
10  
Freescale Semiconductor  
Package pinouts and signal descriptions  
PB[3]  
PC[9]  
1
2
3
4
5
6
7
8
9
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
PA[11]  
PA[10]  
PA[9]  
PC[14]  
PC[15]  
PJ[4]  
PA[8]  
PA[7]  
VDD_HV_A  
VSS_HV  
PH[15]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV_B  
VSS_HV  
PG[0]  
PH[13]  
PH[14] 10  
P[I6] 11  
P[I7] 12  
PG[1]  
PG[5] 13  
PG[4] 14  
PG[3] 15  
PG[2] 16  
PA[2] 17  
PH[3]  
PH[2]  
PH[1]  
PH[0]  
PG[12]  
PE[0] 18  
PA[1] 19  
PE[1] 20  
PE[8] 21  
PE[9] 22  
PE[10] 23  
PA[0] 24  
PG[13]  
PA[3]  
PI[13]  
PI[12]  
PI[11]  
208 LQFP  
Top view  
PI[10]  
VDD_LV  
VSS_LV  
PI[9]  
PE[11] 25  
VSS_HV 26  
VDD_HV_A 27  
VSS_HV 28  
RESET 29  
VSS_LV 30  
VDD_LV 31  
VRC_CTRL 32  
PG[9] 33  
PG[8] 34  
PC[11] 35  
PC[10] 36  
PG[7] 37  
PG[6] 38  
PB[0] 39  
PB[1] 40  
PK[1] 41  
PK[2] 42  
PK[3] 43  
PK[4] 44  
PK[5] 45  
PK[6] 46  
PK[7] 47  
PK[8] 48  
PF[9] 49  
PI[8]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
VDD_HV_A  
VSS_HV  
PD[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PJ[5]  
PJ[6]  
PJ[7]  
PJ[8]  
PB[7]  
PB[6]  
PF[8] 50  
PF[12] 51  
PC[6] 52  
PB[5]  
VDD_HV_ADC0  
VSS_HV_ADC0  
NOTE  
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11],  
PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3],  
PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].  
2) Availability of port pin alternate functions depends on product selection.  
Figure 3. 208-pin LQFP configuration  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
11  
Package pinouts and signal descriptions  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
PC[15]  
PB[2]  
PC[13]  
PI[1]  
PE[7]  
PH[8]  
PE[2]  
PE[4]  
PC[4]  
PE[3]  
PH[9]  
PI[4]  
PH[11]  
PE[14]  
PA[10]  
PG[11]  
A
B
A
B
PH[13]  
PH[14]  
PC[14]  
PC[8]  
PC[9]  
PC[12]  
PL[0]  
PI[3]  
PI[0]  
PE[6]  
PH[7]  
PH[5]  
PH[6]  
PE[5]  
PC[5]  
PC[0]  
PA[5]  
PC[2]  
PC[3]  
PH[12]  
PE[15]  
PG[10]  
PG[14]  
PA[11]  
PE[12]  
PA[9]  
PA[7]  
PA[8]  
VDD_HV  
_A  
VSS_LV VDD_HV  
_A  
PE[13]  
C
C
PG[5]  
PG[3]  
PA[2]  
PE[8]  
PE[9]  
PI[6]  
PI[7]  
PJ[4]  
PH[15]  
PA[1]  
PB[3]  
PG[2]  
PE[1]  
PA[0]  
PK[15]  
PI[2]  
PH[4]  
VDD_LV  
PC[1]  
PH[10]  
PA[6]  
PI[5]  
PG[15]  
PG[0]  
PH[1]  
PF[14]  
PG[1]  
PH[3]  
PI[13]  
PF[15]  
PH[0]  
PH[2]  
D
E
F
D
E
F
VDD_HV  
_A  
PG[4]  
PE[0]  
PG[12]  
PI[12]  
PG[13]  
PA[3]  
PE[10]  
PE[11]  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_LV VSS_HV VSS_HV VSS_HV  
VSS_LV VSS_LV VSS_HV VSS_HV  
VSS_LV VSS_LV VSS_LV VDD_LV  
VDD_HV  
_B  
G
H
J
G
H
J
VDD_HV  
_A  
PK[1]  
PG[9]  
PC[11]  
PK[2]  
PF[9]  
PC[7]  
PA[14]  
PJ[15]  
PJ[14]  
VDD_HV VDD_LV VSS_LV  
_A  
PI[11]  
PI[10]  
PB[15]  
VSS_HV VRC_CT VDD_LV  
RL  
PD[15]  
PD[14]  
PD[12]  
PB[11]  
PB[5]  
PI[8]  
PD[13]  
PB[12]  
PD[10]  
PB[6]  
PI[9]  
PB[14]  
PB[13]  
PD[11]  
PJ[6]  
RESET  
PC[10]  
PG[6]  
VSS_LV  
PG[7]  
PB[1]  
PG[8]  
PB[0]  
PK[4]  
PC[6]  
PF[13]  
PJ[11]  
PK[0]  
K
L
K
L
VDD_HV  
_ADC1  
VSS_HV  
_ADC1  
M
N
P
R
T
M
N
P
R
T
PK[3]  
PF[8]  
PJ[13]  
PJ[9]  
VDD_HV  
_A  
PB[10]  
PF[0]  
PF[3]  
XTAL  
PF[6]  
PF[5]  
VDD_HV  
_A  
PJ[1]  
PJ[3]  
PJ[2]  
PB[9]  
PD[2]  
PI[15]  
PJ[0]  
PB[8]  
PJ[5]  
PD[4]  
PD[0]  
PI[14]  
PD[9]  
PJ[7]  
PB[7]  
PB[4]  
PF[12]  
PF[11]  
PJ[12]  
PF[10]  
PA[15]  
PA[4]  
PA[12]  
PF[2]  
PF[1]  
PF[7]  
PD[7]  
PD[8]  
PD[6]  
PD[5]  
PJ[8]  
PA[13]  
PJ[10]  
PF[4]  
VDD_LV  
VSS_LV  
PD[3]  
VDD_HV  
_ADC0  
EXTAL  
PD[1]  
VSS_HV  
_ADC0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Notes:  
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0],  
PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].  
2) Availability of port pin alternate functions depends on product selection.  
MPC5646C Data Sheet, Rev.6  
12  
Freescale Semiconductor  
Package pinouts and signal descriptions  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
PC[15]  
PB[2]  
PC[13]  
PI[1]  
PE[7]  
PH[8]  
PE[2]  
PE[4]  
PC[4]  
PE[3]  
PH[9]  
PI[4]  
PH[11]  
PE[14]  
PA[10]  
PG[11]  
A
B
C
D
E
F
A
B
C
D
E
F
PH[13]  
PH[14]  
PG[5]  
PG[3]  
PA[2]  
PC[14]  
PC[8]  
PC[9]  
PJ[4]  
PC[12]  
PL[0]  
PI[3]  
PI[0]  
PE[6]  
PH[7]  
PH[5]  
PH[6]  
PE[5]  
VSS_LV  
VDD_LV  
PK[9]  
PC[5]  
PC[0]  
PA[5]  
PC[2]  
PC[3]  
PH[12]  
PE[15]  
PI[5]  
PG[10]  
PG[14]  
PG[15]  
PG[0]  
PA[11]  
PE[12]  
PF[14]  
PG[1]  
PH[3]  
PA[9]  
PA[7]  
PA[8]  
PE[13]  
PH[2]  
VDD_HV_  
A
VDD_HV_  
A
PI[6]  
PI[7]  
PB[3]  
PG[2]  
PE[1]  
PA[0]  
PK[15]  
VDD_LV  
PL[2]  
PI[2]  
PH[4]  
PC[1]  
PM[1]  
PH[10]  
PM[0]  
PA[6]  
PF[15]  
PH[0]  
PH[15]  
PA[1]  
VSS_LV  
PM[6]  
PK[10]  
PL[1]  
PL[15]  
PL[12]  
VSS_HV  
VSS_HV  
VSS_HV  
VDD_LV  
VDD_LV  
PL[10]  
PD[2]  
PL[14]  
PM[2]  
PK[12]  
PK[13]  
PK[14]  
PM[3]  
PM[4]  
PL[11]  
PJ[5]  
VDD_HV_  
A
PG[4]  
PE[0]  
PK[11]  
VSS_HV  
VSS_HV  
VSS_LV  
VSS_LV  
VSS_LV  
PK[8]  
PM[5]  
PL[13]  
VSS_HV  
VSS_HV  
VSS_HV  
VDD_LV  
VDD_LV  
PL[9]  
PH[1]  
PG[12]  
PI[12]  
VSS_LV  
PI[9]  
PG[13]  
PA[3]  
PE[8]  
PE[9]  
PE[10]  
PE[11]  
VDD_LV  
PG[8]  
PB[0]  
PL[3]  
VSS_HV  
VSS_LV  
VSS_LV  
VSS_LV  
VSS_LV  
PK[6]  
VSS_HV  
VSS_LV  
VSS_LV  
VSS_LV  
VSS_LV  
PK[7]  
VSS_HV  
VSS_HV  
VSS_HV  
VSS_LV  
VSS_LV  
PL[8]  
VDD_HV_  
B
PI[13]  
VDD_LV  
PI[8]  
G
H
J
G
H
J
VDD_HV_  
A
PK[1]  
PG[9]  
PC[11]  
PK[2]  
PF[9]  
PC[7]  
PA[14]  
PJ[15]  
PJ[14]  
PL[4]  
VDD_HV_  
A
PI[11]  
PI[10]  
PB[15]  
VSS_HV VRC_CTR  
L
PL[5]  
PD[15]  
PD[14]  
PD[12]  
PB[11]  
PB[5]  
RESET  
PC[10]  
PG[6]  
VSS_LV  
PG[7]  
PB[1]  
PL[6]  
PD[13]  
PB[12]  
PD[10]  
PB[6]  
PB[14]  
PB[13]  
PD[11]  
PJ[6]  
K
L
K
L
PL[7]  
VDD_HV_  
ADC1  
PK[4]  
PK[5]  
PJ[13]  
PJ[9]  
VSS_HV_  
ADC1  
M
N
P
R
T
M
N
P
R
T
PK[3]  
PF[8]  
PC[6]  
PF[13]  
PJ[11]  
PK[0]  
VDD_HV_  
A
PB[10]  
PF[0]  
PF[6]  
VDD_HV_  
A
PJ[1]  
PD[9]  
PJ[7]  
PB[7]  
PB[4]  
PF[12]  
PF[11]  
PJ[12]  
PF[10]  
PA[15]  
PA[4]  
PA[12]  
PF[2]  
PF[1]  
PF[5]  
PF[7]  
PJ[3]  
PI[15]  
PD[4]  
PD[0]  
PI[14]  
PD[7]  
PD[8]  
PJ[8]  
PA[13]  
PJ[10]  
PF[3]  
PF[4]  
VDD_LV  
VSS_LV  
PJ[2]  
PJ[0]  
PD[3]  
PD[6]  
VDD_HV_  
ADC0  
XTAL  
EXTAL  
PB[9]  
PB[8]  
PD[1]  
PD[5]  
VSS_HV_  
ADC0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Notes:  
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0],  
PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], PA[3], PM[3], and PM[4].  
2)Availability of port pin alternate functions depends on product selection.  
Figure 4. 256-pin BGA configuration  
3.1  
Pad types  
In the device the following types of pads are available for system pins and functional port pins:  
1
S = Slow  
1, 2  
M = Medium  
1. See the I/O pad electrical characteristics in the device data sheet for details.  
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example,  
Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1]  
which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Configuration Registers  
(PCR0—PCR198)).  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
13  
Package pinouts and signal descriptions  
1, 2  
F = Fast  
1
I = Input only with analog feature  
A = Analog  
3.2  
System pins  
The system pins are listed in Table 3.  
Table 3. System pin descriptions  
Pin number  
I/O  
Pad  
RESET  
config.  
Port pin  
Function  
direction type  
RESET Bidirectional reset with Schmitt-Trigger  
characteristics and noise filter.  
I/O  
M
Input, weak  
pull-up only  
after  
29  
29  
K1  
PHASE2  
EXTAL Analog input of the oscillator amplifier  
circuit. Needs to be grounded if oscillator  
bypass mode is used.  
I
A1  
A1  
58  
56  
74  
72  
T8  
T7  
XTAL  
Analog output of the oscillator amplifier  
circuit, when the oscillator is not in bypass  
mode.  
I/O  
Analog input for the clock generator when  
the oscillator is in bypass mode.  
NOTES:  
1
For analog pads, it is not recommended to enable IBE if APC is enabled to avoid extra current in middle range  
voltage.  
3.3  
Functional ports  
The functional port pins are listed in Table 4.  
MPC5646C Data Sheet, Rev.6  
14  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions  
Pin number  
Port  
pin  
PCR  
Function  
PA[0]  
PA[1]  
PCR[0]  
AF0  
AF1  
AF2  
AF3  
GPIO[0]  
E0UC[0]  
CLKOUT  
E0UC[13]  
WKPU[19]  
CAN1RX  
SIUL  
I/O M/S Tristate  
24  
19  
24  
19  
G4  
F3  
eMIOS_0  
MC_CGM  
eMIOS_0  
WKPU  
I/O  
O
I/O  
I
FlexCAN_1  
I
PCR[1]  
AF0  
AF1  
AF2  
AF3  
GPIO[1]  
E0UC[1]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
S
S
Tristate  
Tristate  
WKPU[2]  
CAN3RX  
NMI[0]3  
WKPU  
FlexCAN_3  
WKPU  
I
I
PA[2]  
PA[3]  
PCR[2]  
PCR[3]  
AF0  
AF1  
AF2  
AF3  
GPIO[2]  
E0UC[2]  
SIUL  
eMIOS_0  
ADC_0  
WKPU  
WKPU  
I/O  
I/O  
O
I
17  
17  
F1  
MA[2]  
WKPU[3]  
NMI[1]3  
I
AF0  
AF1  
AF2  
AF3  
GPIO[3]  
E0UC[3]  
LIN5TX  
CS4_1  
RX_ER_CLK  
EIRQ[0]  
SIUL  
eMIOS_0  
LINFlexD_5  
DSPI_1  
FEC  
I/O M/S Tristate  
114  
138  
G16  
I/O  
O
O
I
SIUL  
I
ADC1_S[0]  
ADC_1  
I
PA[4]  
PCR[4]  
AF0  
AF1  
AF2  
AF3  
GPIO[4]  
E0UC[4]  
CS0_1  
LIN5RX  
WKPU[9]  
SIUL  
eMIOS_0  
DSPI_1  
LINFlexD_5  
WKPU  
I/O  
I/O  
I/O  
I
S
Tristate  
51  
61  
T2  
I
PA[5]  
PA[6]  
PCR[5]  
PCR[6]  
AF0  
AF1  
AF2  
GPIO[5]  
E0UC[5]  
LIN4TX  
SIUL  
eMIOS_0  
LINFlexD_4  
I/O M/S Tristate  
I/O  
O
146  
147  
170  
171  
C10  
D11  
AF0  
AF1  
AF2  
AF3  
GPIO[6]  
E0UC[6]  
CS1_1  
LIN4RX  
EIRQ[1]  
SIUL  
eMIOS_0  
DSPI_1  
LINFlexD_4  
SIUL  
I/O  
I/O  
O
I
S
Tristate  
I
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
15  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PA[7]  
PCR[7]  
AF0  
AF1  
AF2  
AF3  
GPIO[7]  
E0UC[7]  
LIN3TX  
RXD[2]  
EIRQ[2]  
ADC1_S[1]  
SIUL  
eMIOS_0  
LINFlexD_3  
FEC  
SIUL  
ADC_1  
I/O M/S Tristate  
128  
152  
153  
C15  
B16  
I/O  
O
I
I
I
PA[8]  
PCR[8]  
AF0  
AF1  
AF2  
AF3  
GPIO[8]  
E0UC[8]  
E0UC[14]  
RXD[1]  
EIRQ[3]  
ABS[0]  
LIN3RX  
SIUL  
eMIOS_0  
eMIOS_0  
FEC  
SIUL  
I/O M/S Input,  
129  
I/O  
weak  
I/O  
pull-up  
I
I
I
I
MC_RGM  
LINFlexD_3  
PA[9]  
PCR[9]  
AF0  
AF1  
AF2  
AF3  
GPIO[9]  
E0UC[9]  
CS2_1  
RXD[0]  
FAB  
SIUL  
eMIOS_0  
DSPI1  
FEC  
I/O M/S  
Pull-  
down  
130  
131  
154  
155  
B15  
A15  
I/O  
O
I
MC_RGM  
I
PA[10]  
PCR[10]  
AF0  
AF1  
AF2  
AF3  
GPIO[10]  
E0UC[10]  
SDA  
LIN2TX  
COL  
SIUL  
eMIOS_0  
I2C  
LINFlexD_2  
FEC  
I/O M/S Tristate  
I/O  
I/O  
O
I
ADC1_S[2]  
SIN_1  
ADC_1  
DSPI_1  
I
I
PA[11]  
PA[12]  
PCR[11]  
AF0  
AF1  
AF2  
AF3  
GPIO[11]  
E0UC[11]  
SCL  
SIUL  
eMIOS_0  
I2C  
FEC  
SIUL  
LINFlexD_2  
ADC_1  
I/O M/S Tristate  
I/O  
I/O  
I
I
I
I
132  
156  
B14  
RX_ER  
EIRQ[16]  
LIN2RX  
ADC1_S[3]  
PCR[12]  
AF0  
AF1  
AF2  
AF3  
GPIO[12]  
E0UC[28]  
CS3_1  
EIRQ[17]  
SIN_0  
SIUL  
eMIOS_0  
DSPI1  
SIUL  
I/O  
I/O  
O
I
S
Tristate  
53  
69  
P6  
DSPI_0  
I
MPC5646C Data Sheet, Rev.6  
16  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PA[13]  
PA[14]  
PCR[13]  
PCR[14]  
AF0  
AF1  
AF2  
AF3  
GPIO[13]  
SOUT_0  
E0UC[29]  
SIUL  
DSPI_0  
eMIOS_0  
I/O M/S Tristate  
52  
50  
66  
58  
R5  
P4  
O
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[14]  
SCK_0  
CS0_0  
E0UC[0]  
EIRQ[4]  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
SIUL  
I/O M/S Tristate  
I/O  
I/O  
I/O  
I
PA[15]  
PCR[15]  
AF0  
AF1  
AF2  
AF3  
GPIO[15]  
CS0_0  
SCK_0  
E0UC[1]  
WKPU[10]  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
WKPU  
I/O M/S Tristate  
48  
56  
R2  
I/O  
I/O  
I/O  
I
PB[0]  
PB[1]  
PCR[16]  
PCR[17]  
AF0  
AF1  
AF2  
AF3  
GPIO[16]  
CAN0TX  
E0UC[30]  
LIN0TX  
SIUL  
I/O M/S Tristate  
39  
40  
39  
40  
L3  
FlexCAN_0  
eMIOS_0  
LINFlexD_0  
O
I/O  
I
AF0  
AF1  
AF2  
GPIO[17]  
E0UC[31]  
LIN0RX  
WKPU[4]  
CAN0RX  
SIUL  
eMIOS_0  
LINFlexD_0  
WKPU  
I/O  
I/O  
I
S
Tristate  
M2  
I
I
FlexCAN_0  
PB[2]  
PB[3]  
PCR[18]  
PCR[19]  
AF0  
AF1  
AF2  
AF3  
GPIO[18]  
LIN0TX  
SDA  
SIUL  
LINFlexD_0  
I2C  
I/O M/S Tristate  
O
I/O  
I/O  
176  
1
208  
1
A2  
D4  
E0UC[30]  
eMIOS_0  
AF0  
AF1  
AF2  
AF3  
GPIO[19]  
E0UC[31]  
SCL  
SIUL  
eMIOS_0  
I2C  
I/O  
I/O  
I/O  
I
S
Tristate  
Tristate  
WKPU[11]  
LIN0RX  
WKPU  
LINFlexD_0  
I
PB[4]  
PCR[20]  
AF0  
AF1  
AF2  
AF3  
GPI[20]  
SIUL  
ADC_0  
ADC_1  
I
I
I
88  
104  
T16  
ADC0_P[0]  
ADC1_P[0]  
I
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
17  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PB[5]  
PB[6]  
PB[7]  
PB[8]  
PCR[21]  
AF0  
AF1  
AF2  
AF3  
GPI[21]  
SIUL  
ADC_0  
ADC_1  
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
91  
92  
93  
61  
107  
108  
109  
77  
N13  
N14  
R16  
T11  
ADC0_P[1]  
ADC1_P[1]  
I
PCR[22]  
PCR[23]  
PCR[24]  
AF0  
AF1  
AF2  
AF3  
GPI[22]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[2]  
ADC1_P[2]  
I
AF0  
AF1  
AF2  
AF3  
GPI[23]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[3]  
ADC1_P[3]  
I
AF0  
AF1  
AF2  
AF3  
GPI[24]  
SIUL  
I
I
I
I
I
ADC0_S[0]  
ADC1_S[4]  
WKPU[25]  
OSC32k_XTAL4  
ADC_0  
ADC_1  
WKPU  
SXOSC  
PB[9]5  
PCR[25]  
AF0  
AF1  
AF2  
AF3  
GPI[25]  
SIUL  
I
I
I
I
I
I
60  
76  
T10  
ADC0_S[1]  
ADC1_S[5]  
WKPU[26]  
OSC32k_EXTAL4  
ADC_0  
ADC_1  
WKPU  
SXOSC  
PB[10] PCR[26]  
AF0  
AF1  
AF2  
AF3  
GPIO[26]  
SOUT_1  
CAN3TX  
ADC0_S[2]  
ADC1_S[6]  
WKPU[8]  
SIUL  
DSPI_1  
FlexCAN_3  
ADC_0  
ADC_1  
WKPU  
I/O  
O
I
S
Tristate  
62  
78  
N7  
I
I
MPC5646C Data Sheet, Rev.6  
18  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PB[11] PCR[27]  
PB[12] PCR[28]  
PB[13] PCR[29]  
PB[14] PCR[30]  
PB[15] PCR[31]  
AF0  
AF1  
AF2  
AF3  
GPIO[27]  
E0UC[3]  
CS0_0  
ADC0_S[3]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
I/O  
I
S
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
97  
117  
M13  
L14  
L15  
K15  
K16  
AF0  
AF1  
AF2  
AF3  
GPIO[28]  
E0UC[4]  
CS1_0  
ADC0_X[0]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
101  
103  
105  
107  
123  
125  
127  
129  
I
AF0  
AF1  
AF2  
AF3  
GPIO[29]  
E0UC[5]  
CS2_0  
ADC0_X[1]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
I
AF0  
AF1  
AF2  
AF3  
GPIO[30]  
E0UC[6]  
CS3_0  
ADC0_X[2]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
I
AF0  
AF1  
AF2  
AF3  
GPIO[31]  
E0UC[7]  
CS4_0  
ADC0_X[3]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
I
PC[0]6 PCR[32]  
PC[1]6 PCR[33]  
AF0  
AF1  
AF2  
AF3  
GPIO[32]  
SIUL  
JTAGC  
I/O M/S Input,  
154  
149  
145  
178  
173  
169  
B10  
D9  
TDI  
I
weak  
pull-up  
AF0  
AF1  
AF2  
AF3  
GPIO[33]  
TDO  
SIUL  
JTAGC  
I/O F/M Tristate  
O
PC[2]  
PCR[34]  
AF0  
AF1  
AF2  
AF3  
GPIO[34]  
SCK_1  
CAN4TX  
SIUL  
DSPI_1  
FlexCAN_4  
I/O M/S Tristate  
B11  
I/O  
O
I
EIRQ[5]  
SIUL  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
19  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PC[3]  
PCR[35]  
AF0  
AF1  
AF2  
AF3  
GPIO[35]  
CS0_1  
MA[0]  
SIUL  
DSPI_1  
ADC_0  
FlexCAN_1  
FlexCAN_4  
SIUL  
I/O  
I/O  
O
S
Tristate  
144  
168  
183  
C11  
CAN1RX  
CAN4RX  
EIRQ[6]  
I
I
I
PC[4]  
PCR[36]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[36]  
E1UC[31]  
SIUL  
eMIOS_1  
I/O M/S Tristate  
I/O  
159  
A9  
FR_B_TX_EN  
SIN_1  
CAN3RX  
EIRQ[18]  
Flexray  
DSPI_1  
FlexCAN_3  
SIUL  
O
I
I
I
PC[5]  
PCR[37]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[37]  
SOUT_1  
CAN3TX  
FR_A_TX  
EIRQ[7]  
SIUL  
DSPI_1  
FlexCAN_3  
Flexray  
SIUL  
I/O M/S Tristate  
158  
182  
B9  
O
O
O
I
PC[6]  
PC[7]  
PCR[38]  
PCR[39]  
AF0  
AF1  
AF2  
AF3  
GPIO[38]  
LIN1TX  
E1UC[28]  
SIUL  
LINFlexD_1  
eMIOS_1  
I/O  
O
I/O  
S
S
Tristate  
Tristate  
44  
45  
52  
53  
N3  
N4  
AF0  
AF1  
AF2  
AF3  
GPIO[39]  
E1UC[29]  
LIN1RX  
WKPU[12]  
SIUL  
eMIOS_1  
LINFlexD_1  
WKPU  
I/O  
I/O  
I
I
PC[8]  
PC[9]  
PCR[40]  
PCR[41]  
AF0  
AF1  
AF2  
AF3  
GPIO[40]  
LIN2TX  
E0UC[3]  
SIUL  
LINFlexD_2  
eMIOS_0  
I/O  
O
I/O  
S
S
Tristate  
Tristate  
175  
2
207  
2
B3  
C3  
AF0  
AF1  
AF2  
AF3  
GPIO[41]  
E0UC[7]  
LIN2RX  
WKPU[13]  
SIUL  
eMIOS_0  
LINFlexD_2  
WKPU  
I/O  
I/O  
I
I
MPC5646C Data Sheet, Rev.6  
20  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PC[10] PCR[42]  
PC[11] PCR[43]  
AF0  
AF1  
AF2  
AF3  
GPIO[42]  
CAN1TX  
CAN4TX  
MA[1]  
SIUL  
I/O M/S Tristate  
36  
35  
36  
35  
L1  
FlexCAN_1  
FlexCAN_4  
ADC_0  
O
O
O
AF0  
AF1  
AF2  
AF3  
GPIO[43]  
MA[2]  
CAN1RX  
CAN4RX  
WKPU[5]  
SIUL  
I/O  
O
I
S
Tristate  
K4  
ADC_0  
FlexCAN_1  
FlexCAN_4  
WKPU  
I
I
PC[12] PCR[44]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[44]  
E0UC[12]  
SIUL  
eMIOS_0  
I/O M/S Tristate  
173  
205  
B4  
I/O  
O
I
FR_DBG[0]  
SIN_2  
EIRQ[19]  
Flexray  
DSPI_2  
SIUL  
I
PC[13] PCR[45]  
PC[14] PCR[46]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[45]  
E0UC[13]  
SOUT_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O M/S Tristate  
I/O  
O
O
174  
206  
A3  
B2  
FR_DBG[1]  
Flexray  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[46]  
E0UC[14]  
SCK_2  
SIUL  
eMIOS_0  
DSPI_2  
Flexray  
SIUL  
I/O M/S Tristate  
3
3
I/O  
I/O  
O
FR_DBG[2]  
EIRQ[8]  
I
PC[15] PCR[47]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[47]  
E0UC[15]  
CS0_2  
SIUL  
eMIOS_0  
DSPI_2  
Flexray  
SIUL  
I/O M/S Tristate  
4
4
A1  
I/O  
I/O  
O
FR_DBG[3]  
EIRQ[20]  
I
PD[0]  
PCR[48]  
AF0  
AF1  
AF2  
AF3  
GPI[48]  
SIUL  
I
I
I
Tristate  
77  
93  
R12  
ADC0_P[4]  
ADC1_P[4]  
WKPU[27]  
ADC_0  
ADC_1  
WKPU  
I
I
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
21  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PD[1]  
PCR[49]  
AF0  
AF1  
AF2  
AF3  
GPI[49]  
SIUL  
I
I
I
Tristate  
78  
94  
T13  
ADC0_P[5]  
ADC1_P[5]  
WKPU[28]  
ADC_0  
ADC_1  
WKPU  
I
I
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
PCR[50]  
PCR[51]  
PCR[52]  
PCR[53]  
PCR[54]  
PCR[55]  
AF0  
AF1  
AF2  
AF3  
GPI[50]  
SIUL  
ADC_0  
ADC_1  
I
I
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
79  
80  
81  
82  
83  
84  
95  
96  
N11  
R13  
P12  
T14  
R14  
P13  
ADC0_P[6]  
ADC1_P[6]  
I
AF0  
AF1  
AF2  
AF3  
GPI[51]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[7]  
ADC1_P[7]  
I
AF0  
AF1  
AF2  
AF3  
GPI[52]  
SIUL  
ADC_0  
ADC_1  
I
I
97  
ADC0_P[8]  
ADC1_P[8]  
I
AF0  
AF1  
AF2  
AF3  
GPI[53]  
SIUL  
ADC_0  
ADC_1  
I
I
98  
ADC0_P[9]  
ADC1_P[9]  
I
AF0  
AF1  
AF2  
AF3  
GPI[54]  
SIUL  
ADC_0  
ADC_1  
I
I
99  
ADC0_P[10]  
ADC1_P[10]  
I
AF0  
AF1  
AF2  
AF3  
GPI[55]  
SIUL  
ADC_0  
ADC_1  
I
I
100  
ADC0_P[11]  
ADC1_P[11]  
I
MPC5646C Data Sheet, Rev.6  
22  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PD[8]  
PD[9]  
PCR[56]  
AF0  
AF1  
AF2  
AF3  
GPI[56]  
SIUL  
ADC_0  
ADC_1  
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
87  
94  
95  
96  
103  
114  
115  
116  
P14  
N16  
M14  
M15  
ADC0_P[12]  
ADC1_P[12]  
I
PCR[57]  
AF0  
AF1  
AF2  
AF3  
GPI[57]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[13]  
ADC1_P[13]  
I
PD[10] PCR[58]  
PD[11] PCR[59]  
AF0  
AF1  
AF2  
AF3  
GPI[58]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[14]  
ADC1_P[14]  
I
AF0  
AF1  
AF2  
AF3  
GPI[59]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[15]  
ADC1_P[15]  
I
PD[12] PCR[60]  
PD[13] PCR[61]  
PD[14] PCR[62]  
AF0  
AF1  
AF2  
AF3  
GPIO[60]  
CS5_0  
E0UC[24]  
SIUL  
DSPI_0  
eMIOS_0  
I/O  
O
I/O  
I
S
S
S
Tristate  
Tristate  
Tristate  
100  
102  
104  
120  
124  
126  
L13  
K14  
K13  
ADC0_S[4]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[61]  
CS0_1  
E0UC[25]  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
I/O  
I/O  
I
ADC0_S[5]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[62]  
CS1_1  
E0UC[26]  
FR_DBG[0]  
ADC0_S[6]  
SIUL  
DSPI_1  
eMIOS_0  
Flexray  
ADC_0  
I/O  
O
I/O  
O
I
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
23  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PD[15] PCR[63]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[63]  
CS2_1  
E0UC[27]  
FR_DBG[1]  
ADC0_S[7]  
SIUL  
DSPI_1  
eMIOS_0  
Flexray  
ADC_0  
I/O  
O
I/O  
O
S
S
Tristate  
Tristate  
106  
128  
18  
J13  
G2  
I
PE[0]  
PCR[64]  
AF0  
AF1  
AF2  
AF3  
GPIO[64]  
E0UC[16]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
18  
CAN5RX  
WKPU[6]  
FlexCAN_5  
WKPU  
I
PE[1]  
PE[2]  
PCR[65]  
PCR[66]  
AF0  
AF1  
AF2  
AF3  
GPIO[65]  
E0UC[17]  
CAN5TX  
SIUL  
eMIOS_0  
FlexCAN_5  
I/O M/S Tristate  
I/O  
O
20  
20  
F4  
A7  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[66]  
E0UC[18]  
SIUL  
eMIOS_0  
I/O M/S Tristate  
156  
180  
I/O  
O
I
FR_A_TX_EN  
SIN_1  
EIRQ[21]  
Flexray  
DSPI_1  
SIUL  
I
PE[3]  
PE[4]  
PE[5]  
PCR[67]  
PCR[68]  
PCR[69]  
AF0  
AF1  
AF2  
AF3  
GPIO[67]  
E0UC[19]  
SOUT_1  
FR_A_RX  
WKPU[29]  
SIUL  
eMIOS_0  
DSPI_1  
Flexray  
WKPU  
I/O M/S Tristate  
157  
160  
161  
181  
184  
185  
A10  
A8  
I/O  
O
I
I
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[68]  
E0UC[20]  
SCK_1  
FR_B_TX  
EIRQ[9]  
SIUL  
eMIOS_0  
DSPI_1  
Flexray  
SIUL  
I/O M/S Tristate  
I/O  
I/O  
O
I
AF0  
AF1  
AF2  
AF3  
GPIO[69]  
E0UC[21]  
CS0_1  
MA[2]  
FR_B_RX  
WKPU[30]  
SIUL  
eMIOS_0  
DSPI_1  
ADC_0  
Flexray  
WKPU  
I/O M/S Tristate  
B8  
I/O  
I/O  
O
I
I
MPC5646C Data Sheet, Rev.6  
24  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PE[6]  
PE[7]  
PCR[70]  
AF0  
AF1  
AF2  
AF3  
GPIO[70]  
E0UC[22]  
CS3_0  
MA[1]  
EIRQ[22]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
SIUL  
I/O M/S Tristate  
167  
191  
192  
B6  
A5  
I/O  
O
O
I
PCR[71]  
AF0  
AF1  
AF2  
AF3  
GPIO[71]  
E0UC[23]  
CS2_0  
MA[0]  
EIRQ[23]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
SIUL  
I/O M/S Tristate  
168  
I/O  
O
O
I
PE[8]  
PE[9]  
PCR[72]  
PCR[73]  
AF0  
AF1  
AF2  
AF3  
GPIO[72]  
CAN2TX  
E0UC[22]  
CAN3TX  
SIUL  
I/O M/S Tristate  
21  
22  
21  
22  
G1  
H1  
FlexCAN_2  
eMIOS_0  
FlexCAN_3  
O
I/O  
O
AF0  
AF1  
AF2  
AF3  
GPIO[73]  
E0UC[23]  
WKPU[7]  
CAN2RX  
CAN3RX  
SIUL  
eMIOS_0  
WKPU  
FlexCAN_2  
FlexCAN_3  
I/O  
I/O  
I
S
Tristate  
I
I
PE[10] PCR[74]  
PE[11] PCR[75]  
AF0  
AF1  
AF2  
AF3  
GPIO[74]  
LIN3TX  
CS3_1  
E1UC[30]  
EIRQ[10]  
SIUL  
LINFlexD_3  
DSPI_1  
eMIOS_1  
SIUL  
I/O  
O
O
I/O  
I
S
S
Tristate  
Tristate  
23  
25  
23  
25  
G3  
H3  
AF0  
AF1  
AF2  
AF3  
GPIO[75]  
E0UC[24]  
CS4_1  
SIUL  
eMIOS_0  
DSPI_1  
LINFlexD_3  
WKPU  
I/O  
I/O  
O
I
LIN3RX  
WKPU[14]  
I
PE[12] PCR[76]  
AF0  
AF1  
AF2  
AF3  
GPIO[76]  
E1UC[19]  
CRS  
SIN_2  
SIUL  
eMIOS_1  
FEC  
DSPI_2  
SIUL  
I/O M/S Tristate  
I/O  
I
I
I
I
133  
157  
C14  
EIRQ[11]  
ADC1_S[7]  
ADC_1  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
25  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PE[13] PCR[77]  
PE[14] PCR[78]  
PE[15] PCR[79]  
AF0  
AF1  
AF2  
AF3  
GPIO[77]  
SOUT_2  
E1UC[20]  
SIUL  
DSPI_2  
eMIOS_1  
I/O M/S Tristate  
127  
151  
160  
C16  
A14  
O
I/O  
I
RXD[3]  
FEC  
AF0  
AF1  
AF2  
AF3  
GPIO[78]  
SCK_2  
E1UC[21]  
SIUL  
DSPI_2  
eMIOS_1  
I/O M/S Tristate  
136  
I/O  
I/O  
I
EIRQ[12]  
SIUL  
AF0  
AF1  
AF2  
AF3  
GPIO[79]  
CS0_2  
E1UC[22]  
SCK_6  
SIUL  
I/O M/S Tristate  
137  
63  
161  
79  
C12  
P7  
DSPI_2  
eMIOS_1  
DSPI_6  
I/O  
I/O  
I/O  
PF[0]  
PF[1]  
PF[2]  
PF[3]  
PF[4]  
PCR[80]  
PCR[81]  
PCR[82]  
PCR[83]  
PCR[84]  
AF0  
AF1  
AF2  
AF3  
GPIO[80]  
E0UC[10]  
CS3_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
S
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
ADC0_S[8]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[81]  
E0UC[11]  
CS4_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
64  
65  
66  
67  
80  
81  
82  
83  
T6  
R6  
R7  
R8  
ADC0_S[9]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[82]  
E0UC[12]  
CS0_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
I/O  
I
ADC0_S[10]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[83]  
E0UC[13]  
CS1_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
ADC0_S[11]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[84]  
E0UC[14]  
CS2_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
ADC0_S[12]  
ADC_0  
MPC5646C Data Sheet, Rev.6  
26  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PF[5]  
PF[6]  
PF[7]  
PCR[85]  
AF0  
AF1  
AF2  
AF3  
GPIO[85]  
E0UC[22]  
CS3_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
S
S
S
Tristate  
Tristate  
Tristate  
68  
69  
70  
84  
85  
86  
P8  
N8  
P9  
ADC0_S[13]  
ADC_0  
PCR[86]  
PCR[87]  
AF0  
AF1  
AF2  
AF3  
GPIO[86]  
E0UC[23]  
CS1_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
ADC0_S[14]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[87]  
CS2_1  
SIUL  
DSPI_1  
I/O  
O
I
ADC0_S[15]  
ADC_0  
PF[8]  
PF[9]  
PCR[88]  
PCR[89]  
AF0  
AF1  
AF2  
AF3  
GPIO[88]  
CAN3TX  
CS4_0  
SIUL  
FlexCAN_3  
DSPI_0  
I/O M/S Tristate  
42  
41  
50  
49  
N2  
M4  
O
O
O
CAN2TX  
FlexCAN_2  
AF0  
AF1  
AF2  
AF3  
GPIO[89]  
E1UC[1]  
CS5_0  
SIUL  
eMIOS_1  
DSPI_0  
FlexCAN_2  
FlexCAN_3  
WKPU  
I/O  
I/O  
O
I
S
Tristate  
CAN2RX  
CAN3RX  
WKPU[22]  
I
I
PF[10] PCR[90]  
PF[11] PCR[91]  
AF0  
AF1  
AF2  
AF3  
GPIO[90]  
CS1_0  
LIN4TX  
E1UC[2]  
SIUL  
DSPI_0  
LINFlexD_4  
eMIOS_1  
I/O M/S Tristate  
O
O
46  
47  
54  
55  
P2  
R1  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[91]  
CS2_0  
E1UC[3]  
LIN4RX  
WKPU[15]  
SIUL  
DSPI_0  
eMIOS_1  
LINFlexD_4  
WKPU  
I/O  
O
I/O  
I
S
Tristate  
I
PF[12] PCR[92]  
AF0  
AF1  
AF2  
AF3  
GPIO[92]  
E1UC[25]  
LIN5TX  
SIUL  
eMIOS_1  
LINFlexD_5  
I/O M/S Tristate  
I/O  
O
43  
51  
P1  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
27  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PF[13] PCR[93]  
AF0  
AF1  
AF2  
AF3  
GPIO[93]  
E1UC[26]  
SIUL  
eMIOS_1  
I/O  
I/O  
I
S
Tristate  
49  
57  
P3  
LIN5RX  
WKPU[16]  
LINFlexD_5  
WKPU  
I
PF[14] PCR[94]  
PF[15] PCR[95]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[94]  
CAN4TX  
E1UC[27]  
CAN1TX  
MDIO  
SIUL  
FlexCAN_4  
eMIOS_1  
FlexCAN_1  
FEC  
I/O M/S Tristate  
126  
125  
150  
149  
D14  
D15  
O
I/O  
O
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[95]  
E1UC[4]  
SIUL  
eMIOS_1  
FEC  
FlexCAN_1  
FlexCAN_4  
SIUL  
I/O M/S Tristate  
I/O  
I
I
I
I
RX_DV  
CAN1RX  
CAN4RX  
EIRQ[13]  
PG[0]  
PG[1]  
PCR[96]  
PCR[97]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[96]  
CAN5TX  
E1UC[23]  
SIUL  
FlexCAN_5  
eMIOS_1  
I/O  
O
I/O  
O
F
Tristate  
Tristate  
122  
121  
146  
145  
E13  
E14  
MDC  
FEC  
AF0  
AF1  
AF2  
AF3  
GPIO[97]  
E1UC[24]  
TX_CLK  
CAN5RX  
EIRQ[14]  
SIUL  
eMIOS_1  
FEC  
FlexCAN_5  
SIUL  
I/O  
I/O  
I
M
I
I
PG[2]  
PG[3]  
PCR[98]  
PCR[99]  
AF0  
AF1  
AF2  
AF3  
GPIO[98]  
E1UC[11]  
SOUT_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O M/S Tristate  
I/O  
O
16  
15  
16  
15  
E4  
E1  
AF0  
AF1  
AF2  
AF3  
GPIO[99]  
E1UC[12]  
CS0_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O  
I/O  
I/O  
I
S
Tristate  
WKPU[17]  
WKPU  
PG[4] PCR[100]  
AF0  
AF1  
AF2  
AF3  
GPIO[100]  
E1UC[13]  
SCK_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O M/S Tristate  
14  
14  
F2  
I/O  
I/O  
MPC5646C Data Sheet, Rev.6  
28  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PG[5] PCR[101]  
AF0  
AF1  
AF2  
AF3  
GPIO[101]  
E1UC[14]  
SIUL  
eMIOS_1  
WKPU  
DSPI_3  
I/O  
I/O  
I
S
Tristate  
13  
13  
D1  
WKPU[18]  
SIN_3  
I
PG[6] PCR[102]  
PG[7] PCR[103]  
AF0  
AF1  
AF2  
AF3  
GPIO[102]  
E1UC[15]  
LIN6TX  
SIUL  
eMIOS_1  
LINFlexD_6  
I/O M/S Tristate  
I/O  
O
38  
37  
38  
37  
M1  
L2  
AF0  
AF1  
AF2  
AF3  
GPIO[103]  
E1UC[16]  
E1UC[30]  
LIN6RX  
WKPU[20]  
SIUL  
eMIOS_1  
eMIOS_1  
LINFlexD_6  
WKPU  
I/O  
I/O  
I/O  
I
S
Tristate  
I
PG[8] PCR[104]  
PG[9] PCR[105]  
AF0  
AF1  
AF2  
AF3  
GPIO[104]  
E1UC[17]  
LIN7TX  
CS0_2  
EIRQ[15]  
SIUL  
eMIOS_1  
LINFlexD_7  
DSPI_2  
SIUL  
I/O  
I/O  
O
I/O  
I
S
S
Tristate  
Tristate  
34  
33  
34  
33  
K3  
J4  
AF0  
AF1  
AF2  
AF3  
GPIO[105]  
E1UC[18]  
SCK_2  
LIN7RX  
WKPU[21]  
SIUL  
eMIOS_1  
DSPI_2  
LINFlexD_7  
WKPU  
I/O  
I/O  
I/O  
I
I
PG[10] PCR[106]  
AF0  
AF1  
AF2  
AF3  
GPIO[106]  
E0UC[24]  
E1UC[31]  
SIUL  
eMIOS_0  
eMIOS_1  
I/O  
I/O  
I/O  
I
S
Tristate  
138  
162  
B13  
SIN_4  
DSPI_4  
PG[11] PCR[107]  
PG[12] PCR[108]  
AF0  
AF1  
AF2  
AF3  
GPIO[107]  
E0UC[25]  
CS0_4  
SIUL  
I/O M/S Tristate  
139  
116  
163  
140  
A16  
F15  
eMIOS_0  
DSPI_4  
DSPI_6  
I/O  
I/O  
I/O  
CS0_6  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[108]  
E0UC[26]  
SOUT_4  
SIUL  
eMIOS_0  
DSPI_4  
I/O M/S Tristate  
I/O  
O
O
TXD[2]  
FEC  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
29  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PG[13] PCR[109]  
PG[14] PCR[110]  
PG[15] PCR[111]  
PH[0] PCR[112]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[109]  
E0UC[27]  
SCK_4  
SIUL  
eMIOS_0  
DSPI_4  
I/O M/S Tristate  
115  
139  
158  
159  
141  
F16  
C13  
D13  
E15  
I/O  
I/O  
TXD[3]  
FEC  
O
AF0  
AF1  
AF2  
AF3  
GPIO[110]  
E1UC[0]  
LIN8TX  
SIUL  
eMIOS_1  
LINFlexD_8  
I/O  
I/O  
O
S
Tristate  
134  
135  
117  
I
SIN_6  
DSPI_6  
AF0  
AF1  
AF2  
AF3  
GPIO[111]  
E1UC[1]  
SOUT_6  
SIUL  
eMIOS_1  
DSPI_6  
I/O M/S Tristate  
I/O  
O
I
LIN8RX  
LINFlexD_8  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[112]  
E1UC[2]  
TXD[1]  
SIN_1  
SIUL  
eMIOS_1  
FEC  
DSPI_1  
I/O M/S Tristate  
I/O  
O
I
PH[1] PCR[113]  
PH[2] PCR[114]  
PH[3] PCR[115]  
PH[4] PCR[116]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[113]  
E1UC[3]  
SOUT_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O M/S Tristate  
I/O  
O
O
118  
119  
120  
162  
142  
143  
144  
186  
F13  
D16  
F14  
D7  
TXD[0]  
FEC  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[114]  
E1UC[4]  
SCK_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O M/S Tristate  
I/O  
I/O  
TX_EN  
FEC  
O
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[115]  
E1UC[5]  
CS0_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O M/S Tristate  
I/O  
I/O  
TX_ER  
FEC  
O
AF0  
AF1  
AF2  
AF3  
GPIO[116]  
E1UC[6]  
SOUT_7  
SIUL  
eMIOS_1  
DSPI_7  
I/O M/S Tristate  
I/O  
O
MPC5646C Data Sheet, Rev.6  
30  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PH[5] PCR[117]  
AF0  
AF1  
AF2  
AF3  
GPIO[117]  
E1UC[7]  
SIN_7  
SIUL  
eMIOS_1  
DSPI_7  
I/O  
I/O  
I
S
Tristate  
163  
187  
B7  
PH[6] PCR[118]  
PH[7] PCR[119]  
AF0  
AF1  
AF2  
AF3  
GPIO[118]  
E1UC[8]  
SCK_7  
SIUL  
eMIOS_1  
DSPI_7  
ADC_0  
I/O M/S Tristate  
164  
165  
188  
189  
C7  
C6  
I/O  
I/O  
O
MA[2]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[119]  
E1UC[9]  
CS3_2  
MA[1]  
CS0_7  
SIUL  
eMIOS_1  
DSPI_2  
ADC_0  
DSPI_7  
I/O M/S Tristate  
I/O  
O
O
I/O  
PH[8] PCR[120]  
PH[9]6 PCR[121]  
AF0  
AF1  
AF2  
AF3  
GPIO[120]  
E1UC[10]  
CS2_2  
SIUL  
eMIOS_1  
DSPI_2  
ADC_0  
I/O M/S Tristate  
I/O  
O
166  
155  
190  
179  
A6  
MA[0]  
O
AF0  
AF1  
AF2  
AF3  
GPIO[121]  
SIUL  
JTAGC  
I/O  
I
S
Input,  
weak  
pull-up  
A11  
TCK  
PH[10]6 PCR[122]  
AF0  
AF1  
AF2  
AF3  
GPIO[122]  
SIUL  
JTAGC  
I/O M/S Input,  
148  
172  
D10  
I
weak  
pull-up  
TMS  
PH[11] PCR[123]  
PH[12] PCR[124]  
PH[13] PCR[125]  
AF0  
AF1  
AF2  
AF3  
GPIO[123]  
SOUT_3  
CS0_4  
SIUL  
I/O M/S Tristate  
O
I/O  
I/O  
140  
141  
9
164  
165  
9
A13  
B12  
B1  
DSPI_3  
DSPI_4  
eMIOS_1  
E1UC[5]  
AF0  
AF1  
AF2  
AF3  
GPIO[124]  
SCK_3  
CS1_4  
SIUL  
I/O M/S Tristate  
I/O  
O
DSPI_3  
DSPI_4  
eMIOS_1  
E1UC[25]  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[125]  
SOUT_4  
CS0_3  
SIUL  
I/O M/S Tristate  
O
I/O  
I/O  
DSPI_4  
DSPI_3  
eMIOS_1  
E1UC[26]  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
31  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PH[14] PCR[126]  
PH[15] PCR[127]  
AF0  
AF1  
AF2  
AF3  
GPIO[126]  
SCK_4  
CS1_3  
SIUL  
I/O M/S Tristate  
I/O  
O
10  
8
10  
8
C1  
E3  
C5  
A4  
DSPI_4  
DSPI_3  
eMIOS_1  
E1UC[27]  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[127]  
SOUT_5  
SIUL  
DSPI_5  
I/O M/S Tristate  
O
E1UC[17]  
eMIOS_1  
I/O  
PI[0]  
PI[1]  
PCR[128]  
PCR[129]  
AF0  
AF1  
AF2  
AF3  
GPIO[128]  
E0UC[28]  
LIN8TX  
SIUL  
eMIOS_0  
LINFlexD_8  
I/O  
I/O  
O
S
S
Tristate  
Tristate  
172  
171  
196  
195  
AF0  
AF1  
AF2  
AF3  
GPIO[129]  
E0UC[29]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
WKPU[24]  
LIN8RX  
WKPU  
LINFlexD_8  
I
PI[2]  
PI[3]  
PCR[130]  
PCR[131]  
AF0  
AF1  
AF2  
AF3  
GPIO[130]  
E0UC[30]  
LIN9TX  
SIUL  
eMIOS_0  
LINFlexD_9  
I/O  
I/O  
O
S
S
Tristate  
Tristate  
170  
169  
194  
193  
D6  
B5  
AF0  
AF1  
AF2  
AF3  
GPIO[131]  
E0UC[31]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
WKPU[23]  
LIN9RX  
WKPU  
LINFlexD_9  
I
PI[4]  
PI[5]  
PCR[132]  
PCR[133]  
AF0  
AF1  
AF2  
AF3  
GPIO[132]  
E1UC[28]  
SOUT_4  
SIUL  
eMIOS_1  
DSPI_4  
I/O M/S Tristate  
I/O  
O
143  
142  
167  
166  
A12  
D12  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[133]  
E1UC[29]  
SCK_4  
CS2_5  
CS2_6  
SIUL  
I/O M/S Tristate  
eMIOS_1  
DSPI_4  
DSPI_5  
DSPI_6  
I/O  
I/O  
O
O
PI[6]  
PCR[134]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[134]  
E1UC[30]  
CS0_4  
CS0_5  
CS0_6  
SIUL  
I/O  
I/O  
I/O  
I/O  
I/O  
S
Tristate  
11  
11  
D2  
eMIOS_1  
DSPI_4  
DSPI_5  
DSPI_6  
MPC5646C Data Sheet, Rev.6  
32  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PI[7]  
PI[8]  
PI[9]  
PCR[135]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[135]  
E1UC[31]  
CS1_4  
CS1_5  
CS1_6  
SIUL  
I/O  
I/O  
O
O
O
S
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
12  
12  
E2  
J14  
J15  
J16  
H16  
eMIOS_1  
DSPI_4  
DSPI_5  
DSPI_6  
PCR[136]  
PCR[137]  
AF0  
AF1  
AF2  
AF3  
GPIO[136]  
SIUL  
ADC_0  
I/O  
I
108  
130  
131  
134  
135  
ADC0_S[16]  
AF0  
AF1  
AF2  
AF3  
GPIO[137]  
SIUL  
ADC_0  
I/O  
I
ADC0_S[17]  
PI[10] PCR[138]  
PI[11] PCR[139]  
AF0  
AF1  
AF2  
AF3  
GPIO[138]  
SIUL  
ADC_0  
I/O  
I
ADC0_S[18]  
AF0  
AF1  
AF2  
AF3  
GPIO[139]  
SIUL  
ADC_0  
DSPI_3  
I/O  
I
111  
ADC0_S[19]  
SIN_3  
I
PI[12] PCR[140]  
PI[13] PCR[141]  
PI[14] PCR[142]  
AF0  
AF1  
AF2  
AF3  
GPIO[140]  
CS0_3  
CS0_2  
SIUL  
DSPI_3  
DSPI_2  
I/O  
I/O  
I/O  
I
S
S
S
Tristate  
Tristate  
Tristate  
112  
113  
76  
136  
137  
92  
G15  
G14  
T12  
ADC0_S[20]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[141]  
CS1_3  
CS1_2  
SIUL  
DSPI_3  
DSPI_2  
I/O  
O
O
I
ADC0_S[21]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[142]  
SIUL  
ADC_0  
DSPI_4  
I/O  
I
ADC0_S[22]  
SIN_4  
I
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
33  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PI[15] PCR[143]  
AF0  
AF1  
AF2  
AF3  
GPIO[143]  
CS0_4  
CS2_2  
SIUL  
DSPI_4  
DSPI_2  
I/O  
I/O  
O
I
S
S
S
Tristate  
Tristate  
Tristate  
75  
74  
73  
91  
90  
89  
P11  
R11  
N10  
ADC0_S[23]  
ADC_0  
PJ[0]  
PJ[1]  
PCR[144]  
PCR[145]  
AF0  
AF1  
AF2  
AF3  
GPIO[144]  
CS1_4  
CS3_2  
SIUL  
DSPI_4  
DSPI_2  
I/O  
O
O
I
ADC0_S[24]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[145]  
SIUL  
——  
ADC_0  
DSPI_5  
I/O  
I
ADC0_S[25]  
SIN_5  
I
PJ[2]  
PJ[3]  
PCR[146]  
PCR[147]  
AF0  
AF1  
AF2  
AF3  
GPIO[146]  
CS0_5  
CS0_6  
CS0_7  
ADC0_S[26]  
SIUL  
I/O  
I/O  
I/O  
I/O  
I
S
S
Tristate  
Tristate  
72  
71  
88  
87  
R10  
P10  
DSPI_5  
DSPI_6  
DSPI_7  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[147]  
CS1_5  
CS1_6  
CS1_7  
ADC0_S[27]  
SIUL  
I/O  
O
O
O
I
DSPI_5  
DSPI_6  
DSPI_7  
ADC_0  
PJ[4]  
PJ[5]  
PCR[148]  
PCR[149]  
AF0  
AF1  
AF2  
AF3  
GPIO[148]  
SCK_5  
E1UC[18]  
SIUL  
DSPI_5  
eMIOS_1  
I/O M/S Tristate  
5
5
D3  
I/O  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[149]  
SIUL  
ADC_0  
I/O  
I
S
S
Tristate  
Tristate  
113  
N12  
ADC0_S[28]  
PJ[6]  
PCR[150]  
AF0  
AF1  
AF2  
AF3  
GPIO[150]  
SIUL  
ADC_0  
I/O  
I
112  
N15  
ADC0_S[29]  
MPC5646C Data Sheet, Rev.6  
34  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PJ[7]  
PJ[8]  
PJ[9]  
PCR[151]  
AF0  
AF1  
AF2  
AF3  
GPIO[151]  
SIUL  
ADC_0  
I/O  
I
S
S
S
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
111  
110  
68  
P16  
P15  
P5  
ADC0_S[30]  
PCR[152]  
PCR[153]  
AF0  
AF1  
AF2  
AF3  
GPIO[152]  
SIUL  
ADC_0  
I/O  
I
ADC0_S[31]  
AF0  
AF1  
AF2  
AF3  
GPIO[153]  
SIUL  
ADC_1  
I/O  
I
ADC1_S[8]  
PJ[10] PCR[154]  
PJ[11] PCR[155]  
PJ[12] PCR[156]  
PJ[13] PCR[157]  
AF0  
AF1  
AF2  
AF3  
GPIO[154]  
SIUL  
ADC_1  
I/O  
I
67  
T5  
ADC1_S[9]  
AF0  
AF1  
AF2  
AF3  
GPIO[155]  
SIUL  
ADC_1  
I/O  
I
60  
R3  
T1  
ADC1_S[10]  
AF0  
AF1  
AF2  
AF3  
GPIO[156]  
SIUL  
ADC_1  
I/O  
I
59  
ADC1_S[11]  
AF0  
AF1  
AF2  
AF3  
GPIO[157]  
CS1_7  
SIUL  
DSPI_7  
FlexCAN_4  
ADC_1  
FlexCAN_1  
WKPU  
I/O  
O
I
I
I
I
65  
N5  
CAN4RX  
ADC1_S[12]  
CAN1RX  
WKPU[31]  
PJ[14] PCR[158]  
AF0  
AF1  
AF2  
AF3  
GPIO[158]  
CAN1TX  
CAN4TX  
CS2_7  
SIUL  
I/O M/S Tristate  
64  
T4  
FlexCAN_1  
FlexCAN_4  
DSPI_7  
O
O
O
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
35  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PJ[15] PCR[159]  
AF0  
AF1  
AF2  
AF3  
GPIO[159]  
CS1_6  
SIUL  
DSPI_6  
I/O M/S Tristate  
63  
R4  
O
I
CAN1RX  
FlexCAN_1  
PK[0] PCR[160]  
PK[1] PCR[161]  
AF0  
AF1  
AF2  
AF3  
GPIO[160]  
CAN1TX  
CS2_6  
SIUL  
FlexCAN_1  
DSPI_6  
I/O M/S Tristate  
O
O
62  
41  
T3  
H4  
AF0  
AF1  
AF2  
AF3  
GPIO[161]  
CS3_6  
SIUL  
DSPI_6  
I/O M/S Tristate  
O
I
CAN4RX  
FlexCAN_4  
PK[2] PCR[162]  
PK[3] PCR[163]  
AF0  
AF1  
AF2  
AF3  
GPIO[162]  
CAN4TX  
SIUL  
FlexCAN_4  
I/O M/S Tristate  
42  
43  
L4  
O
AF0  
AF1  
AF2  
AF3  
GPIO[163]  
E1UC[0]  
SIUL  
eMIOS_1  
I/O M/S Tristate  
N1  
I/O  
I
CAN5RX  
LIN8RX  
FlexCAN_5  
LINFlexD_8  
I
PK[4] PCR[164]  
PK[5] PCR[165]  
AF0  
AF1  
AF2  
AF3  
GPIO[164]  
LIN8TX  
CAN5TX  
E1UC[1]  
SIUL  
I/O M/S Tristate  
O
O
44  
45  
M3  
M5  
LINFlexD_8  
FlexCAN_5  
eMIOS_1  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[165]  
SIUL  
I/O M/S Tristate  
I
CAN2RX  
LIN2RX  
FlexCAN_2  
LINFlexD_2  
I
PK[6] PCR[166]  
AF0  
AF1  
AF2  
AF3  
GPIO[166]  
CAN2TX  
LIN2TX  
SIUL  
FlexCAN_2  
LINFlexD_2  
I/O M/S Tristate  
O
O
46  
M6  
MPC5646C Data Sheet, Rev.6  
36  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PK[7] PCR[167]  
AF0  
AF1  
AF2  
AF3  
GPIO[167]  
SIUL  
I/O M/S Tristate  
47  
M7  
I
CAN3RX  
LIN3RX  
FlexCAN_3  
LINFlexD_3  
I
PK[8] PCR[168]  
PK[9] PCR[169]  
AF0  
AF1  
AF2  
AF3  
GPIO[168]  
CAN3TX  
LIN3TX  
SIUL  
FlexCAN_3  
LINFlexD_3  
I/O M/S Tristate  
O
O
48  
M8  
E8  
AF0  
AF1  
AF2  
AF3  
GPIO[169]  
SIUL  
DSPI_4  
I/O M/S Tristate  
197  
I
SIN_4  
PK[10] PCR[170]  
PK[11] PCR[171]  
PK[12] PCR[172]  
PK[13] PCR[173]  
AF0  
AF1  
AF2  
AF3  
GPIO[170]  
SOUT_4  
SIUL  
DSPI_4  
I/O M/S Tristate  
198  
199  
200  
201  
E7  
F8  
O
AF0  
AF1  
AF2  
AF3  
GPIO[171]  
SCK_4  
SIUL  
DSPI_4  
I/O M/S Tristate  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[172]  
CS0_4  
SIUL  
DSPI_4  
I/O M/S Tristate  
I/O  
G12  
H12  
AF0  
AF1  
AF2  
AF3  
GPIO[173]  
CS3_6  
CS2_7  
SCK_1  
CAN3RX  
SIUL  
DSPI_6  
DSPI_7  
DSPI_1  
FlexCAN_3  
I/O M/S Tristate  
O
O
I/O  
I
PK[14] PCR[174]  
PK[15] PCR[175]  
AF0  
AF1  
AF2  
AF3  
GPIO[174]  
CAN3TX  
CS3_7  
SIUL  
FlexCAN_3  
DSPI_7  
I/O M/S Tristate  
O
O
202  
203  
J12  
D5  
CS0_1  
DSPI_1  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[175]  
SIN_1  
SIN_7  
SIUL  
DSPI_1  
DSPI_7  
I/O M/S Tristate  
I
I
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
37  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PL[0]  
PL[1]  
PCR[176]  
PCR[177]  
AF0  
AF1  
AF2  
AF3  
GPIO[176]  
SOUT_1  
SOUT_7  
SIUL  
DSPI_1  
DSPI_7  
I/O M/S Tristate  
O
O
204  
C4  
F7  
F5  
G5  
H5  
J5  
AF0  
AF1  
AF2  
AF3  
GPIO[177]  
SIUL  
I/O M/S Tristate  
PL[2] PCR[178]7  
AF0  
AF1  
AF2  
AF3  
GPIO[178]  
SIUL  
Nexus  
I/O M/S Tristate  
O
MDO08  
PL[3]  
PL[4]  
PL[5]  
PL[6]  
PL[7]  
PL[8]  
PCR[179]  
PCR[180]  
PCR[181]  
PCR[182]  
PCR[183]  
PCR[184]  
AF0  
AF1  
AF2  
AF3  
GPIO[179]  
MDO1  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[180]  
MDO2  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[181]  
MDO3  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[182]  
MDO4  
SIUL  
Nexus  
I/O M/S Tristate  
O
K5  
L5  
AF0  
AF1  
AF2  
AF3  
GPIO[183]  
MDO5  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[184]  
SIUL  
Nexus  
I/O  
I
S
Pull-up  
M9  
EVTI  
PL[9]  
PCR[185]  
AF0  
AF1  
AF2  
AF3  
GPIO[185]  
MSEO  
SIUL  
Nexus  
I/O M/S Tristate  
O
M10  
MPC5646C Data Sheet, Rev.6  
38  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PL[10] PCR[186]  
PL[11] PCR[187]  
PL[12] PCR[188]  
PL[13] PCR[189]  
PL[14] PCR[190]  
PL[15] PCR[191]  
PM[0] PCR[192]  
PM[1] PCR[193]  
PM[2] PCR[194]  
PM[3] PCR[195]  
AF0  
AF1  
AF2  
AF3  
GPIO[186]  
MCKO  
SIUL  
Nexus  
I/O F/S Tristate  
O
M11  
M12  
F11  
F10  
E12  
E11  
E10  
E9  
AF0  
AF1  
AF2  
AF3  
GPIO[187]  
SIUL  
I/O M/S Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[188]  
SIUL  
Nexus  
I/O M/S Tristate  
O
EVTO  
AF0  
AF1  
AF2  
AF3  
GPIO[189]  
MDO6  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[190]  
MDO7  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[191]  
MDO8  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[192]  
MDO9  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[193]  
MDO10  
SIUL  
Nexus  
I/O M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[194]  
MDO11  
SIUL  
Nexus  
I/O M/S Tristate  
O
F12  
K12  
AF0  
AF1  
AF2  
AF3  
GPIO[195]  
SIUL  
I/O M/S Tristate  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
39  
Package pinouts and signal descriptions  
Table 4. Functional port pin descriptions (continued)  
Pin number  
Port  
pin  
PCR  
Function  
PM[4] PCR[196]  
PM[5] PCR[197]  
PM[6] PCR[198]  
AF0  
AF1  
AF2  
AF3  
GPIO[196]  
SIUL  
I/O M/S Tristate  
L12  
F9  
AF0  
AF1  
AF2  
AF3  
GPIO[197]  
SIUL  
I/O M/S Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[198]  
SIUL  
I/O M/S Tristate  
F6  
NOTES:  
1
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA =  
000 AF0; PCR.PA = 001 AF1; PCR.PA = 010 AF2; PCR.PA = 011 AF3; PCR.PA = 100 ALT4. This is  
intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’,  
regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only  
function is reported as “—”.  
2
3
4
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by  
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.  
NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is  
ignored.  
SXOSC’s OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins,  
other functionality of the pin cannot be used and it should be ensured that application never programs OBE and  
PUE bit of the corresponding PCR to "1".  
5
6
If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature  
as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.  
Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.  
PC[0:1] are available as JTAG pins (TDI and TDO respectively).  
PH[9:10] are available as JTAG pins (TCK and TMS respectively).  
It is up to the user to configure these pins as GPIO when needed.  
7
8
When MBIST is enabled to run ( STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V  
before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST  
operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally  
drive the pad.  
These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development  
Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO,  
and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by  
programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).  
MPC5646C Data Sheet, Rev.6  
40  
Freescale Semiconductor  
Electrical Characteristics  
4
Electrical Characteristics  
This section contains electrical characteristics of the device as well as temperature and power  
considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However,  
it is advisable to take precautions to avoid application of any voltage higher than the specified maximum  
rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V  
).  
DD  
SS_HV  
This could be done by the internal pull-up and pull-down, which is provided by the product for most  
general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on  
the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the  
symbol “CC” for Controller Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to  
the device, the symbol “SR” for System Requirement is included in the Symbol column.  
4.1  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the classifications listed in Table 5 are used and the parameters are tagged  
accordingly in the tables where appropriate.  
Table 5. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
4.2  
NVUSRO register  
Portions of the device configuration, such as high voltage supply is controlled via bit values in the  
Non-Volatile User Options Register (NVUSRO). For a detailed description of the NVUSRO register, see  
MPC5646C Reference Manual.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
41  
Electrical Characteristics  
4.2.1  
NVUSRO [PAD3V5V(0)] field description  
Table 6 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for V  
domain.  
DD_HV_A  
Table 6. PAD3V5V(0) field description  
Value1  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
NOTES:  
1
'1' is delivery value. It is part of shadow flash memory, thus programmable by customer.  
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.  
4.2.2  
NVUSRO [PAD3V5V(1)] field description  
Table 7 shows how NVUSRO [PAD3V5V(1)] controls the device configuration the device configuration  
for V domain.  
DD_HV_B  
Table 7. PAD3V5V(1) field description  
Value1  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
NOTES:  
1
'1' is delivery value. It is part of shadow flash memory, thus programmable by customer.  
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.  
4.3  
Absolute maximum ratings  
Table 8. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS_HV  
SR Digital ground on VSS_HV  
pins  
0
0
V
V
VDD_HV_A  
SR Voltage on VDD_HV_A pins  
with respect to ground  
–0.3  
–0.3  
6.0  
6.0  
(VSS_HV  
)
1
VDD_HV_B  
SR Voltage on VDD_HV_B pins  
with respect to common  
V
V
ground (VSS_HV  
)
VSS_LV  
SR Voltage on VSS_LV (low  
voltage digital supply) pins  
with respect to ground  
VSS_HV 0.1  
VSS_HV 0.1  
(VSS_HV  
)
MPC5646C Data Sheet, Rev.6  
42  
Freescale Semiconductor  
Electrical Characteristics  
Table 8. Absolute maximum ratings (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
2
VRC_CTRL  
Base control voltage for  
external BCP68 NPN device  
Relative to VDD_LV  
0
VDD_LV + 1  
V
V
VSS_ADC  
SR Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC  
VSS_HV 0.1  
VSS_HV + 0.1  
reference) pin with respect to  
ground (VSS_HV  
)
VDD_HV_ADC0 SR Voltage on VDD_HV_ADC0  
with respect to ground  
–0.3  
6.0  
V
V
3
Relative to VDD_HV_A VDD_HV_A 0.3 VDD_HV_A+0.3  
(VSS_HV  
)
4
VDD_HV_ADC1 SR Voltage on VDD_HV_ADC1  
with respect to ground  
–0.3  
6.0  
2
Relative to VDD_HV_A VDD_HV_A0.3 VDD_HV_A+0.3  
(VSS_HV  
)
VIN  
SR Voltage on any GPIO pin with  
Relative to  
VDD_HV_A/HV_B VDD_HV_A/HV_B  
V
respect to ground (VSS_HV  
)
VDD_HV_A/HV_B  
0.3  
+0.3  
IINJPAD  
IINJSUM  
SR Injected input current on any  
pin during overload condition  
–10  
10  
mA  
SR Absolute sum of all injected  
input currents during overload  
condition  
–50  
50  
5
IAVGSEG  
SR Sum of all the static I/O  
current within a supply  
segment  
V
DD = 5.0 V ± 10%,  
70  
64  
mA  
°C  
PAD3V5V = 0  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(VDD_HV_A or VDD_HV_B  
)
TSTORAGE  
SR Storage temperature  
–556  
150  
NOTES:  
1
VDD_HV_B can be independently controlled from VDD_HV_A. These can ramp up or ramp down in any order. Design  
is robust against any supply order.  
2
3
This voltage is internally generated by the device and no external voltage should be supplied.  
Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum  
value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.  
4
PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should  
be within ±300 mV of VDD_HV_B when these channels are used for ADC_1.  
5
6
Any temperature beyond 125 °C should limit the current to 50 mA (max).  
This is the storage temperature for the flash memory.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
43  
Electrical Characteristics  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification are not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability. During overload conditions  
(V > V  
or V < V  
), the voltage on pins with respect  
IN  
DD_HV_A/HV_B  
IN  
SS_HV  
to ground (V  
) must not exceed the recommended values.  
SS_HV  
4.4  
Recommended operating conditions  
Table 9. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS_HV  
SR Digital ground on VSS_HV  
pins  
0
0
V
V
1
1
VDD_HV_A  
SR Voltage on VDD_HV_A pins  
with respect to ground  
3.0  
3.0  
3.6  
3.6  
(VSS_HV  
)
VDD_HV_B  
SR Voltage on VDD_HV_B pins  
with respect to ground  
V
V
(VSS_HV  
)
2
VSS_LV  
SR Voltage on VSS_LV (low  
voltage digital supply) pins  
with respect to ground  
VSS_HV 0.1  
VSS_HV + 0.1  
(VSS_HV  
)
3
VRC_CTRL  
VSS_ADC  
Base control voltage for  
external BCP68 NPN device  
Relative to VDD_LV  
0
VDD_LV + 1  
V
V
SR Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC  
VSS_HV 0.1  
VSS_HV + 0.1  
reference) pin with respect to  
ground (VSS_HV  
)
4
VDD_HV_ADC0 SR Voltage on VDD_HV_ADC0  
with respect to ground  
3.05  
3.6  
V
V
V
6
Relative to VDD_HV_A VDD_HV_A 0.1 VDD_HV_A + 0.1  
(VSS_HV  
)
7
VDD_HV_ADC1 SR Voltage on VDD_HV_ADC1  
with respect to ground  
3.0  
3.6  
6
Relative to VDD_HV_A VDD_HV_A 0.1 VDD_HV_A + 0.1  
(VSS_HV  
)
VIN  
SR Voltage on any GPIO pin with  
VSS_HV 0.1  
respect to ground (VSS_HV  
)
Relative to  
VDD_HV_A/HV_B  
VDD_HV_A/HV_B  
+ 0.1  
MPC5646C Data Sheet, Rev.6  
44  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. Recommended operating conditions (3.3 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
IINJPAD  
IINJSUM  
SR Injected input current on any  
pin during overload condition  
5  
5
mA  
SR Absolute sum of all injected  
input currents during overload  
condition  
50  
50  
TVDD  
SR VDD_HV_A slope to ensure  
correct power up8  
0.5  
–40  
0.5  
V/µs  
V/min  
°C  
TA  
TJ  
SR Ambient temperature under  
bias  
fCPU up to  
125  
120 MHz 2%  
SR Junction temperature under  
bias  
40  
150  
NOTES:  
1
2
100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.  
100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance  
needs to be provided as CREG on each VDD_LV pin. For details refer to the Power Management chapter of the  
MPC5646C Reference Manual.  
3
4
5
This voltage is internally generated by the device and no external voltage should be supplied.  
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device  
is reset.  
6
7
8
Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value  
is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.  
PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be  
within ±100 mV of VDD_HV_B when these channels are used for ADC_1.  
Guaranteed by the device validation.  
Table 10. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS_HV  
SR Digital ground on VSS_HV pins  
SR Voltage on VDD_HV_A pins with  
0
0
V
V
1
VDD_HV_A  
4.5  
3.0  
3.0  
3.0  
5.5  
5.5  
5.5  
3.6  
respect to ground (VSS_HV  
)
Voltage drop2  
VDD_HV_B  
SR Generic GPIO functionality  
V
V
Ethernet/3.3 V functionality  
(See the notes in all figures in  
Section 3, ”Package pinouts and  
signal descriptions” for the list of  
channels operating in VDD_HV_B  
domain)  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
45  
Electrical Characteristics  
Table 10. Recommended operating conditions (5.0 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
3
VSS_LV  
SR Voltage on VSS_LV (Low voltage  
digital supply) pins with respect to  
VSS_HV – 0.1  
VSS_HV + 0.1  
V
ground (VSS_HV  
)
4
VRC_CTRL  
Base control voltage for external  
BCP68 NPN device  
Relative to  
VDD_LV  
0
VDD_LV + 1  
V
V
VSS_ADC  
SR Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC reference)  
pin with respect to ground  
V
SS_HV – 0.1  
VSS_HV + 0.1  
(VSS_HV  
)
5
VDD_HV_ADC0 SR Voltage on VDD_HV_ADC0 with  
4.5  
3.0  
5.5  
5.5  
V
V
respect to ground (VSS_HV  
)
Voltage drop(2)  
Relative to  
VDD_HV_A  
VDD_HV_A – 0.1 VDD_HV_A + 0.1  
6
7
VDD_HV_ADC1 SR Voltage on VDD_HV_ADC1 with  
respect to ground (VSS_HV  
4.5  
3.0  
5.5  
5.5  
)
Voltage drop(2)  
Relative to  
VDD_HV_A  
VDD_HV_A 0.1 VDD_HV_A + 0.1  
6
VIN  
SR Voltage on any GPIO pin with  
respect to ground (VSS_HV  
V
SS_HV –0.1  
V
)
Relative to  
VDD_HV_A/HV_B  
VDD_HV_A/HV_B  
+ 0.1  
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin  
during overload condition  
–5  
5
mA  
SR Absolute sum of all injected input  
currents during overload condition  
–50  
50  
SR VDD_HV_A slope to ensure correct  
power up8  
0.5  
V/µs  
0.5  
V/min  
TA C-Grade Part SR Ambient temperature under bias  
TJ C-Grade Part SR Junction temperature under bias  
TA V-Grade Part SR Ambient temperature under bias  
TJ V-Grade Part SR Junction temperature under bias  
TA M-Grade Part SR Ambient temperature under bias  
TJ M-Grade Part SR Junction temperature under bias  
40  
40  
40  
40  
40  
40  
85  
110  
105  
130  
125  
150  
°C  
NOTES:  
1
100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.  
2
Full device operation is guaranteed by design from 3.0 V–5.5 V. OSC functionality is guaranteed from the entire  
range 3.0V–5.5 V, the parametrics measured are at 3.0V and 5.5V (extreme voltage ranges to cover the range of  
operation). The parametrics might have some variation in the intermediate voltage range, but there is no impact to  
functionality.  
3
100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance  
needs to be provided as CREG on each VDD_LV pin.  
MPC5646C Data Sheet, Rev.6  
46  
Freescale Semiconductor  
Electrical Characteristics  
This voltage is internally generated by the device and no external voltage should be supplied.  
4
5
6
100 nF capacitance needs to be provided between VDD_HV_(ADC0/ADC1)/VSS_HV_(ADC0/ADC1) pair.  
Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum  
value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.  
7
8
PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1  
should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1.  
Guaranteed by device validation.  
NOTE  
SRAM retention guaranteed to LVD levels.  
4.5  
Thermal characteristics  
4.5.1  
Package thermal characteristics  
1
Table 11. LQFP thermal characteristics  
Value3  
Symbol  
C
Parameter  
Conditions2 Pin count  
Unit  
Min  
Typ  
Max  
RJA  
CC  
CC  
D
Thermal resistance, Single-layer  
junction-to-ambient board—1s  
natural convection4  
176  
208  
385  
416  
°C/W  
°C/W  
RJA  
D
Thermal resistance, Four-layer  
junction-to-ambient board—2s2p7  
natural convection7  
176  
208  
31  
34  
°C/W  
°C/W  
NOTES:  
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
2
3
4
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C.  
All values need to be confirmed during device validation.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
5
6
7
Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6.  
Junction-to-Ambient thermal resistance determined per JEDEC JESD51-2 and JESD51-6  
Junction-to-Board thermal resistance determined per JEDEC JESD51-8.  
1
Table 12. 256 MAPBGA thermal characteristics  
Symbol  
C
Parameter  
Conditions  
Value  
Unit  
RJA CC — Thermal resistance, junction-to-ambient  
natural convection  
Single-layer board—1s  
Four-layer board—2s2p  
432  
263  
°C/W  
NOTES:  
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
2
Junction-to-ambient thermal resistance determined per JEDEC JESD51-2 with the single layer board horizontal.  
Board meets JESD51-9 specification.  
3
Junction-to-ambient thermal resistance determined per JEDEC JESD51-6 with the board horizontal.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
47  
Electrical Characteristics  
4.5.2  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
T = T + (P  
R )  
JA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
JA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
I/O  
represents the power dissipation on input and output pins; user determined.  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be  
I/O  
INT  
I/O  
significant, if the device is configured to continuously drive external modules and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
2
K = P  
(T + 273 °C) + R  
P  
JA D  
D
A
Where:  
K is a constant for the particular part, which may be determined from Equation 3 by measuring  
P (at equilibrium) for a known T Using this value of K, the values of P and T may be  
D
A.  
D
J
obtained by solving equations 1 and 2 iteratively for any value of T .  
A
4.6  
I/O pad electrical characteristics  
I/O pad types  
4.6.1  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads—These pads are the most common pads, providing a good compromise between  
transition time and low electromagnetic emission.  
Medium pads—These pads provide transition fast enough for the serial communication channels  
with controlled current to reduce electromagnetic emission.  
Fast pads—These pads provide maximum speed. These are used for improved Nexus debugging  
capability.  
Input only pads—These pads are associated to ADC channels and 32 kHz low power external  
crystal oscillator providing low input leakage.  
Low power pads—These pads are active in standby mode for wakeup source.  
Also, medium/slow and fast/medium pads are available in design which can be configured to behave like  
a slow/medium and medium/fast pads depending upon the slew-rate control.  
MPC5646C Data Sheet, Rev.6  
48  
Freescale Semiconductor  
Electrical Characteristics  
Medium and fast pads can use slow configuration to reduce electromagnetic emission, at the cost of  
reducing AC performance.  
4.6.2  
I/O input DC characteristics  
Table 13 provides input DC electrical characteristics as described in Figure 5.  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 5. I/O input DC electrical characteristics definition  
Table 13. I/O input DC electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD + 0.4  
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.3  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
ILKG CC P Digital input leakage  
No injection TA = 40 °C  
on adjacent  
TA = 25 °C  
pin  
2
nA  
P
D
P
2
TA = 105 °C  
TA = 125 °C  
12  
70  
500  
1000  
404  
WFI SR P Width of input pulse rejected by  
analog filter3  
ns  
ns  
WNFI SR P Width of input pulse accepted by  
analog filter(3)  
10004  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
49  
Electrical Characteristics  
2
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation.  
3
4
Analog filters are available on all wakeup lines.  
The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending  
on silicon sample to sample variation.  
4.6.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 14 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
Table 15 provides output driver characteristics for I/O pads when in SLOW configuration.  
Table 16 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 17 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 14. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
|IWPU  
|
CC  
P
C
P
Weak pull-up  
current absolute 5.0 V ± 10%  
value  
VIN = VIL, VDD = PAD3V5V = 0  
10  
10  
10  
150  
250  
150  
µA  
PAD3V5V = 13  
VIN = VIL, VDD = PAD3V5V = 1  
3.3 V ± 10%  
|IWPD  
|
CC  
P
C
P
Weak pull-down VIN = VIH, VDD = PAD3V5V = 0  
10  
10  
10  
150  
250  
150  
µA  
current absolute 5.0 V ± 10%  
value  
PAD3V5V = 1  
VIN = VIH, VDD = PAD3V5V = 1  
3.3 V ± 10%  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
2
3
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 15. SLOW configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level Push Pull IOH = 3 mA,  
0.8VDD  
V
SLOW  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
configuration  
C
P
I
OH = 3 mA,  
0.8VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 13  
IOH = 1.5 mA,  
VDD 0.8  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
MPC5646C Data Sheet, Rev.6  
50  
Freescale Semiconductor  
Electrical Characteristics  
Table 15. SLOW configuration output buffer electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
VOL CC P Output low level  
SLOW  
Push Pull IOL = 3 mA,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
0.1VDD  
V
configuration  
C
I
OL = 3 mA,  
DD = 5.0 V ± 10%, PAD3V5V =  
0.1VDD  
0.5  
V
1(3)  
P
IOL = 1.5 mA,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
2
3
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 16. MEDIUM configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
VOH CC  
C
Output high level Push Pull IOH = 3 mA,  
0.8VDD  
MEDIUM  
VDD = 5.0 V ± 10%,  
configuration  
PAD3V5V = 0  
C
C
C
C
C
IOH = 1.5 mA,  
0.8VDD  
V
VDD = 5.0 V ± 10%,  
PAD3V5V = 13  
I
OH = 2 mA,  
VDD 0.8  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
VOL CC  
Output low level  
MEDIUM  
configuration  
Push Pull IOL = 3 mA,  
0.2VDD  
0.1VDD  
0.5  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
IOL = 1.5 mA,  
V
VDD = 5.0 V ± 10%,  
PAD3V5V = 1(3)  
IOL = 2 mA,  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
2
3
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
51  
Electrical Characteristics  
Table 17. FAST configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
VOH  
CC  
P
Output high level Push Pull  
FAST  
I
OH = 14 mA,  
0.8VDD  
V
VDD = 5.0 V ± 10%,  
configuration  
PAD3V5V = 0  
C
C
P
C
C
I
OH = 7 mA,  
0.8VDD  
VDD = 5.0 V ± 10%,  
PAD3V5V = 13  
IOH = 11 mA,  
VDD 0.8  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
VOL  
CC  
Output low level Push Pull  
FAST  
configuration  
IOL = 14 mA,  
0.1VDD  
0.1VDD  
0.5  
V
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
IOL = 7 mA,  
VDD = 5.0 V ± 10%,  
PAD3V5V = 1(3)  
IOL = 11 mA,  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
2
3
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
4.6.4  
Output pin transition times  
Table 18. Output pin transition times  
Value3  
Symbol  
C
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
Ttr CC  
D
T
Output transition time CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
50  
100  
125  
40  
ns  
output pin4  
CL = 50 pF  
SLOW configuration  
D
D
T
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
50  
D
75  
MPC5646C Data Sheet, Rev.6  
52  
Freescale Semiconductor  
Electrical Characteristics  
Table 18. Output pin transition times (continued)  
Value3  
Symbol  
C
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
Ttr CC  
D
T
Output transition time CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
SIUL.PCRx.SRC = 1  
10  
20  
40  
12  
25  
40  
4
ns  
output pin(4)  
CL = 50 pF  
MEDIUM  
configuration  
D
D
T
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
D
D
Ttr CC  
Output transition time CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
ns  
output pin(4)  
FAST configuration  
CL = 50 pF  
6
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
12  
4
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
7
12  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
2
3
4
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
All values need to be confirmed during device validation.  
CL includes device and package capacitances (CPKG < 5 pF).  
4.6.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply is associated to a  
/V supply pair as described in Table 19.  
V
DD SS_HV  
Table 20 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below  
the I maximum value.  
AVGSEG  
In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single  
segment should remain below the I  
maximum value.  
DYNSEG  
Table 19. I/O supplies  
Package  
I/O Supplies  
256 MAPBGA  
208 LQFP  
Equivalent to 208-pin LQFP segment pad distribution + G6, G11, H11, J11  
pin6  
pin27  
pin73  
pin101  
(VDD_HV_A) (VSS_HV  
pin102 pin133  
(VDD_HV_A) (VSS_HV (VDD_HV_A) (VDD_HV_B) (VDD_HV_A)  
pin132  
pin147  
(VSS_HV  
pin148  
pin174  
(VSS_HV  
pin175  
(VDD_HV_A) (VDD_HV_A) (VSS_HV  
)
)
)
)
pin7  
(VSS_HV  
pin28  
pin75  
)
(VSS_HV  
)
)
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
53  
Electrical Characteristics  
Package  
Table 19. I/O supplies (continued)  
I/O Supplies  
176 LQFP  
pin6  
pin27  
pin57  
pin85  
(VDD_HV_A) (VSS_HV  
pin86 pin124  
(VDD_HV_A) (VSS_HV (VDD_HV_B) (VDD_HV_A)  
pin123  
pin150  
(VSS_HV  
pin151  
(VDD_HV_A) (VDD_HV_A) (VSS_HV  
pin7  
(VSS_HV  
)
)
)
pin28  
(VSS_HV  
pin59  
)
)
)
Table 20. I/O consumption  
Conditions1,2  
Value3  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
,4  
ISWTSLW  
CC D Peak I/O current for CL = 25 pF  
SLOW configuration  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
19.9  
15.5  
28.8  
16.3  
113.5  
52.1  
mA  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(4)  
ISWTMED  
CC D Peak I/O current for CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
MEDIUM  
configuration  
mA  
mA  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(4)  
ISWTFST  
CC D Peak I/O current for CL = 25 pF  
FAST configuration  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
IRMSSLW  
CC D Root mean square  
I/O current for SLOW  
configuration  
CL = 25 pF, 2 MHz  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
2.22  
3.13  
6.54  
1.51  
2.14  
4.33  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
mA  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
IRMSMED CC D Root mean square  
I/O current for  
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,  
6.5 mA  
13.32  
18.26  
4.91  
PAD3V5V = 0  
CL = 25 pF, 40 MHz  
MEDIUM  
configuration  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
CL = 25 pF, 40 MHz  
8.47  
CL = 100 pF, 13 MHz  
10.94  
21.05 mA  
33  
IRMSFST  
CC D Root mean square  
I/O current for FAST  
configuration  
CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
55.77  
14  
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
CL = 25 pF, 64 MHz  
20  
CL = 100 pF, 40 MHz  
34.89  
MPC5646C Data Sheet, Rev.6  
54  
Freescale Semiconductor  
Electrical Characteristics  
Table 20. I/O consumption (continued)  
Value3  
Unit  
Symbol  
C
Parameter  
Conditions1,2  
Min Typ Max  
IAVGSEG  
SR D Sum of all the static  
I/O current within a  
supply segment  
V
DD = 5.0 V ± 10%, PAD3V5V = 0  
DD = 3.3 V ± 10%, PAD3V5V = 1  
70  
mA  
V
654  
NOTES:  
1
2
3
4
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
All values need to be confirmed during device validation.  
.
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
4.7  
RESET electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
V
DD_HV_A  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 6. Start-up reset requirements  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
55  
Electrical Characteristics  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 7. Noise filtering on reset signal  
Table 21. Reset electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH  
VIL  
SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD + 0.4  
V
V
V
V
SR P Input low Level CMOS  
(Schmitt Trigger)  
0.3  
0.1VDD  
0.35VDD  
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
VOL CC P Output low level  
Push Pull, IOL = 2 mA,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
0.1VDD  
Push Pull, IOL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V ± 10%, PAD3V5V = 13  
Push Pull, IOL = 1 mA,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
MPC5646C Data Sheet, Rev.6  
56  
Freescale Semiconductor  
Electrical Characteristics  
Table 21. Reset electrical characteristics (continued)  
Conditions1  
Value2  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
Ttr  
CC D Output transition time  
output pin4  
CL = 25 pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
10  
ns  
MEDIUM configuration  
CL = 50 pF,  
20  
40  
12  
25  
40  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 100 pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 25 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 50 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 100 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
WFRST SR P Reset input filtered pulse  
40  
ns  
ns  
WNFRST SR P Reset input not filtered  
pulse  
1000  
|IWPU  
|
CC P Weak pull-up current  
absolute value  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
10  
10  
10  
150  
150  
250  
µA  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
VDD = 5.0 V ± 10%, PAD3V5V = 15  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation.  
2
3
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section  
of the device Reference Manual).  
4
5
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
4.8  
Power management electrical characteristics  
Voltage regulator electrical characteristics  
4.8.1  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from  
DD_LV  
the high voltage supply V  
. The following supplies are involved:  
DD_HV_A  
HV: High voltage external power supply for voltage regulator module. This must be provided  
externally through V power pin.  
DD_HV_A  
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated  
by the on-chip VREG with an external ballast (BCP68 NPN device). It is further split into four  
main domains to ensure noise isolation between critical LV modules within the device:  
— LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL  
through double bonding.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
57  
Electrical Characteristics  
— LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with  
LV_COR through double bonding.  
— LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR through  
double bonding.  
— LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
100 nf  
100 nf  
100 nf  
VSS_LV  
VDD_LV  
VDD_LV  
VSS_LV  
VSS_LV  
VDD_LV  
40 f  
PD0 (always on domain)  
(4 10 f)  
PD1 Switchable Domain  
(FMPLL, Flash)  
8 KB  
Split  
32 KB  
Split  
56 KB  
Split  
(C  
)
REGn  
CTRL  
CTRL  
CTRL  
VDD_LV  
HPVDD  
VSS_LV  
Off chip  
BCP68  
sw1 (<0.1)  
VRC_CTRL  
HPREG  
NPN driver  
LPVDD  
10 f  
LPREG  
Chip Boundary  
(C  
)
DEC2  
VDD_BV  
VSS_HV  
VDD_HV_A  
100 nf  
HPVDD  
LPVDD  
1) All VSS_LV pins must be grounded, as shown for VSS_HV pin.  
Figure 8. Voltage regulator capacitance connection  
The internal voltage regulator requires external bulk capacitance (C  
) to be connected to the device to  
REGn  
provide a stable low voltage digital supply to the device. Also required for stability is the C  
capacitor  
DEC2  
at ballast collector. This is needed to minimize sharp injection current when ballast is turning ON. Apart  
from the bulk capacitance, user should connect EMI/decoupling cap (C  
pair.  
) at each V  
/V  
pin  
REGP  
DD_LV SS_LV  
4.8.1.1  
Recommendations  
The external NPN driver must be BCP68 type.  
V
should be implemented as a power plane from the emitter of the ballast transistor.  
DD_LV  
MPC5646C Data Sheet, Rev.6  
58  
Freescale Semiconductor  
Electrical Characteristics  
10 F capacitors should be connected to the 4 pins closest to the outside of the package and should  
be evenly distributed around the package. For BGA packages, the balls should be used are D8,  
H14, R9, J3–one cap on each side of package.  
— There should be a track direct from the capacitor to this pin (pin also connects to V  
DD_LV  
plane). The tracks ESR should be less than 100 m.  
— The remaining V  
pins (exact number will vary with package) should be decoupled with  
DD_LV  
0.1 F caps, connected to the pin as per 10 F.  
(see Section 4.4, ”Recommended operating conditions”).  
4.8.2  
VDD_BV options  
Option 1: V  
shared with V  
DD_BV DD_HV_A  
V
must be star routed from V  
from the common source. This is to eliminate ballast  
DD_BV  
DD_HV_A  
noise injection on the MCU.  
Option 2: V independent of the MCU supply  
DD_BV  
V
> 2.6 V for correct functionality. The device is not monitoring this supply hence the  
DD_BV  
external component must meet the 2.6 V criteria through external monitoring if required.  
Table 22. Voltage regulator electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CREGn  
RREG  
SR — External ballast stability capacitance  
40  
60  
F  
SR — Stability capacitor equivalent serial  
resistance  
0.2  
CREGP  
SR — Decoupling capacitance (Close to  
the pin)  
VDD_HV_A/HV_B/VSS_HV  
pair  
100  
nF  
V
DD_LV/VSS_LV pair  
100  
nF  
CDEC2  
VMREG  
SR — Stability capacitance regulator  
supply (Close to the ballast collector)  
VDD_BV/VSS_HV  
10  
40  
F  
CC P Main regulator output voltage  
Before trimming  
1.32  
1.28  
V
After trimming  
TA = 25 °C  
1.20  
IMREG  
SR — Main regulator current provided to  
350  
mA  
mA  
VDD_LV domain  
IMREGINT CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
VLPREG  
ILPREG  
CC P Low power regulator output voltage After trimming  
TA = 25 °C  
1.21  
1.27  
V
SR — Low power regulator current  
50  
mA  
provided to VDD_LV domain  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
59  
Electrical Characteristics  
Table 22. Voltage regulator electrical characteristics (continued)  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
ILPREGINT CC D Low power regulator module current ILPREG = 15 mA;  
600  
A  
consumption  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
20  
2
IVREGREF CC D Main LVDs and reference current  
consumption (low power and main  
regulator switched off)  
TA = 55 °C  
A  
A  
IVREDLVD12 CC D Main LVD current consumption  
(switch-off during standby)  
TA = 55 °C  
1
IDD_HV_A CC D In-rush current on VDD_BV during  
power-up  
6003 mA  
NOTES:  
1
VDD_HV_A = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
2
3
Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in  
~25 steps to reach ~1.2 V VDD_LV. Each step peak current is within 600 mA  
4.8.3  
Voltage monitor electrical characteristics  
The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four  
low voltage detectors to monitor the V and the V voltage while device is supplied:  
DD_HV_A  
DD_LV  
POR monitors V  
state  
during the power-up phase to ensure device is maintained in a safe reset  
DD_HV_A  
LVDHV3 monitors V  
LVDHV5 monitors V  
to ensure device is reset below minimum functional supply  
when application uses device in the 5.0 V±10% range  
DD_HV_A  
DD_HV_A  
LVDLVCOR monitors power domain No. 1 (PD1)  
LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply.  
NOTE  
When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP.  
MPC5646C Data Sheet, Rev.6  
60  
Freescale Semiconductor  
Electrical Characteristics  
V
DDHV/LV  
V
V
LVDHVxH/LVxH  
LVDHVxL/LVxL  
RESET  
Figure 9. Low voltage monitor vs. Reset  
Table 23. Low voltage monitor electrical characteristics  
Value2  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min  
Typ  
Max  
VPORUP  
VPORH  
SR P Supply for functional POR module  
CC P Power-on reset threshold  
1.0  
1.5  
2.7  
2.6  
4.3  
4.2  
5.5  
2.6  
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC T LVDHV3 low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
VLVDHV5L CC T LVDHV5 low voltage detector low threshold  
2.85  
2.74  
4.5  
V
4.4  
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold TA = 25 °C,  
1.12 1.145 1.17  
1.12 1.145 1.17  
after trimming  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
2
4.9  
Low voltage domain power consumption  
Table 24 provides DC electrical characteristics for significant application modes. These values are  
indicative values; actual consumption depends on the application.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
61  
Electrical Characteristics  
Table 24. Low voltage power domain electrical characteristics  
1
Value  
Symbol  
C
Parameter  
Conditions2  
Unit  
Min  
Typ3  
Max4  
3006,7 mA  
5
IDDMAX  
CC D RUN mode maximum  
average current  
210  
IDDRUN  
CC P RUN mode typical average  
at 120 MHz  
TA = 25 °C  
TA = 25 °C  
TA = 125 °C  
TA = 25 °C  
TA = 125 °C  
150  
1108  
180  
20  
2009  
15010 mA  
mA  
current8  
D
at 80 MHz  
at 120 MHz  
at 120 MHz  
at 120 MHz  
C
270  
27  
mA  
mA  
mA  
mA  
mA  
µA  
IDDHALT  
CC P HALT mode current11  
C
35  
113  
3
IDDSTOP CC P STOP mode current12  
No clocks active TA = 25 °C  
TA = 125 °C  
0.4  
16  
C
95  
IDDSTDBY3 CC P STANDBY3 mode  
(96 KB RAM  
retained)  
No clocks active TA = 25 °C  
TA = 125 °C  
50  
99  
current13  
C
630  
3200  
µA  
IDDSTDBY2 CC C STANDBY2 mode  
No clocks active TA = 25 °C  
TA = 125 °C  
40  
94  
µA  
µA  
(64 KB RAM  
retained)  
current14  
C
500  
2500  
IDDSTDBY1 CC C STANDBY1 mode  
No clocks active TA = 25 °C  
TA = 125 °C  
25  
87  
µA  
µA  
(8 KB RAM  
retained)  
current15  
C
230  
1250  
AddersinLP CC T 32 KHz OSC  
TA = 25 °C  
TA = 25 °C  
TA = 25 °C  
TA = 25 °C  
5
3
µA  
mA  
µA  
µA  
mode  
4–40 MHz OSC  
16 MHz IRC  
128 KHz IRC  
500  
5
NOTES:  
1
Except for IDDMAX, all the current values are total current drawn from VDD_HV_A  
.
2
3
4
5
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified All temperatures are based on an  
ambient temperature.  
Target typical current consumption for the following typical operating conditions and configuration. Process = typical,  
Voltage = 1.2 V.  
Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, Voltage  
= 1.32 V.  
Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os  
toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with  
all cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It  
is to be noticed that this value can be significantly reduced by application: switch-off not used peripherals (default),  
reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode  
when possible.  
6
7
8
Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 22.  
Maximum “allowed” current is package dependent.  
Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master,  
PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic  
SW/WDG timer reset enabled. RUN current measured with typical application with accesses on both code flash and  
RAM.  
MPC5646C Data Sheet, Rev.6  
62  
Freescale Semiconductor  
Electrical Characteristics  
9
Subject to change, Configuration: 1  
e200z4d + 4 kbit/s Cache, 1  
e200z0h (1/2 system frequency), CSE,  
LINFlexD (20 kbit/s), 6 DSPI (2 2 Mbit/s,  
FlexRay (2 ch., 10 Mbit/s), 1 FEC (100 Mbit/s),  
1
3
1
e
DMA (10 ch.), 6  
FlexCAN (4  
500 kbit/s, 2  
125 kbit/s), 4  
4 Mbit/s, 1  
RTC, 4 PIT channels, 1  
10 Mbit/s), 16  
Timed I/O, 16  
ADC Input, 1  
SWT, 1 STM. For lower pin count packages reduce the amount of timed I/O’s and ADC  
channels. RUN current measured with typical application with accesses on both code flash and RAM.  
10 This value is obtained from limited sample set.  
11 Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz ON. 16 MHz XTAL clock.  
FlexCAN: instances: 0, 1, 2 ON (clocked but no reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex:  
instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3-9 clocks gated. eMIOS: instance: 0 ON  
(16 channels on PA[0]-PA[11] and PC[12]-PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0  
(clocked but no communication, instance: 1-7 clocks gated). RTC/API ON. PIT ON. STM ON. ADC ON but no  
conversion except 2 analog watchdogs.  
12 Only for the “P” classification: No clock, FIRC 16 MHz OFF, SIRC128 kHz ON, PLL OFF, HPvreg OFF, LPVreg ON.  
All possible peripherals off and clock gated. Flash in power down mode.  
13 Only for the “P” classification: LPreg ON, HPVreg OFF, 96 KB RAM ON, device configured for minimum consumption,  
all possible modules switched-off.  
14 Only for the “P” classification: LPreg ON, HPVreg OFF, 64 KB RAM ON, device configured for minimum consumption,  
all possible modules switched-off.  
15 LPreg ON, HPVreg OFF, 8 KB RAM ON, device configured for minimum consumption, all possible modules switched  
OFF.  
4.10 Flash memory electrical characteristics  
4.10.1 Program/Erase characteristics  
Table 25 shows the code flash memory program and erase characteristics.  
Table 25. Code flash memory—Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
max2  
Min  
Typ1  
Max3  
Tdwprogram  
T16Kpperase  
T32Kpperase  
T128Kpperase  
Teslat  
Double word (64 bits) program time4  
16 KB block pre-program and erase time  
32 KB block pre-program and erase time  
128 KB block pre-program and erase time  
20  
18  
200  
300  
600  
50  
500  
600  
1300  
30  
500  
5000  
5000  
5000  
30  
µs  
ms  
ms  
ms  
µs  
C
CC  
D Erase Suspend Latency  
C Erase Suspend Request Rate  
D Program Abort Latency  
D Erase Abort Latency  
5
tESRT  
ms  
µs  
tPABT  
tEAPT  
10  
10  
30  
30  
µs  
NOTES:  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
5
Actual hardware programming times. This does not include software overhead.  
It is Time between erase suspend resume and the next erase suspend request.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
63  
Electrical Characteristics  
Table 26 shows the data flash memory program and erase characteristics.  
Table 26. Data flash memory—Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
max2  
Min  
Typ1  
Max3  
Twprogram  
T16Kpperase  
Teslat  
Word (32 bits) program time4  
10  
30  
700  
70  
800  
30  
500  
5000  
30  
µs  
ms  
µs  
C
16 KB block pre-program and erase time  
D Erase Suspend Latency  
C Erase Suspend Request Rate  
D Program Abort Latency  
D Erase Abort Latency  
CC  
5
tESRT  
ms  
µs  
tPABT  
tEAPT  
12  
12  
30  
30  
µs  
NOTES:  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
5
Actual hardware programming times. This does not include software overhead.  
It is time between erase suspend resume and next erase suspend.  
Table 27. Flash memory module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
P/E  
CC C Number of program/erase cycles per  
block for 16 Kbyte blocks over the  
100,000 100,000 cycles  
operating temperature range (TJ)  
Number of program/erase cycles per  
block for 32 Kbyte blocks over the  
operating temperature range (TJ)  
10,000  
1,000  
100,000 cycles  
100,000 cycles  
Number of program/erase cycles per  
block for 128 Kbyte blocks over the  
operating temperature range (TJ)  
Retention CC C Minimum data retention at 85 °C  
average ambient temperature1  
Blocks with 0–1,000 P/E  
cycles  
20  
10  
5
years  
years  
years  
Blocks with 10,000 P/E  
cycles  
Blocks with 100,000 P/E  
cycles  
NOTES:  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
MPC5646C Data Sheet, Rev.6  
64  
Freescale Semiconductor  
Electrical Characteristics  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability  
results. Some units will experience single bit corrections throughout the life of the product with no impact  
to product reliability.  
1
Table 28. Flash memory read access timing  
Conditions2  
Frequency  
Symbol  
C
Parameter  
Unit  
Code flash  
Data flash  
range  
memory  
memory  
fREAD  
CC P Maximum frequency for Flash reading 5 wait states  
13 wait states  
11 wait states  
9 wait states  
7 wait states  
4 wait states  
2 wait states  
120 —100  
100—80  
80—64  
64—40  
40—20  
20—0  
MHz  
C
D
C
C
C
4 wait states  
3 wait states  
2 wait states  
1 wait states  
0 wait states  
NOTES:  
1
Max speed is the maximum speed allowed including PLL frequency modulation (FM).  
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
4.10.2 Flash memory power supply DC characteristics  
Table 29 shows the flash memory power supply DC characteristics on external supply.  
Table 29. Flash memory power supply DC electrical characteristics  
Value2  
Symbol  
Parameter  
Conditions1  
Unit  
Min Typ Max  
3
ICFREAD CC Sum of the current consumption Flash memory module read Code flash  
33 mA  
13  
on VDD_HV_A on read access  
fCPU = 120 MHz 2%4  
memory  
(3)  
IDFREAD  
Data flash  
memory  
(3)  
(3)  
ICFMOD  
IDFMOD  
CC Sum of the current consumption Program/Erase on-going  
Code flash  
52 mA  
13  
on VDD_HV_A (program/erase)  
while reading flash memory memory  
registers  
Data flash  
memory  
fCPU = 120 MHz 2% (4)  
(3)  
ICFLPW  
CC Sum of the current consumption  
on VDD_HV_A during flash  
Code flash  
memory  
1.1 mA  
memory low power mode  
(3)  
ICFPWD  
CC Sum of the current consumption  
on VDD_HV_A during flash  
Code flash  
memory  
150 µA  
150  
memory power down mode  
(3)  
IDFPWD  
Data flash  
memory  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified.  
2
All values need to be confirmed during device validation.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
65  
Electrical Characteristics  
3
Data based on characterization results, not tested in production.  
4
fCPU 120 MHz 2% can be achieved over full temperature 125 °C ambient, 150 °C junction temperature.  
4.10.3 Flash memory start-up/switch-off timings  
Table 30. Start-up time/Switch-off time  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
TFLARSTEXIT CC D Delay for flash memory module to exit  
reset mode  
Code flash  
memory  
125  
Data flash  
memory  
TFLALPEXIT  
TFLAPDEXIT  
CC T Delay for flash memory module to exit  
low-power mode  
Code flash  
memory  
0.5  
30  
µs  
CC T Delay for flash memory module to exit  
power-down mode  
Code flash  
memory  
Data flash  
memory  
TFLALPENTRY CC T Delay for flash memory module to enter Code flash  
low-power mode memory  
0.5  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
4.11 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
4.11.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application  
environment and simplified MCU software. It should be noted that good EMC performance is highly  
dependent on the user application and the software in particular.  
Therefore it is recommended that the user apply EMC software optimization and pre-qualification tests in  
relation with the EMC level requested for the application.  
Software recommendations The software flowchart must include the management of runaway  
conditions such as:  
— Corrupted program counter  
— Unexpected reset  
— Critical data corruption (control registers)  
Pre-qualification trials Most of the common failures (unexpected reset and program counter  
corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins  
for 1 second.  
MPC5646C Data Sheet, Rev.6  
66  
Freescale Semiconductor  
Electrical Characteristics  
To complete these trials, ESD stress can be applied directly on the device. When unexpected  
behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.  
4.11.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms  
to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.  
1,2  
Table 31. EMI radiated emission measurement  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
SR — Scan range  
0.150  
1000 MHz  
fCPU SR — Operating frequency  
VDD_LV SR — LV operating voltages  
SEMI CC T Peak level  
120  
1.28  
MHz  
V
VDD = 5 V, TA = 25 °C,  
LQFP176 package  
No PLL frequency  
modulation  
18 dBµV  
Test conforming to IEC 61967-2,  
fOSC = 40 MHz/fCPU = 120 MHz  
± 2% PLL frequency  
modulation  
143 dBµV  
NOTES:  
1
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.  
2
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
3
All values need to be confirmed during device validation.  
4.11.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed  
in order to determine its performance in terms of electrical sensitivity.  
4.11.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of  
each sample according to each pin combination. The sample size depends on the number of supply pins in  
the device (3 parts  
(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.  
1,2  
Table 32. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
TA = 25 °C  
Class  
Max value3  
Unit  
VESD(HBM) Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
VESD(CDM) Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
750 (corners)  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
67  
Electrical Characteristics  
NOTES:  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
3
Data based on characterization results, not tested in production.  
4.11.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply over-voltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 33. Latch-up results  
Symbol  
Parameter  
Conditions  
TA = 125 °C  
Class  
LU  
Static latch-up class  
II level A  
conforming to JESD 78  
4.12 Fast external crystal oscillator (4–40 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal  
oscillator driver and provides an example of a connection for an oscillator or a resonator.  
Table 34 provides the parameter description of 4 MHz to 40 MHz crystals used for the design simulations.  
MPC5646C Data Sheet, Rev.6  
68  
Freescale Semiconductor  
Electrical Characteristics  
EXTAL  
C1  
XTAL  
XTAL  
R
D
C2  
DEVICE  
V
DD  
I
R
EXTAL  
EXTAL  
DEVICE  
XTAL  
DEVICE  
Figure 10. Crystal oscillator and resonator connection scheme  
NOTE  
XTAL/EXTAL must not be directly used to drive external circuits.  
Table 34. Crystal description  
Shunt  
Crystal  
equivalent  
series  
resistance  
ESR   
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
capacitance  
between  
xtalout  
Nominal  
frequency  
(MHz)  
NDK crystal  
reference  
xtalin/xtalout  
C1 = C2  
(pF)1  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
50  
2.68  
2.46  
2.93  
3.11  
3.90  
6.18  
591.0  
160.7  
86.6  
56.5  
25.3  
2.56  
21  
17  
15  
15  
10  
8
2.93  
3.01  
2.91  
2.93  
3.00  
3.49  
8
10  
12  
16  
40  
NX5032GA  
NOTES:  
1
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
2
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
69  
Electrical Characteristics  
S_MTRANS bit (ME_GS register)  
1
0
V
XTAL  
1/f  
MXOSC  
V
FXOSC  
90%  
10%  
V
FXOSCOP  
T
valid internal clock  
MXOSCSU  
Figure 11. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics  
Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC  
SR — Fast external crystal  
oscillator frequency  
4.0  
40.0  
MHz  
gmFXOSC CC C Fast external crystal VDD = 3.3 V ± 10%  
43  
43  
203  
203  
mA/V  
oscillator  
VDD = 5.0 V ± 10%  
transconductance  
VFXOSC  
CC T Oscillation  
fOSC = 40 MHz  
0.95  
V
V
amplitude at EXTAL For both VDD = 3.3 V ±  
10%, VDD = 5.0 V ±  
10%  
VFXOSCOP CC P Oscillation  
operating point  
1.8  
2
,4  
IFXOSC  
CC T Fast external crystal VDD = 3.3 V ± 10%,  
2.2  
2.5  
1.5  
1.8  
5
oscillator  
consumption  
fOSC = 40 MHz  
VDD = 5.0 V ± 10%,  
fOSC = 40 MHz  
2.3  
1.3  
1.6  
mA  
ms  
VDD = 3.3 V ± 10%,  
fOSC = 16 MHz  
VDD = 5.0 V ± 10%,  
f
OSC = 16 MHz  
TFXOSCSU CC T Fast external crystal fOSC = 40 MHz  
oscillator start-up  
time  
For both VDD = 3.3 V ±  
10%, VDD = 5.0 V ±  
10%  
MPC5646C Data Sheet, Rev.6  
70  
Freescale Semiconductor  
Electrical Characteristics  
Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH  
SR P Input high level  
CMOS  
Oscillator bypass  
mode  
0.65VDD_HV_A  
VDD_HV_A + 0.4  
V
(Schmitt Trigger)  
VIL  
SR P Input low level  
CMOS  
Oscillator bypass  
mode  
0.3  
0.35VDD_HV_A  
V
(Schmitt Trigger)  
NOTES:  
1
2
3
4
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
Based on ATE Cz  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals).  
4.13 Slow external crystal oscillator (32 kHz) electrical characteristics  
The device provides a low power oscillator/resonator driver.  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
R
P
OSC32K_XTAL  
OSC32K_XTAL  
C2  
DEVICE  
DEVICE  
Figure 12. Crystal oscillator and resonator connection scheme  
NOTE  
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive  
external circuits.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
71  
Electrical Characteristics  
l
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
Figure 13. Equivalent circuit of a quartz crystal  
1
Table 36. Crystal motional characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Lm  
Motional inductance  
Motional capacitance  
18  
11.796  
28  
KH  
fF  
Cm  
2
C1/C2 Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground2  
pF  
AC coupled @ C0 = 2.85 pF4  
AC coupled @ C0 = 4.9 pF(4)  
AC coupled @ C0 = 7.0 pF(4)  
AC coupled @ C0 = 9.0 pF(4)  
65  
50  
35  
30  
k  
3
Rm  
Motional resistance  
NOTES:  
1
The crystal used is Epson Toyocom MC306.  
2
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to  
ground. It includes all the parasitics due to board traces, crystal and package.  
3
4
Maximum ESR (Rm) of the crystal is 50 k  
C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.  
MPC5646C Data Sheet, Rev.6  
72  
Freescale Semiconductor  
Electrical Characteristics  
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
LPXOSC32K  
V
LPXOSC32K  
90%  
10%  
T
valid internal clock  
LPXOSC32KSU  
Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics  
Table 37. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fSXOSC  
SR — Slow external crystal oscillator  
frequency  
32  
32.768  
40  
kHz  
gmSXOSC CC — Slow external crystal oscillator  
transconductance  
VDD = 3.3 V ± 10%,  
133  
153  
1.2  
1.2  
333  
353  
1.7  
4.4  
7
µA/V  
VDD = 5.0 V ± 10%  
VSXOSC  
CC T Oscillation amplitude  
1.4  
V
ISXOSCBIAS CC T Oscillation bias current  
µA  
µA  
ISXOSC  
CC T Slow external crystal oscillator  
consumption  
TSXOSCSU CC T Slow external crystal oscillator  
start-up time  
24  
s
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
Based on ATE CZ  
2
3
4
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.  
4.14 FMPLL electrical characteristics  
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system  
clock from the main oscillator driver.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
73  
Electrical Characteristics  
Table 38. FMPLL electrical characteristics  
Value2  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
fPLLIN SR — FMPLL reference clock3  
4
64  
60  
MHz  
%
PLLIN SR — FMPLL reference clock duty  
40  
cycle(3)  
fPLLOUT CC P FMPLL output clock  
frequency  
16  
120  
MHz  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
40  
120 + 2%4 MHz  
20  
150  
100  
MHz  
µs  
Stable oscillator (fPLLIN = 16  
MHz)  
tLTJIT CC — FMPLL long term jitter  
fPLLIN = 40 MHz (resonator),  
fPLLCLK @ 120 MHz, 4000  
cycles  
6
ns  
(for < 1ppm)  
IPLL  
CC C FMPLL consumption  
TA = 25 °C  
3
mA  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
2
3
PLLIN clock retrieved directly from 4-40 MHz XOSC or 16 MIRC. Input characteristics are granted when oscillator  
is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN  
fCPU 120 + 2% MHz can be achieved at 125 °C.  
.
4
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up  
of the device and can also be used as input to PLL.  
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value2  
Symbol  
fFIRC  
3,  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CC P Fast internal RC oscillator high  
TA = 25 °C, trimmed  
12  
16  
20  
MHz  
frequency  
SR —  
IFIRCRUN  
CC T Fast internal RC oscillator high  
frequency current in running  
mode  
TA = 25 °C, trimmed  
200  
µA  
IFIRCPWD CC D Fast internal RC oscillator high  
TA = 25 °C  
TA = 55 °C  
TA = 125 °C  
100  
200  
1
nA  
nA  
µA  
frequency current in power  
down mode  
D
D
MPC5646C Data Sheet, Rev.6  
74  
Freescale Semiconductor  
Electrical Characteristics  
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value2  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C sysclk = off  
frequency and system clock  
1  
500  
600  
700  
900  
1250  
2.0  
5
µA  
sysclk = 2 MHz  
current in stop mode  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
TFIRCSU CC C Fast internal RC oscillator  
TA = 55 °C VDD = 5.0 V ± 10%  
VDD = 3.3 V ± 10%  
µs  
%
start-up time  
TA = 125 °C VDD = 5.0 V ± 10%  
VDD = 3.3 V ± 10%  
2.0  
5
FIRCPRE CC C Fast internal RC oscillator  
precision after software  
TA = 25 °C  
+1  
trimming of fFIRC  
FIRCTRIM CC C Fast internal RC oscillator  
TA = 25 °C  
1.6  
%
%
trimming step  
FIRCVAR CC C Fast internal RC oscillator  
variation over temperature and  
supply with respect to fFIRC at  
TA = 25 °C in high-frequency  
configuration  
5  
+5  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
2
3
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock  
for the RTC module.  
Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
128  
kHz  
frequency  
SR —  
untrimmed, across  
temperatures  
84  
205  
3,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
5
µA  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
75  
Electrical Characteristics  
Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
TSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10%  
time  
8
12  
µs  
%
SIRCPRE CC C Slow internal RC oscillator precision  
TA = 25 °C  
2  
2.7  
+2  
after software trimming of fSIRC  
SIRCTRIM CC C Slow internal RC oscillator trimming  
step  
SIRCVAR CC C Variation in fSIRC across  
temperature and fluctuation in  
10  
+10  
%
supply voltage, post trimming  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
All values need to be confirmed during device validation.  
2
3
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
4.17 ADC electrical characteristics  
4.17.1 Introduction  
The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit  
and 12-bit).  
NOTE  
Due to ADC limitations, the two ADCs cannot sample a shared channel at  
the same time i.e., their sampling windows cannot overlap if a shared  
channel is selected. If this is done, neither of the ADCs can guarantee their  
conversion accuracies.  
MPC5646C Data Sheet, Rev.6  
76  
Freescale Semiconductor  
Electrical Characteristics  
Offset Error OSE  
Gain Error GE  
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error OSE  
Figure 15. ADC_0 characteristic and error definitions  
4.17.1.1 Input impedance and ADC accuracy  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC  
impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device, can  
be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to  
attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase,  
when the analog signal source is a high-impedance source. A real filter, can typically be obtained by using  
a series resistance with a capacitor on the input pin (simple RC Filter). The RC filtering may be limited  
according to the value of source impedance of the transducer or circuit supplying the analog signal to be  
measured. The filter at the input pins must be designed taking into account the dynamic characteristics of  
the input signal (bandwidth) and the equivalent input impedance of the ADC itself.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
77  
Electrical Characteristics  
In fact a current sink contributor is represented by the charge sharing effects with the sampling  
capacitance: being CS and Cp substantially two switched capacitances, with a frequency equal to the  
2
conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a  
conversion rate of 1MHz, with CS+Cp equal to 3pF, a resistance of 330Kis obtained (Reqiv = 1 /  
2
(fc*(CS+Cp )), where fc represents the conversion rate at the considered channel). To minimize the error  
2
induced by the voltage partitioning between this resistance (sampled voltage on CS+Cp ) and the sum of  
2
R + R , the external circuit must be designed to respect the following relation  
S
F
Eqn. 4  
R + R  
S
F
1
2
--------------------  
V
-- LSB  
A
R
EQ  
The formula above provides a constraint for external network design, in particular on resistive path.  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW  
V
C
C
C
C
S
A
F
P1  
P2  
R
R
C
R
R
R
C
C
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
SW  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 16. Input equivalent circuit (precise channels)  
MPC5646C Data Sheet, Rev.6  
78  
Freescale Semiconductor  
Electrical Characteristics  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Current Limiter  
R
R
R
F
R
L
R
AD  
SW2  
S
SW1  
C
S
C
V
C
F
C
C
P2  
A
P1  
P3  
R
R
C
R
R
R
C
C
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance (two contributions R  
Sampling Switch Impedance  
S
F
F
L
and R  
)
SW2  
SW  
AD  
P
SW1  
Pin Capacitance (three contributions, C , C and C )  
Sampling Capacitance  
P1  
P2  
P3  
S
Figure 17. Input equivalent circuit (extended channels)  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances  
C , C and C initially charged at the source voltage V (refer to the equivalent circuit reported in  
F
P1  
P2  
A
Figure 16): when the sampling phase is started (A/D switch close), a charge sharing phenomena is  
installed.  
Voltage Transient on C  
V
CS  
S
V
A
V <0.5 LSB  
< (R  
V
A2  
1
2
+ R ) C << T  
S
1
SW  
AD  
S
V
A1  
2 = RL (CS + CP1 + CP2)  
T
t
S
Figure 18. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
A first and quick charge transfer from the internal capacitance C and C to the sampling  
P1  
P2  
capacitance C occurs (C is supposed initially completely discharged): considering a worst case  
S
S
(since the time constant in reality would be faster) in which C is reported in parallel to C (call  
P2  
P1  
C = C + C ), the two capacitances C and C are in series, and the time constant is  
P
P1  
P2  
P
S
Eqn. 5  
C C  
P
S
--------------------  
= R  
+ R  
   
1
SW  
AD  
C + C  
P
S
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
79  
Electrical Characteristics  
This relation can again be simplified considering C as an additional worst condition. In reality, transient  
S
is faster, but the A/D converter circuitry has been designed to be robust also in very worst case: the  
sampling time T is always much longer than the internal time constant.  
s
Eqn. 6  
R  
+ R  
C « T  
1
SW  
AD  
S
S
The charge of C and C is redistributed on C ,determining a new value of the voltage V on the  
P1  
P2  
S
A1  
capacitance according to the following equation  
Eqn. 7  
V
C + C + C = V C + C  
P1 P2 P1 P2  
A1  
S
A
A second charge transfer involves also C (that is typically bigger than the on-chip capacitance)  
F
through the resistance RL: again considering the worst case in which C and C were in parallel  
P2  
S
to C (since the time constant in reality would be faster), the time constant is:  
P1  
Eqn. 8  
R C + C + C  
P1 P2  
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the transient is  
completed well before the end of sampling time T , a constraints on R sizing is obtained:  
S
L
Eqn. 9  
8.5 = 8.5 R C + C + C T  
P1 P2 S  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R  
L
S
(source impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the  
F
F
P1 P2  
S
final voltage V (at the end of the charge transfer transient) will be much higher than V . The following  
A2  
A1  
equation must be respected (charge balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
C + C + C + C = V C + V C + C + C   
A2  
S
P1  
P2  
F
A
F
A1  
P1  
P2  
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C  
F F  
filter, is not able to provide the extra charge to compensate the voltage drop on C with respect to the ideal  
S
source V ; the time constant R C of the filter is very high with respect to the sampling time (T ). The  
A
F F  
S
filter is typically designed to act as anti-aliasing  
MPC5646C Data Sheet, Rev.6  
80  
Freescale Semiconductor  
Electrical Characteristics  
Analog Source Bandwidth (V )  
A
T
f
2 R C (Conversion Rate vs. Filter Pole)  
F F  
C
Noise  
f (Anti-aliasing Filtering Condition)  
F
0
2 f f (Nyquist)  
0
C
f
0
f
Anti-Aliasing Filter (f = RC Filter pole)  
Sampled Signal Spectrum (f = conversion Rate)  
C
F
f
f
f
C
F
0
f
f
Figure 19. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the  
0
anti-aliasing filter, f ), according to the Nyquist theorem the conversion rate f must be at least 2f ; it  
F
C
0
means that the constant time of the filter is greater than or at least equal to twice the conversion period  
(T ). Again the conversion period T is longer than the sampling time T , which is just a portion of it,  
C
C
S
even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific  
channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher  
F F  
than the sampling time T , so the charge level on C cannot be modified by the analog signal source during  
S
S
the time in which the sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy  
error due to the voltage drop on C ; from the two charge balance equations above, it is simple to derive  
S
Equation 11 between the ideal and real sampled voltage on C :  
S
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A2  
P1  
F
V
C
+ C + C + C  
A
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept  
A
a maximum error of half a count, a constraint is evident on C value:  
F
ADC_0 (10-bit)  
Eqn. 12  
Eqn. 13  
C
2048 C  
F
S
ADC_1 (12-bit)  
8192 C  
C
F
S
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
81  
Electrical Characteristics  
4.17.1.2 ADC electrical characteristics  
Table 41. ADC input leakage current  
Value  
Typ  
Symbol C  
Parameter  
Conditions  
Unit  
Min  
Max  
ILKG CC C Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
nA  
C
C
P
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
8
200  
400  
45  
Table 42. ADC conversion characteristics (10-bit ADC_0)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VSS_ADC0 SR — Voltage on  
VSS_HV_ADC0  
0.1  
0.1  
V
(ADC_0 reference)  
pin with respect to  
2
ground (VSS_HV  
)
VDD_ADC0 SR — Voltage on  
VDD_HV_A 0.1  
VDD_HV_A + 0.1  
V
VDD_HV_ADC0 pin  
(ADC_0 reference)  
with respect to  
ground (VSS_HV  
)
VAINx SR — Analog input voltage3  
VSS_ADC0 0.1  
VDD_ADC0 + 0.1  
32 + 2%  
V
fADC0 SR — ADC_0 analog  
frequency  
6
MHz  
tADC0_PU SR — ADC_0 power up  
delay  
1.5  
µs  
tADC0_S CC  
tADC0_C CC  
T
P
Sample time4  
fADC = 32 MHz  
fADC = 32 MHz  
fADC = 30 MHz  
500  
0.625  
0.700  
ns  
µs  
Conversion time5,6  
CS  
CC D ADC_0 input  
sampling  
3
pF  
capacitance  
CP1  
CP2  
CP3  
CC D ADC_0 input pin  
capacitance 1  
3
1
1
3
pF  
pF  
pF  
k  
CC D ADC_0 input pin  
capacitance 2  
CC D ADC_0 input pin  
capacitance 3  
RSW1 CC D Internal resistance of  
analog source  
MPC5646C Data Sheet, Rev.6  
82  
Freescale Semiconductor  
Electrical Characteristics  
Table 42. ADC conversion characteristics (10-bit ADC_0) (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
RSW2 CC D Internal resistance of  
analog source  
2
k  
k  
mA  
RAD  
CC D Internal resistance of  
analog source  
5  
5  
2
5
5
7
IINJ  
SR — Input current Injection Current  
VDD =  
3.3 V ± 10%  
injection on  
one ADC_0  
input, different  
from the  
VDD  
=
5.0 V ± 10%  
converted one  
| INL | CC  
| DNL | CC  
T
T
Absolute value for  
integral non-linearity  
No overload  
0.5  
0.5  
1.5  
1.0  
LSB  
LSB  
Absolute differential No overload  
non-linearity  
| OFS | CC  
| GNE | CC  
TUEP CC  
T
T
P
T
Absolute offset error  
Absolute gain error  
2  
3  
0.5  
0.6  
0.6  
2
LSB  
LSB  
LSB  
Total unadjusted  
error8 for precise  
channels, input only  
pins  
Without current injection  
With current injection  
3
TUEX CC  
T
T
Total unadjusted  
error(8) for extended  
channel  
Without current injection  
With current injection  
3  
4  
1
3
4
LSB  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS_HV must be common (to be tied together externally).  
2
3
VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the  
end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values  
for the sample clock tADC0_S depend on programming.  
5
This parameter does not include the sample time tADC0_S, but only the time for determining the digital result and  
the time to load the result's register with the conversion result  
6
7
8
Refer to ADC conversion table for detailed calculations.  
PB10 should not have any current injected. It can disturb accuracy on other ADC_0 pins.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
83  
Electrical Characteristics  
Offset Error OSE  
Gain Error GE  
4095  
4094  
4093  
4092  
4091  
1 LSB ideal = AVDD / 4096  
4090  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4090 4091 4092 4093 4094 4095  
V
(LSB  
)
in(A)  
ideal  
Offset Error OSE  
Figure 20. ADC_1 characteristic and error definitions  
MPC5646C Data Sheet, Rev.6  
84  
Freescale Semiconductor  
Electrical Characteristics  
Table 43. Conversion characteristics (12-bit ADC_1)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Max  
Min  
VSS_ADC1 SR  
Voltage on  
0.1  
0.1  
V
VSS_HV_ADC1  
(ADC_1 reference)  
pin with respect to  
2
ground (VSS_HV  
)
3
VDD_ADC1  
SR  
Voltage on  
VDD_HV_A 0.1  
VDD_HV_A + 0.1  
V
VDD_HV_ADC1  
pin (ADC_1  
reference) with  
respect to ground  
(VSS_HV  
)
3,4  
VAINx  
SR  
SR  
SR  
CC  
T
Analog input  
voltage5  
VSS_ADC1 0.1  
VDD_ADC1 + 0.1  
32 + 2%  
V
MHz  
µs  
fADC1  
ADC_1 analog  
frequency  
8 + 2%  
tADC1_PU  
tADC1_S  
ADC_1 power up  
delay  
1.5  
Sample time6  
VDD=5.0 V  
440  
530  
2
ns  
Sample time(6)  
VDD=3.3 V  
tADC1_C  
CC  
P
Conversion time7, 8  
VDD=5.0 V  
fADC1 = 32 MHz  
Conversion time(7),  
f
f
f
ADC 1= 30 MHz  
ADC 1= 20 MHz  
ADC1 = 15 MHz  
2.1  
(6)  
µs  
VDD =5.0 V  
Conversion time(7),  
3
(6)  
VDD=3.3 V  
Conversion time(7),  
3.01  
(6)  
VDD =3.3 V  
CS  
CC  
D
ADC_1 input  
sampling  
5
pF  
capacitance  
CP1  
CP2  
CC  
CC  
CC  
CC  
D
D
D
D
ADC_1 input pin  
capacitance 1  
3
1
pF  
pF  
pF  
k  
ADC_1 input pin  
capacitance 2  
CP3  
ADC_1 input pin  
capacitance 3  
1.5  
RSW1  
Internal resistance  
of analog source  
1
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
85  
Electrical Characteristics  
Table 43. Conversion characteristics (12-bit ADC_1) (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
RSW2  
RAD  
IINJ  
CC  
CC  
SR  
D
D
Internal resistance  
of analog source  
2
k  
k  
mA  
Internal resistance  
of analog source  
0.3  
5
Input current  
Injection  
Current  
VDD = 3.3  
injection V ± 10%  
5  
5  
on one  
VDD = 5.0  
ADC_1  
V ± 10%  
input,  
5
different  
from the  
converted  
one  
INLP  
INLS  
DNL  
OFS  
CC  
CC  
CC  
CC  
T
T
T
T
Absolute Integral  
non-linearity-Preci  
se channels  
No overload  
No overload  
No overload  
1
3
5
1
LSB  
LSB  
LSB  
LSB  
Absolute Integral  
non-linearity-  
Standard channels  
1.5  
0.5  
Absolute  
Differential  
non-linearity  
Absolute Offset  
error  
2
2
GNE  
CC  
CC  
T
P
Absolute Gain error —  
LSB  
LSB  
TUEP9  
Total Unadjusted Without current  
6  
6
Error for precise  
channels, input  
only pins  
injection  
T
T
With current injection  
8  
8
LSB  
LSB  
TUES(9)  
CC  
Total Unadjusted Without current  
Error for standard injection  
channel  
10  
10  
T
With current injection  
12  
12  
LSB  
NOTES:  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS_HV must be common (to be tied together externally).  
2
3
PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be  
within ±100 mV of VDD_HV_B when these channels are used for ADC_1.  
4
5
6
VDD_HV_ADC1 can operate at 5V condition while VDD_HV_B can operate at 3.3V provided that ADC_1 channels coming  
from VDD_HV_B domain are limited in max swing as VDD_HV_B  
.
VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0xFFF.  
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end of  
the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock tADC1_S depend on programming.  
MPC5646C Data Sheet, Rev.6  
86  
Freescale Semiconductor  
Electrical Characteristics  
7
8
9
Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay.  
Refer to ADC conversion table for detailed calculations.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
4.18 Fast Ethernet Controller  
MII signals use CMOS signal levels compatible with devices operating at 3.3 V. Signals are not TTL  
compatible. They follow the CMOS electrical characteristics.  
4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the system clock frequency must exceed four times the  
RX_CLK frequency in 2:1 mode and two times the RX_CLK frequency in 1:1 mode.  
Table 44. MII Receive Signal Timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M1  
RXD[3:0], RX_DV,  
RX_ER to RX_CLK  
setup  
5
ns  
M2  
RX_CLK to  
5
ns  
RXD[3:0], RX_DV,  
RX_ER hold  
M3  
M4  
RX_CLK pulse width  
high  
35%  
35%  
65%  
65%  
RX_CLK period  
RX_CLK period  
RX_CLK pulse width  
low  
M3  
RX_CLK (input)  
M4  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
M1  
M2  
Figure 21. MII receive signal timing diagram  
4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the system clock frequency must exceed four times the  
TX_CLK frequency in 2:1 mode and two times the TX_CLK frequency in 1:1 mode.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
87  
Electrical Characteristics  
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising  
or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of  
non-compliant MII PHYs.  
Refer to the Fast Ethernet Controller (FEC) chapter of the MPC5646C Reference Manual for details of this  
option and how to enable it.  
1
Table 45. MII transmit signal timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M5  
TX_CLK to TXD[3:0],  
TX_EN, TX_ER  
invalid  
5
ns  
M6  
M7  
M8  
TX_CLK to TXD[3:0],  
TX_EN, TX_ER valid  
25  
ns  
TX_CLK pulse width  
high  
35%  
35%  
65%  
65%  
TX_CLK period  
TX_CLK period  
TX_CLK pulse width  
low  
NOTES:  
1
Output pads configured with SRE = 0b11.  
M7  
TX_CLK (input)  
M5  
M8  
TXD[3:0] (outputs)  
TX_EN  
TX_ER  
M6  
Figure 22. MII transmit signal timing diagram  
4.18.3 MII Async Inputs Signal Timing (CRS and COL)  
1
Table 46. MII Async Inputs Signal Timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M9  
CRS, COL minimum  
pulse width  
1.5  
TX_CLK period  
NOTES:  
1
Output pads configured with SRE = 0b11.  
MPC5646C Data Sheet, Rev.6  
88  
Freescale Semiconductor  
Electrical Characteristics  
CRS, COL  
M9  
Figure 23. MII async inputs timing diagram  
4.18.4 MII Serial Management Channel Timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.  
1
Table 47. MII serial management channel timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M10  
MDC falling edge to  
MDIO output invalid  
(minimum  
0
ns  
propagation delay)  
M11  
MDC falling edge to  
MDIO output valid  
(max prop delay)  
25  
ns  
M12  
M13  
M14  
M15  
MDIO (input) to MDC  
rising edge setup  
28  
0
ns  
MDIO (input) to MDC  
rising edge hold  
ns  
MDC pulse width  
high  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
MDC pulse width low  
NOTES:  
1
Output pads configured with SRE = 0b11.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
89  
Electrical Characteristics  
M14  
M15  
MDC (output)  
M10  
M11  
MDIO (output)  
MDIO (input)  
M12  
Figure 24. MII serial management channel timing diagram  
M13  
MPC5646C Data Sheet, Rev.6  
90  
Freescale Semiconductor  
Electrical Characteristics  
4.19 On-chip peripherals  
4.19.1 Current consumption  
1
Table 48. On-chip peripherals current consumption  
Value2  
Symbol  
C
Parameter  
Conditions  
Unit  
Typ  
IDD_HV_A(CAN)  
CC  
D
CAN  
(FlexCAN)  
supply current  
on VDD_HV_A  
500  
Kbps  
Total (static +  
dynamic)  
consumption:  
FlexCAN in loop-back  
mode  
7.652  
8.0743  
fperiph + 84.73  
µA  
125  
Kbps  
fperiph + 26.757  
XTAL@8 MHz used  
as CAN engine clock  
source  
Message sending  
period is 580 µs  
IDD_HV_A(eMIOS) CC  
D
eMIOS supply Static consumption:  
28.7 fperiph  
current on  
VDD_HV_A  
eMIOS channel OFF  
Global prescaler enabled  
Dynamic consumption:  
It does not change varying the  
frequency (0.003 mA)  
3
IDD_HV_A(SCI)  
CC  
CC  
D
D
SCI (LINFlex) Total (static + dynamic)  
supply current consumption:  
on VDD_HV_A LIN mode  
4.7804 fperiph + 30.946  
Baudrate: 20 Kbps  
IDD_HV_A(SPI)  
SPI (DSPI)  
Ballast static consumption (only  
1
fperiph  
supply current clocked)  
on VDD_HV_A  
Ballast dynamic consumption  
16.3   
(continuous communication):  
Baudrate: 2 Mbit  
Transmission every 8 µs  
Frame: 16 bits  
IDD_HV_A(ADC)  
CC  
D
D
ADC supply  
current on  
VDD_HV_A  
VDD  
5.5 V  
=
Ballast static  
consumption (no  
conversion)  
0.0409  
0.0049  
fperiph  
mA  
VDD  
5.5 V  
=
Ballast dynamic  
consumption  
(continuous  
fperiph  
conversion)  
IDD_HV_ADC0 CC  
ADC_0 supply VDD  
current on  
VDD_HV_ADC0  
=
Analog static  
consumption (no  
conversion)  
200  
4
µA  
5.5 V  
Analog dynamic  
consumption  
(continuous  
mA  
conversion)  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
91  
Electrical Characteristics  
1
Table 48. On-chip peripherals current consumption  
Value2  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
IDD_HV_ADC1 CC  
D
ADC_1 supply VDD  
=
Analog static  
consumption (no  
conversion)  
300  
fperiph  
µA  
current on  
5.5 V  
VDD_HV_ADC1  
VDD  
5.5 V  
=
Analog dynamic  
consumption  
(continuous  
6
mA  
mA  
conversion)  
IDD_HV(FLASH)  
CC  
CC  
D
D
CFlash +  
DFlash supply 5.5 V  
current on  
VDD  
=
13.25  
VDD_HV_ADC  
IDD_HV(PLL)  
PLL supply  
current on  
VDD_HV  
VDD  
5.5 V  
=
0.0031 fperiph  
NOTES:  
1
2
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 120 MHz.  
fperiph is in absolute value.  
MPC5646C Data Sheet, Rev.6  
92  
Freescale Semiconductor  
Electrical Characteristics  
4.19.2 DSPI characteristics  
Table 49. DSPI timing  
Spec  
Characteristic  
Symbol  
Unit  
Max  
Min  
1
DSPI Cycle Time  
tSCK  
Refer  
note1  
115  
ns  
ns  
ns  
Internal delay between pad associated to SCK and pad  
associated to CSn in master mode for CSn1->0  
tCSC  
tASC  
Internal delay between pad associated to SCK and pad  
associated to CSn in master mode for CSn1->1  
15  
2
3
CS to SCK Delay2  
After SCK Delay3  
SCK Duty Cycle  
tCSC  
tASC  
tSDC  
tSUSS  
7
ns  
ns  
ns  
ns  
15  
0.4 tSCK  
5
4
0.6 tSCK  
Slave Setup Time  
(SS active to SCK setup time)  
5
Slave Hold Time  
(SS active to SCK hold time)  
tHSS  
10  
42  
25  
ns  
ns  
ns  
Slave Access Time  
tA  
(SS active to SOUT valid)4  
6
Slave SOUT Disable Time  
tDIS  
(SS inactive to SOUT High-Z or invalid)  
7
8
CSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
0
0
ns  
ns  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
93  
Electrical Characteristics  
Table 49. DSPI timing (continued)  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
9
Data Setup Time for Inputs  
tSUI  
Master (MTFE = 0)  
36  
5
36  
36  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)5  
Master (MTFE = 1, CPHA = 1)  
10  
11  
12  
Data Hold Time for Inputs  
Master (MTFE = 0)  
tHI  
tSUO  
tHO  
0
4
0
0
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)5  
Master (MTFE = 1, CPHA = 1)  
Data Valid (after SCK edge)  
Master (MTFE = 0)  
12  
37  
12  
12  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Data Hold Time for Outputs  
Master (MTFE = 0)  
06  
9.5  
07  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
08  
NOTES:  
1
This value of this parameter is dependent upon the external device delays and the other parameters mentioned in  
this table.  
2
3
The maximum value is programmable in DSPI_CTARn [PSSCK] and DSPI_CTARn [CSSCK]. For MPC5646C, the  
spec value of tCSC will be attained only if TDSPI x PSSCK x CSSCK > tCSC  
.
The maximum value is programmable in DSPI_CTARn [PASC] and DSPI_CTARn [ASC]. For MPC5646C, the spec  
value of tASC will be attained only if TDSPI x PASC x ASC > tASC.  
4
5
The parameter value is obtained from tSUSS and tSUO for slave.  
This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b00.  
6
7
8
For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 0) is 2 ns.  
For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 0) is 2 n.  
For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 1) is 2 ns.  
MPC5646C Data Sheet, Rev.6  
94  
Freescale Semiconductor  
Electrical Characteristics  
2
3
CSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 49.  
Figure 25. DSPI classic SPI timing–master, CPHA = 0  
CSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
First Data  
Data  
Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 49.  
Figure 26. DSPI classic SPI timing–master, CPHA = 1  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
95  
Electrical Characteristics  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
First Data  
Data  
Last Data  
Note: Numbers shown reference Table 49.  
Figure 27. DSPI classic SPI timing–slave, CPHA = 0  
MPC5646C Data Sheet, Rev.6  
96  
Freescale Semiconductor  
Electrical Characteristics  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 49.  
Figure 28. DSPI classic SPI timing–slave, CPHA = 1  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
97  
Electrical Characteristics  
3
CSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 49.  
Figure 29. DSPI modified transfer format timing–master, CPHA = 0  
MPC5646C Data Sheet, Rev.6  
98  
Freescale Semiconductor  
Electrical Characteristics  
CSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 49.  
Figure 30. DSPI modified transfer format timing–master, CPHA = 1  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
99  
Electrical Characteristics  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 49.  
Figure 31. DSPI modified transfer format timing–slave, CPHA = 0  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 49.  
Figure 32. DSPI modified transfer format timing–slave, CPHA = 1  
MPC5646C Data Sheet, Rev.6  
100  
Freescale Semiconductor  
Electrical Characteristics  
8
7
PCSS  
CSx  
Note: Numbers shown reference Table 49.  
Figure 33. DSPI PCS strobe (PCSS) timing  
4.19.3 Nexus characteristics  
1
Table 50. Nexus debug port timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
MCKO Cycle  
Time2  
tMCYC  
16.3  
ns  
2
3
MCKO Duty Cycle  
tMDC  
40  
60  
%
MCKO Low to  
MDO, MSEO,  
tMDOV  
–0.1  
0.25  
tMCYC  
EVTO Data Valid3  
4
5
EVTI Pulse Width  
tEVTIPW  
4.0  
1
tTCYC  
tMCYC  
EVTO Pulse  
Width  
tEVTOPW  
6
7
8
TCK Cycle Time4  
tTCYC  
tTDC  
40  
40  
8
60  
ns  
%
TCK Duty Cycle  
TDI, TMS Data  
Setup Time  
t
NTDIS, tNTMSS  
ns  
9
TDI, TMS Data  
Hold Time  
tNTDIH, NTMSH  
t
5
0
ns  
ns  
10  
TCK Low to TDO  
Data Valid  
tJOV  
25  
NOTES:  
1
JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is  
measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDDE = 4.0 – 5.5 V,  
TA = TL to TH, and CL = 30 pF with SRC = 0b11.  
2
3
4
MCKO can run up to 1/2 of full system frequency. It can also run at system frequency when it is <60 MHz.  
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
The system clock frequency needs to be three times faster than the TCK frequency.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
101  
Electrical Characteristics  
1
2
MCKO  
3
MDO  
MSEO  
EVTO  
Output Data Valid  
5
4
EVTI  
Figure 34. Nexus output timing  
MPC5646C Data Sheet, Rev.6  
102  
Freescale Semiconductor  
Electrical Characteristics  
6
7
TCK  
8
9
TMS, TDI  
10  
TDO  
Figure 35. Nexus TDI, TMS, TDO timing  
4.19.4 JTAG characteristics  
Table 51. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Max  
Min  
1
2
3
4
5
tJCYC  
tTDIS  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
CC D TMS setup time  
CC D TMS hold time  
64  
10  
5
ns  
ns  
ns  
ns  
ns  
tTDIH  
tTMSS  
tTMSH  
10  
5
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
103  
Electrical Characteristics  
Table 51. JTAG characteristics (continued)  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Min  
Unit  
Max  
6
7
tTDOV  
tTDOI  
tTDC  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
CC D TCK Duty Cycle  
6
33  
60  
3
ns  
ns  
%
40  
tTCKRISE CC D TCK Rise and Fall Times  
ns  
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
DATA OUTPUTS  
OUTPUT DATA VALID  
7
Note: Numbers shown reference Table 51.  
Figure 36. Timing diagram - JTAG boundary scan  
MPC5646C Data Sheet, Rev.6  
104  
Freescale Semiconductor  
Package characteristics  
5
Package characteristics  
Package mechanical data  
5.1  
5.1.1  
176 LQFP package mechanical drawing  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
105  
Package characteristics  
Figure 37. 176 LQFP mechanical drawing (Part 1 of 3)  
MPC5646C Data Sheet, Rev.6  
106  
Freescale Semiconductor  
Package characteristics  
Figure 38. 176 LQFP mechanical drawing (Part 2 of 3)  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
107  
Package characteristics  
E
Figure 39. 176 LQFP mechanical drawing (Part 3 of 3)  
5.1.2  
208 LQFP package mechanical drawing  
MPC5646C Data Sheet, Rev.6  
108  
Freescale Semiconductor  
Package characteristics  
Figure 40. 208 LQFP mechanical drawing (Part 1 of 3)  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
109  
Package characteristics  
Figure 41. 208 LQFP mechanical drawing (Part 2 of 3)  
MPC5646C Data Sheet, Rev.6  
110  
Freescale Semiconductor  
Package characteristics  
Figure 42. 208 LQFP mechanical drawing (Part 3 of 3)  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
111  
Package characteristics  
MPC5646C Data Sheet, Rev.6  
112  
Freescale Semiconductor  
Package characteristics  
5.1.3  
256 MAPBGA package mechanical drawing  
Figure 43. 256 MAPBGA mechanical drawing (Part 1 of 2)  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
113  
Package characteristics  
Figure 44. 256 MAPBGA mechanical drawing (Part 2 of 2)  
MPC5646C Data Sheet, Rev.6  
114  
Freescale Semiconductor  
Ordering information  
6
Ordering information  
R
Example code:  
1
M
PC  
56  
4
6
B
C
F0  
M
LL  
Qualification Status  
Power Architecture  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional fields  
Fab and mask indicator  
Temperature spec.  
Package Code  
CPU Frequency  
R = Tape & Reel (blank if Tray)  
Product Version  
B = Body  
C = Gateway  
Qualification Status  
M = MC status  
S = Auto qualified  
P = PC status  
Package Code  
LU = 176 LQFP  
LT = 208 LQFP  
MJ = 256 MAPBGA  
Optional fields  
C = CSE module available  
Blank = none of these options available  
PC = Power Architecture  
CPU Frequency  
1 = e200z4d operates up to 120 MHz  
8 = e200z4d operates up to 80 MHz  
Automotive Platform  
56 = Power Architecture in 90 nm  
Fab and mask version indicator  
F = ATMC  
0 = First version of the mask  
Shipping Method  
R = Tape and reel  
Blank = Tray  
Core Version  
4 = e200z4d core version (highest core version in the case  
of multiple cores)  
Temperature spec.  
C = –40 °C to 85 °C  
V = –40 °C to 105 °C  
M = –40 °C to 125 °C  
Flash Memory Size  
4 = 1.5 MB  
5 = 2 MB  
6 = 3 MB  
Note: Not all options are available on all devices. Refer to Table 1, which shows the orderable part numbers for  
MPC564xx.  
Figure 45. Orderable parts  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
115  
Revision history  
7
Revision history  
Table 52 summarizes revisions to this document.  
Table 52. Revision history  
Revision  
Date  
Changes  
1
2
15 April 2010  
Initial Release  
17 August 2010 • Editing and formatting updates throughout the document.  
• Updated Voltage regulator capacitance connection figure.  
• Added a new sub-section “VDD_BV Options”  
• Program and erase specifications:  
-Updated Tdwprogram TYP to 22 us  
-Updated T128Kpperase Max to 5000 ms  
-Added tESUS parameter  
• Added 208 MAPBGA thermal characteristics  
• Added recommendation in the Voltage regulator electrical characteristics section.  
• Added Crystal description table in Fast external crystal oscillator (4 to 140 MHz)  
electrical characteristics section and corrected the cross-reference to the same.  
• Added new sections - Pad types, System pins and functional ports  
• Updated TYP numbers in the Flash program and erase specifications table  
• Added a new table: Program and erase specifications (Data Flash)  
• Flash read access timing table: Added Data flash memory numbers  
• Flash power supply DC electrical characteristics table: Updated IDFREAD and  
IDFMOD values for Data flash, Removed IDFLPW parameter  
• Updated feature list.  
• MPC5646C 3M family comparison table: Updated ADC channels and added ADC  
footnotes.  
• MPC5646C 3M block diagram: Updated ADC channels and added legends.  
• MPC5646C 3M series block summary: Added new blocks.  
• Functional Port Pin Descriptions table: Added OSC32k_XTAL and  
OSC32k_EXTAL function at PB8 and PB9 port pins.  
• Electrical Characteristics: Replaced VSS with VSS_HV throughout the section.  
• Absolute maximum ratings, Recommended operating conditions (3.3 V) and  
Recommended operating conditions (5.0 V) tables: VRC_CTRL min is updated to  
"0".  
• Recommended operating conditions (3.3 V) and Recommended operating  
conditions (5.0 V) tables: Clarified VIN parameter, clarified footnote 2 in both  
tables.  
• LQFP thermal characteristics section: Updated numbers for LQFP packages.  
• Low voltage power domain electrical characteristics table: Clarified footnotes  
based upon review comments.  
• Code flash memory—Program and erase specifications: Updated tESRT to 20 ms.  
• ADC electrical characteristics section: Replace ADC0 with ADC_0 and ADC1 with  
ADC_1 throughout the document.  
• DSPI characteristics section: Replaced PCSx with CSx in all figures and tables.  
MPC5646C Data Sheet, Rev.6  
116  
Freescale Semiconductor  
Revision history  
Table 52. Revision history (continued)  
Changes  
Revision  
Date  
3
28 April 2011  
• Replaced VIL min from –0.4 V to –0.3 V in the following tables:  
- I/O input DC electrical characteristics  
- Reset electrical characteristics  
- Fast external crystal oscillator (4 to 40 MHz) electrical characteristics  
• Updated Crystal oscillator and resonator connection scheme figure  
• Specified NPN transistor as the recommended BCP68 transistor throughout the  
document  
• Code and Data flash memory—Program and erase specifications tables:  
Renamed the parameter tESUS to Teslat  
• Revised the footnotes in the “Functional port pin descriptions” table.  
• In the “System pin descriptions” table, added a footnote to the A pads regarding  
not using IBE.  
For ports PB[12–15], changed ANX to ADC0_X.  
• Revised the presentation of the ADC functions on the following ports:  
PB[4–7]  
PD[0–11]  
• ADC conversion characteristics (10-bit ADC_0) table and Conversion  
characteristics (12-bit ADC_1) table- Updated footnote 5 and 7 respectively for the  
definition of the conversion time.  
• Data flash memory—Program and erase specifications: Updated Twprogram to 500  
µs and T16Kpperase to 500 µs. Corrected Teslat classification from “C” to “D”.  
• Code flash memory—Program and erase specifications: Corrected Teslat  
classification from “C” to “D”.  
• Flash Start-up time/Switch-off time: Changed TFLARSTEXIT classification from “C”  
to “D”.  
• Functional port pin description: Added a footnote at the PB [9] port pin.  
• Absolute maximum ratings table: Added footnote 1.  
• Low voltage power domain electrical characteristics table: Updated IDDHALT,  
IDDSTOP, IDDSTBY3, IDDSTDBY2, IDDSTDBY1.  
• Slow external crystal oscillator (32 kHz) electrical characteristics table: Updated  
gmSXOSC, VSXOSC, ISXOSCBIAS and ISXOSC.  
• FMPLL electrical characteristics table: Updated tLTJIT.  
• Fast internal RC oscillator (16 MHz) electrical characteristics table: Updated  
TFIRCSU and IFIRCPWD.  
• MII serial management channel timing table: Updated M12  
• JTAG characteristics table: Updated tTDOV.  
• Low voltage monitor electrical characteristics table: Updated VLVDHV3H,  
VLVDHV3L, VLVDHV5H, VLVDHV5L.  
• DSPI electricals table: Updated spec 1, 5, 6. Updated footnote 2 and 3. Added  
tCSC, tASC, tSUSS, tHSS.  
• IO consumption table: Updated all parameter values.  
• DSPI electricals: Updated tCSC max to 115 ns.  
• Low voltage power domain electrical characteristics table: Added footnote 9.  
• ADC electrical characteristics: Added 2 notes above 10-bit and 12-bit conversion  
tables.  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
117  
Revision history  
Table 52. Revision history (continued)  
Changes  
Revision  
Date  
4
23 June 2011  
• Interchanged the denominator with numerator in Equation 11 of Input impedance  
and ADC accuracy section  
• Removed the note (All ADC conversion characteristics described in the table  
below are applicable only for the precision channels. The data for semi-precision  
and extended channels is awaited and same will be subsequently updated in later  
revs.) in the ADC electrical characteristics section.  
• In On-chip peripherals current consumption table, replaced IDD_HV_ADC with  
IDD_HV_ADC0 and IDD_HV_ADC1 values as per ADC specs  
• In ADC conversion characteristics (10-bit ADC_0) table, the minimum sample time  
of ADC0 changed to 500 at 32 MHz  
• In ADC conversion characteristics (10-bit ADC_0) table, removed the entry for  
sample time at 30 MHz  
• In Conversion characteristics (12-bit ADC_1)table, changed TUEX to TUES and  
INLX to INLS (Extended channels are not supported by the device. So, changed  
to standard channel.)  
MPC5646C Data Sheet, Rev.6  
118  
Freescale Semiconductor  
Revision history  
Table 52. Revision history (continued)  
Revision  
Date  
Changes  
5
21 June 2012  
• Updated the pins 23 and 24 of Figure 2.176-pin LQFP configuration  
• Updated unit of measure in Table 43 Conversion characteristics (12-bit ADC_1)  
• Modified the value to typical value in Table 48 On-chip peripherals current  
consumption  
• Added footnote to tESRT parameter in Table 25 Code flash memory—Program and  
erase specifications  
• Added footnote to tESRT parameter in Table 26 Data flash memory—Program and  
erase specifications  
• Updated Table 28 Flash memory read access timing.  
• Updated Notes 2 and Notes 3 of Table 9 Recommended operating conditions  
(3.3 V) and Table 10 Recommended operating conditions (5.0 V) respectively.  
• Updated the footnote1 of Table 9 Recommended operating conditions (3.3 V) and  
Table 10 Recommended operating conditions (5.0 V)  
• Updated VDD_HV_A to VDD_BV for CDEC2 and IDD_HV_A in Table 22 Voltage  
regulator electrical characteristics and deleted footnote3  
• Updated the dedicated number of channels for 12-bit ADC in family comparison  
tables  
• Updated the values of fSIRC, parameters and conditions of SIRCVAR in Table 40  
Slow internal RC oscillator (128 kHz) electrical characteristics  
• Updated second footnote in Table 10, Recommended operating conditions (5.0 V)  
• Updated the value of tADC0_PU in Table 42, ADC conversion characteristics (10-bit  
ADC_0)  
• Updated the IDD values in Table 24, Low voltage power domain electrical  
characteristics  
• Added footnote to Table 24, Low voltage power domain electrical characteristics  
related to current drawn from VDD_HV_A and VDD_HV_B  
• Updated entire Section 4.17.1.1, ”Input impedance and ADC accuracy”- Updated  
the values of VLPREG in Table 22, Voltage regulator electrical characteristics.  
• Updated the values of VLPREG in Table 22, Voltage regulator electrical  
characteristics.  
• Added TA = 25 °C, min and max values of VMREG in Table 22, Voltage regulator  
electrical characteristics  
• Added TA = 25 °C, min and max values of VLPREG in Table 22, Voltage regulator  
electrical characteristics  
• Updated the min, max and typical values of VLVDLVCORL and VLVDLVBKPL in  
Table 23, Low voltage monitor electrical characteristics  
• Updated values of gmFXOSC in Table 35, Fast external crystal oscillator (4 to 40  
MHz) electrical characteristicsUpdated values of gmSXOSC in Table 37, Slow  
external crystal oscillator (32 kHz) electrical characteristics  
• Updated the footnote 5 for TADC0_C in Table 42, ADC conversion characteristics  
(10-bit ADC_0)  
• Updated the footnotes of Table 24, Low voltage power domain electrical  
characteristics  
5.1  
15 Aug 2012  
• Removed Footer: Preliminary tag  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
119  
Revision history  
Table 52. Revision history (continued)  
Changes  
Revision  
Date  
6
12 Feb 2014  
• Removed occurrences of 208BGA from Table 3 System pin descriptions.  
• Added PM[3] and PM[4] in the figure note 1 of Figure 4, 256-pin BGA  
configuration.  
• Added a table note in Table 19 I/O supplies.  
• Updated Figure 8, Voltage regulator capacitance connection and added a note in  
this figure.  
• Removed max values of VLPREG and VMREG, changed min value of VLPREG to 1.21  
V, and updated VMREG and VLPREG after trimming values in Table 22 Voltage  
regulator electrical characteristics.  
• Updated 1st footnote and updated max values for IDDRUN, IDDHALT, DDSTOP,  
I
IDDSTDBY3, IDDSTDBY2, IDDSTDBY1 and removed values at 85oC and 105oC in  
Table 24 Low voltage power domain electrical characteristics.  
• Added a footnote below Table 28 Flash memory read access timing.  
• Updated the formula in Eq. 11 in Section 4.17.1.1, ”Input impedance and ADC  
accuracy.  
• Added Figure 17, Input equivalent circuit (extended channels).  
• Updated tADC0_PU value to 1.5 as max and added footnote for IINJ in Table 42 ADC  
conversion characteristics (10-bit ADC_0).  
• Added Category column in Table 43 Conversion characteristics (12-bit ADC_1).  
• Added the IDD_HV_ADC0 values in Table 48 On-chip peripherals current  
consumption.  
• Added a note in Figure 45, Orderable parts.  
NOTE  
This revision history uses clickable cross-references for ease of navigation.  
The numbers and titles in each cross-reference are relative to the latest  
published release.  
MPC5646C Data Sheet, Rev.6  
120  
Freescale Semiconductor  
Abbreviations  
Appendix A  
Abbreviations  
Table 53 lists abbreviations used but not defined elsewhere in this document.  
Table 53. Abbreviations  
Abbreviation  
Meaning  
CS  
EVTO  
MCKO  
MDO  
MSEO  
MTFE  
SCK  
Chip select  
Event out  
Message clock out  
Message data out  
Message start/end out  
Modified timing format enable  
Serial communications clock  
Serial data out  
SOUT  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5646C Data Sheet, Rev.6  
Freescale Semiconductor  
121  
Information in this document is provided solely to enable system  
and software implementers to use Freescale Semiconductor  
products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale reserves the right to make changes without further  
notice to any products herein. Freescale makes no warranty,  
representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does Freescale assume  
any liability arising out of the application or use of any product or  
circuit, and specifically disclaims any and all liability, including  
without limitation consequential or incidental damages. “Typical”  
parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual  
performance may vary over time. All operating parameters,  
including “typicals,must be validated for each customer  
application by customer’s technical experts. Freescale does not  
convey any license under its patent rights nor the rights of others.  
Freescale sells products pursuant to standard terms and  
conditions of sale, which can be found at the following address:  
http://www.reg.net/v2/webservices/Freescale/Docs/TermsandCo  
nditions.html.  
Freescale, the Freescale logo, is trademark of Freescale  
Semiconductor, Inc. All other product or service names are the  
property of their respective owners. The Power Architecture and  
Power.org word marks and the Power and Power.org logos and  
related marks are trademarks and service marks licensed by  
Power.org.  
© 2009-2014 Freescale Semiconductor, Inc.  
MPC5646C  
Rev.6  
02/2014  

相关型号:

935312883528

Interface Circuit
NXP

935312883557

Interface Circuit
NXP

935312895147

Telecom Circuit
NXP

935312939557

RISC Microprocessor
NXP

935312967557

Microprocessor
NXP

935313007528

Interface Circuit
NXP

935313028518

RISC Microcontroller
NXP

935313038557

RISC Microcontroller
NXP

935313052528

Switching Regulator
NXP

935313052557

Switching Regulator
NXP

935313087557

Power Supply Support Circuit
NXP

935313111557

RISC Microcontroller
NXP