DP8402A [NSC]

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs); DP8402A / DP8403 / DP8404 / DP8405 32位并行错误检测和校正电路( EDACS )
DP8402A
型号: DP8402A
厂家: National Semiconductor    National Semiconductor
描述:

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
DP8402A / DP8403 / DP8404 / DP8405 32位并行错误检测和校正电路( EDACS )

文件: 总18页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
August 1989  
DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel  
Error Detection and Correction Circuits (EDAC’s)  
General Description  
The DP8402A, DP8403, DP8404 and DP8405 devices are  
32-bit parallel error detection and correction circuits  
(EDACs) in 52-pin DP8402A and DP8403 or 48-pin DP8404  
and DP8405 600-mil packages. The EDACs use a modified  
Hamming code to generate a 7-bit check word from a 32-bit  
data word. This check word is stored along with the data  
word during the memory write cycle. During the memory  
read cycle, the 39-bit words from memory are processed by  
the EDACs to determine if errors have occurred in memory.  
condition of all lows or all highs from memory will be detect-  
ed. Otherwise, errors in three or more bits of the 39-bit word  
are beyond the capabilities of these devices to detect.  
Read-modify-write (byte-control) operations can be per-  
formed with the DP8402A and DP8403 EDACs by using out-  
put latch enable, LEDBO, and the individual OEB0 thru  
OEB3 byte control pins.  
Diagnostics are performed on the EDACs by controls and  
internal paths that allow the user to read the contents of the  
DB and CB input latches. These will determine if the failure  
occurred in memory or in the EDAC.  
Single-bit errors in the 32-bit data word are flagged and cor-  
rected.  
Single-bit errors in the 7-bit check word are flagged, and the  
CPU sends the EDAC through the correction cycle even  
though the 32-bit data word is not in error. The correction  
cycle will simply pass along the original 32-bit data word in  
this case and produce error syndrome bits to pinpoint the  
error-generating location.  
Features  
Y
Detects and corrects single-bit errors  
Y
Detects and flags double-bit errors  
Y
Built-in diagnostic capability  
Y
Fast write and read cycle processing times  
Double bit errors are flagged but not corrected. These er-  
rors may occur in any two bits of the 39-bit word from mem-  
ory (two errors in the 32-bit data word, two errors in the 7-bit  
check word, or one error in each word). The gross-error  
Y
Byte-write capability . . . DP8402A and DP8403  
Y
Fully pin and function compatible with TI’s  
SN74ALS632A thru SN74ALS635 series  
System Environment  
TL/F/8535–1  
TRI-STATEÉ is a registered trademark of National Semiconductor Corp.  
C
1995 National Semiconductor Corporation  
TL/F/8535  
RRD-B30M105/Printed in U. S. A.  
Simplified Functional Block and Connection Diagrams  
TL/F/8535–2  
Device  
Package  
Byte-Write  
Output  
DP8402A  
DP8403  
DP8404  
DP8405  
52-pin  
52-pin  
48-pin  
48-pin  
yes  
yes  
no  
TRI-STATE  
É
Open-Collector  
TRI-STATE  
no  
Open-Collector  
Dual-In-Line Packages  
Plastic Chip Carrier  
TL/F/853511  
Top View  
Order Number DP8402AV  
See NS Package Number V68A  
TL/F/8535–3  
TL/F/853510  
Top View  
Top View  
Order Number DP8402AD,  
DP8403D, DP8404D or DP8405D  
See NS Package Number D48A or D52A  
2
Mode Definitions  
PCC Pin Definitions DP8402A  
MODE PIN NAME DESCRIPTION  
S1 S0 MODE  
WRITE  
pin 1  
V
pin 35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
OECB  
CB3  
CC  
OPERATION  
Input dataword and output  
checkword  
2
LEDBO  
MERR  
ERR  
DB0  
DB1  
DB2  
NC  
0
1
L
L
L
3
CB2  
4
CB1  
H
DIAGNOSTICS Input various data words  
against latched  
5
CB0  
6
DB16  
DB17  
NC  
checkword/output valid  
error flags.  
7
8
2
3
H
H
L
READ & FLAG Input dataword and output  
error flags  
CORRECT  
9
NC  
NC  
H
Latched input data and  
checkword/output  
corrected data and  
syndrome code  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
NC  
DB18  
DB19  
DB20  
DB21  
OEB2  
DB22  
DB23  
GND  
GND  
DB24  
DB25  
OEB3  
DB26  
DB27  
DB28  
NC  
DB3  
DB4  
DB5  
OEBO  
DB6  
DB7  
GND  
GND  
DB8  
DB9  
OEB1  
DB10  
DB11  
DB12  
DB13  
DB14  
NC  
Pin Definitions  
S0, S1  
Control of EDAC mode, see preceding  
Mode Definitions  
DB0 thru DB31 I/O port for 32 bit dataword.  
CB0 thru CB6 I/O port for 7 bit checkword. Also output  
port for the syndrome error code during  
error correction mode.  
OEB0 thru  
OEB3  
(DP8402A,  
DP8403)  
Dataword output buffer enable. When high,  
output buffers are at TRI-STATE. Each pin  
controls 8 I/O ports. OEB0 controls DB0  
thru DB7, OEB1 controls DB8 thru DB15,  
OEB2 controls DB16 thru DB23 and OEB3  
controls DB24 thru DB31.  
NC  
LEDBO  
(DP8402A,  
DP8403)  
OEDB  
(DP8404,  
DP8405)  
OECB  
Data word output Latch enable. When high  
it inhibits input to the Latch. Operates on all  
32 bits of the dataword.  
TRI-STATE control for the data I/O port.  
When high output buffers are at  
TRI-STATE.  
Checkword output buffer enable. When  
high the output buffers are in TRI-STATE  
mode.  
NC  
NC  
NC  
NC  
DB29  
DB30  
DB31  
S0  
DB15  
NC  
CB6  
CB5  
CB4  
S1  
V
CC  
ERR  
Single error output flag, a low indicates at  
least a single bit error.  
MERR  
Multiple error output flag, a low indicates  
two or more errors present.  
TABLE I. Write Control Function  
DB Control  
OEBn or  
OEDB  
DB Output Latch  
DP8402A, DP8403  
LEDBO  
CB  
Memory  
Cycle  
EDAC  
Control  
S1 S0  
Error Flags  
Data I/O  
Check I/O  
Control  
OECB  
Function  
ERR MERR  
Generate  
Output  
Write  
L
L
Input  
H
X
L
H
H
²
check word  
check bits  
²
See Table II for details on check bit generation.  
Memory Write Cycle Details  
During a memory write cycle, the check bits (CB0 thru CB6)  
are generated internally in the EDAC by seven 16-input pari-  
ty generators using the 32-bit data word as defined in Table  
2. These seven check bits are stored in memory along with  
the original 32-bit data word. This 32-bit word will later be  
used in the memory read cycle for error detection and cor-  
rection.  
3
TABLE II. Parity Algorithm  
32-Bit Data Word  
Check Word  
Bit  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
The seven check bits are parity bits derived from the matrix of data bits as indicated by ‘‘X’’ for each bit.  
Check bits 0, 1, 2 are odd parity or the exclusive NORing of the ‘‘X’’ed bits for the particular check bit. Check bits 3, 4, 5, 6 are even parity or the exclusive ORing of  
the ‘‘X’’ed bits for the particular check bit.  
Memory Read Cycle (Error  
Detection & Correction Details)  
During a memory read cycle, the 7-bit check word is re-  
trieved along with the actual data. In order to be able to  
determine whether the data from the memory is acceptable  
to use as presented on the bus, the error flags must be  
tested to determine if they are at the high level.  
next two cases of single-bit errors give a high on MERR and  
a low on ERR, which is the signal for a correctable error,  
and the EDAC should be sent through the correction cycle.  
The last three cases of double-bit errors will cause the  
EDAC to signal lows on both ERR and MERR, which is the  
interrupt indication for the CPU.  
The first case in Table III represents the normal, no-error  
conditions. The EDAC presents highs on both flags. The  
TABLE III. Error Function  
Total Number of Errors  
Error Flags  
Data Correction  
ERR MERR  
32-Bit Data Word 7-Bit Check Word  
0
1
0
1
2
0
0
0
1
1
0
2
H
L
L
L
L
L
H
H
H
L
Not applicable  
Correction  
Correction  
Interrupt  
Interrupt  
Interrupt  
L
L
The DP8402 check bit syndrome matrix can be seen in TA-  
BLE II. The horizontal rows of this matrix generate the  
check bits by selecting different combinations of data bits,  
indicated by ‘‘X’’s in the matrix, and generating parity from  
them. For instance, parity check bit ‘‘0’’ is generated by  
EXCLUSIVE NORing the following data bits together; 31,  
29, 28, 26, 21, 19, 18, 17, 14, 11, 9, 8, 7, 6, 4, and 0. For  
example, the data word ‘‘00000001H’’ would generate the  
During a READ operation (mode 2, error detection) the data  
and check bits that were stored in memory, now possibly in  
error, are input through the data and check bit I/O ports.  
New check bits are internally generated from the data word.  
These new check bits are then compared, by an EXCLU-  
SIVE NOR operation, with the original check bits that were  
stored in memory. The EXCLUSIVE NOR of the original  
check bits, that were stored in memory, with the new check  
bits is called the syndrome word. If the original check bits  
are the same as the new check bits, a no error condition,  
then a syndrome word of all ones is produced and both  
error flags (ERR and MERR) will be high. The DP8402 ma-  
trix encodes errors as follows:  
e
and check bits 3, 4, 5, 6 are even parity).  
check bits CB6–0  
48H (Check bits 0, 1, 2 are odd parity  
During a WRITE operation (mode 0) the data enters the  
DP8402 and check bits are generated at the check bit in-  
put/output port. Both the data word and the check bits are  
then written to memory.  
TABLE IV. Read, Flag, and Correct Function  
DB Control  
OEBn or  
OEDB  
DB Output Latch CB  
DP8402A, DP8403 Check I/O Control  
Memory  
Cycle  
EDAC  
Function  
Control  
S1 S0  
Error Flags  
ERR MERR  
Data I/O  
LEDBO  
OECB  
²
²
Read  
Read  
Read & flag  
H
H
L
Input  
H
X
Input  
H
Enabled  
Enabled  
Latch input  
data and check  
bits  
Input  
data  
latched  
Input  
check word  
latched  
H
H
L
H
L
Output  
corrected data  
& syndrome bits  
Output  
corrected  
data word  
Output  
syndrome  
²
Read  
H
H
L
X
Enabled  
³
bits  
²
³
See Table III for error description.  
See Table V for error location.  
4
Memory Read Cycle (Error Detection & Correction Details) (Continued)  
1) Single data bit errors cause 3 or 5 bits in the syndrome  
word to go low. The columns of the check bit syndrome  
matrix (TABLE II) are the syndrome words for all single bit  
data errors in the 32 bit word (also see TABLE V). The  
data bit in error corresponds to the column in the check  
bit syndrome matrix that matches the syndrome word.  
For instance, the syndrome word indicating that data bit  
2) A single check bit error will cause that particular check bit  
to go low in the syndrome word.  
3) A double bit error will cause an even number of bits in the  
syndrome word to go low. The syndrome word will then  
be the EXCLUSIVE NOR of the two individual syndrome  
words corresponding to the 2 bits in error. The two-bit  
error is not correctable since the parity tree can only  
identify single bit errors.  
e
31 is in error would be (CB6-CB0)  
column for data bit 31 in TABLE II, or see TABLE V.  
‘‘0001010’’, see the  
If any of the bits in the syndrome word are low the ‘‘ERR’’  
flag goes low. The ‘‘MERR’’ (dual error) flag goes low during  
any double bit error conditions. (See Table III).  
e
e
1) the syndrome word is  
During mode 3 (S0  
S1  
decoded, during single data bit errors, and used to invert  
the bit in error thus correcting the data word. The correct-  
ed word is made available on the data I/O port (DB0 thru  
DB31), the check word I/O port (CB0 thru CB6) presents  
the 7-bit syndrome error code. This syndrome error code  
can be used to locate the bad memory chip.  
Three or more simultaneous bit errors can cause the EDAC  
to believe that no error, a correctable error, or an uncorrect-  
able error has occurred and will produce erroneous results  
in all three cases. It should be noted that the gross-error  
conditions of all lows and all highs will be detected.  
TABLE V. Syndrome Decoding  
Syndrome Bits  
Syndrome Bits  
Syndrome Bits  
Syndrome Bits  
Error  
Error  
Error  
Error  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
0
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
unc  
2-bit  
2-bit  
unc  
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
2-bit  
unc  
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
2-bit  
unc  
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
unc  
2-bit  
2-bit  
DB23  
H
H
H
H
DB7  
2-bit  
H
H
unc  
H
H
H
H
H
2-bit  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
H
L
2-bit  
unc  
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
H
L
DB6  
2-bit  
2-bit  
DB5  
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
H
L
unc  
2-bit  
2-bit  
unc  
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
H
L
2-bit  
DB22  
DB21  
2-bit  
H
H
unc  
H
H
H
H
H
H
H
2-bit  
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
H
L
2-bit  
unc  
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
H
L
DB4  
2-bit  
2-bit  
DB3  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
H
L
unc  
2-bit  
2-bit  
DB15  
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
H
L
2-bit  
DB20  
DB19  
2-bit  
H
H
DB31  
2-bit  
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
L
unc  
2-bit  
2-bit  
DB30  
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
L
2-bit  
DB2  
unc  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
L
2-bit  
unc  
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
L
DB18  
2-bit  
2-bit  
CB4  
H
H
H
H
H
H
DB14  
2-bit  
H
H
H
H
2-bit  
H
H
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
H
L
2-bit  
unc  
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
H
L
DB0  
2-bit  
2-bit  
unc  
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
H
L
unc  
2-bit  
2-bit  
DB13  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
H
L
2-bit  
DB16  
unc  
H
H
DB29  
2-bit  
H
H
H
H
H
H
H
H
H
H
2-bit  
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
H
L
DB28  
2-bit  
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
H
L
2-bit  
DB1  
unc  
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
H
L
2-bit  
DB12  
DB11  
2-bit  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
H
L
DB17  
2-bit  
2-bit  
CB3  
H
H
2-bit  
H
H
H
H
H
H
H
DB27  
H
2-bit  
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
DB26  
2-bit  
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
2-bit  
unc  
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
2-bit  
DB10  
DB9  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
unc  
2-bit  
2-bit  
CB2  
H
H
2-bit  
H
H
unc  
H
H
H
H
H
DB25  
H
2-bit  
H
2-bit  
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
H
L
2-bit  
DB24  
unc  
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
H
L
unc  
2-bit  
2-bit  
CB6  
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
H
L
DB8  
2-bit  
2-bit  
CB5  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
H
L
2-bit  
CB1  
CB0  
none  
H
H
H
H
H
H
H
H
H
2-bit  
H
H
H
e
e
CB X  
DB Y  
2-bit  
error in check bit X  
error in data bit Y  
double-bit error  
e
e
unc  
uncorrectable multibit error  
5
TABLE VI. Read-Modify-Write Function  
DB OUTPUT  
LATCH  
MEMORY  
CYCLE  
CONTROL  
CB  
ERROR FLAG  
ERR MERR  
²
²
EDAC FUNCTION  
BYTEn  
OEBn  
CHECK I/O  
S1  
S0  
LEDBO  
CONTROL  
Read  
Read & Flag  
H
L
Input  
H
X
Input  
H
H
H
L
Enabled  
Input  
data  
Input  
check word  
latched  
Latch input data  
& check bits  
Read  
H
H
H
H
H
H
L
Enabled  
latched  
Output  
data  
Hi-Z  
Latch corrected  
data word into  
output latch  
Output  
Syndrome  
bits  
Read  
H
Enabled  
word  
latched  
Input  
Modify appropriate  
byte or bytes &  
generate new  
check word  
modified  
BYTE0  
H
L
Modify  
/write  
Output  
L
L
H
L
H
H
check word  
Ouput  
unchanged  
BYTE0  
²
OEB0 controls DB DB (BYTE0), OEB1 controls DB DB (BYTE1), OEB2 controls DB16DB23 (BYTE2), OEB3 controls DB24DB31 (BYTE3).  
15  
0
7
8
Read-Modify-Write (Byte Control)  
Operations  
The DP8402A and DP8403 devices are capable of byte-  
write operations. The 39-bit word from memory must first be  
latched into the DB and CB input latches. This is easily ac-  
Diagnostic Operations  
The DP8402A thru DP8405 are capable of diagnostics that  
allow the user to determine whether the EDAC or the mem-  
ory is failing. The diagnostic function tables will help the  
user to see the possibilities for diagnostic control.  
e
e
H), the checkword is  
In the diagnostic mode (S1  
L, S0  
e
H, S0 H). The  
complished by switching from the read and flag mode (S1  
e
latched into the input latch while the data input remains  
transparent. This lets the user apply various data words  
against a fixed known checkword. If the user applies a diag-  
nostic data word with an error in any bit location, the ERR  
flag should be low. If a diagnostic data word with two errors  
in any bit location is applied, the MERR flag should be low.  
After the checkword is latched into the input latch, it can be  
verified by taking OECB low. This outputs the latched  
checkword. With the DP8402A and DP8403, the diagnostic  
data word can be latched into the output data latch and  
verified. It should be noted that the DP8404 and DP8405 do  
not have this pass-through capability because they do not  
contain an output data latch. By changing from the diagnos-  
e
e
H, SO  
L) to the latch input mode (S1  
EDAC will then make any corrections, if necessary, to the  
data word and place it at the input of the output data latch.  
This data word must then be latched into the output data  
latch by taking LEDBO from a low to a high.  
Byte control can now be employed on the data word  
through the OEB0 through OEB3 controls. OEB0 controls  
DB0DB7 (byte 0), OEB1 controls DB8DB15 (byte 1),  
OEB2 controls DB16DB23 (byte 2), and OEB3 controls  
DB24DB31 (byte 3). Placing a high on the byte control will  
disable the output and the user can modify the byte. If a low  
is placed on the byte control, then the original byte is al-  
lowed to pass onto the data bus unchanged. If the original  
data word is altered through byte control, a new check word  
must be generated before it is written back into memory.  
This is easily accomplished by taking control S1 and S0 low.  
Table VI lists the read-modify-write functions.  
e
e
e
H,  
H), the user can verify that the EDAC will correct the  
tic mode (S1  
L, S0  
H) to the correction mode (S1  
e
S0  
diagnostic data word. Also, the syndrome bits can be pro-  
duced to verify that the EDAC pinpoints the error location.  
Table VII DP8402A and DP8403 and Table VIII DP8404 and  
DP8405 list the diagnostic functions.  
6
TABLE VII. DP8402A, DP8403 Diagnostic Function  
DB BYTE DB OUTPUT  
CB  
ERROR FLAGS  
CONTROL  
S1 S0  
CONTROL  
OEBn  
LATCH  
LEDBO  
CHECK I/O  
CONTROL  
OECB  
EDAC FUNCTION  
DATA I/O  
ERR  
MERR  
Input correct  
data word  
Input correct  
check bits  
Read & flag  
H
L
H
H
X
L
H
H
H
H
Latch input check  
word while data  
input latch remains  
transparent  
Input  
Input  
check bits  
latched  
L
H
diagnostic  
Enabled  
²
data word  
Latch diagnostic  
data word into  
output latch  
Input  
Output latched  
check bits  
L
L
H
H
diagnostic  
H
H
H
H
Enabled  
Enabled  
²
data word  
Hi-Z  
H
Input  
Output  
syndrome  
bits  
Latch diagnostic  
data word into  
input latch  
H
diagnostic  
data word  
latched  
L
H
L
Hi-Z  
Output  
syndrome  
bits  
Output diagnostic  
data word &  
Output  
H
H
H
H
diagnostic  
data word  
L
L
H
L
Enabled  
Enabled  
syndrome bits  
Hi-Z  
H
L
Output corrected  
diagnostic data  
word & output  
syndrome bits  
Output  
Output  
syndrome  
bits  
corrected  
diagnostic  
data word  
Hi-Z  
H
²
Diagnostic data is a data word with an error in one bit location except when testing the MERR error flag. In this case, the diagnostic data word will contain errors in  
two bit locations.  
TABLE VIII. DP8404, DP8405 Diagnostic Function  
DB CONTROL  
CONTROL  
DB CONTROL  
OECB  
ERROR FLAGS  
EDAC FUNCTION  
DATA I/O  
CHECK I/O  
S1  
S0  
OEDB  
ERR  
MERR  
Input correct  
data word  
Input correct  
check bits  
Read & flag  
H
L
H
H
H
H
Latch input check  
bits while data  
input latch remains  
transparent  
Input  
Input  
L
L
H
H
H
diagnostic  
H
H
H
check bits  
latched  
H
Enabled  
²
data word  
Input  
Output input  
check bits  
Output input  
check bits  
diagnostic  
L
Enabled  
Enabled  
²
data word  
Input  
Output  
Latch diagnostic  
L
diagnostic  
data word  
latched  
syndrome bits  
data into  
input latch  
H
Hi-Z  
H
Output corrected  
diagnostic  
Output corrected  
diagnostic  
Output  
L
H
H
L
syndrome bits  
Enabled  
data word  
data word  
Hi-Z  
H
²
Diagnostic data is a data word with an error in one bit location except when testing the MERR error flag. In this case, the diagnostic data word will contain errors in  
two bit locations.  
7
DP8402A, DP8403 Logic Diagram (Positive Logic)  
TL/F/8535–4  
8
DP8404, DP8405 Logic Diagram (Positive Logic)  
TL/F/8535–5  
9
Absolute Maximum Ratings  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales  
Office/Distributors for availability and specifications.  
Over Operating Free-Air Temperature Range (unless otherwise noted)  
b a  
Operating Free-Air Temperature: Military 55 C to 125 C  
Supply Voltage, V (See Note 1)  
CC  
7V  
§
§
a
Commercial 0 to 70 C  
Input Voltage: CB and DB  
All Others  
5.5V  
7V  
§
65 C to 150 C  
§
§
b
a
Storage Temperature Range  
§
Recommended Operating Conditions  
Military  
Commercial  
Symbol  
Parameter  
Conditions  
Units  
Min Typ Max Min Typ Max  
V
CC  
V
IH  
V
IL  
Supply Voltage  
4.5  
2
5
5.5  
4.5  
2
5
5.5  
V
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
0.8  
0.8  
b
b
ERR Or MERR  
0.4  
0.4  
2.6  
I
I
High-Level Output Current  
mA  
OH  
OL  
b
b
DB Or CB DP8402A, DP8404  
ERR Or MERR  
1
4
8
Low-Level Output Current  
Pulse Duration  
mA  
ns  
DB or CB  
12  
24  
t
LEDBO Low  
25  
15  
45  
0
25  
10  
45  
0
w
(1) Data And Check Word Before S0  
e
u
(S1  
H)  
e
²
(2) SO High Before LEDBO (S1  
H)  
u
(3) LEDBO High Before The Earlier  
²
of S0 or S1  
v v  
t
Setup Time  
ns  
su  
e
(4) LEDBO High Before S1 (S0  
H)  
0
0
u
(5) Diagnostic Data Word Before S1  
u
15  
10  
e
(S0  
H)  
(6) Diagnostic Check Word Before  
15  
10  
The Later Of S1 or S0  
v u  
(7) Diagnostic Data Word Before  
e
H)  
25  
35  
20  
20  
20  
20  
30  
15  
15  
15  
e
³
LEDBO (S1  
L and S0  
u
(8) Read-Mode, S0 Low And S1 High  
(9) Data And Check Word After  
e
S0 (S1  
H)  
u
(10) Data Word After S1 (S0  
e
H)  
u
(11) Check Word After The Later  
t
t
Hold Time  
ns  
ns  
h
of S1 or S0  
v u  
(12) Diagnostic Data Word After  
e
H)  
0
0
e
³
LEDBO (S1  
u
L And S0  
Correction Time (seeFigure 1)*  
65  
58  
0
corr  
b
T
Operating Free-Air Temperature  
55  
125  
70  
C
§
A
*This specification may be interpreted as the maximum delay to guarantee valid corrected data at the output and includes the t setup delay.  
su  
²
These times ensure that corrected data is saved in the output data latch.  
³
These times ensure that the diagnostic data word is saved in the output data latch.  
10  
DP8402A, DP8404 Electrical Characteristics  
Over Recommended Operating Free-Air Temperature Range (unless otherwise noted)  
Military  
Commercial  
Symbol  
Parameter  
Test Conditions  
Units  
²
²
Min  
Typ  
Max  
Min  
Typ  
Max  
e
e
e
e
e
e
e
e
e
e
e b  
4.5V, I  
I
b
b
1.5  
V
V
V
V
V
V
V
V
V
V
V
18 mA  
e b  
1.5  
V
IK  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
b
b
2
All outputs  
DB or CB  
4.5V to 5.5V, I  
OH  
0.4 mA  
V
2
V
CC  
CC  
e b  
e b  
V
OH  
4.5V, I  
4.5V, I  
4.5V, I  
4.5V, I  
4.5V, I  
4.5V, I  
1 mA  
2.6 mA  
2.4  
3.3  
V
OH  
OH  
OL  
OL  
OL  
OL  
2.4  
3.2  
e
e
e
e
4 mA  
0.25  
0.25  
0.4  
0.25  
0.35  
0.25  
0.35  
0.4  
ERR or MERR  
DB or CB  
8 mA  
0.5  
0.4  
0.5  
0.1  
0.1  
20  
V
OL  
V
12 mA  
24 mA  
0.4  
e
S0 or S1  
All others  
S0 or S1  
5.5V, V  
7V  
0.1  
0.1  
20  
I
I
I
I
I
mA  
mA  
mA  
I
e
5.5V, V  
5.5V  
e
e
e
V
V
5.5V, V  
2.7V  
IH  
IL  
CC  
CC  
I
³
³
All others  
S0 or S1  
All others  
20  
20  
b
b
0.4  
0.1  
0.4  
0.1  
e
5.5V, V  
5.5V, V  
0.4V  
I
b
b
õ
e
e
e
O
b
b
b
b
112  
I
I
V
V
2.25V  
30  
112  
30  
mA  
mA  
O
CC  
5.5V, (See Note 1)  
150  
250  
150  
250  
CC  
CC  
DP8403, DP8405 Electrical Characteristics  
Over Recommended Operating Free-Air Temperature Range (unless otherwise noted)  
Military  
Commercial  
Symbol  
Parameter  
Test Conditions  
Units  
²
²
Min  
Typ  
Max  
Min  
Typ  
Max  
e
e
e
e
e
e
e
e
e
e b  
4.5V, I  
I
b
b
1.5  
V
V
V
V
V
V
V
V
V
V
V
18 mA  
e b  
1.5  
V
V
IK  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
b
b
2
ERR or MERR  
DB or CB  
4.5V to 5.5V, I  
OH  
0.4 mA  
V
2
V
CC  
OH  
CC  
e
I
4.5V, V  
OH  
5.5V  
0.1  
0.1  
mA  
OH  
e
4.5V, I  
4.5V, I  
4.5V, I  
4.5V, I  
4 mA  
0.25  
0.25  
0.4  
0.25  
0.35  
0.25  
0.35  
0.4  
0.5  
0.4  
0.5  
OL  
OL  
OL  
OL  
ERR or MERR  
DB or CB  
e
e
e
8 mA  
V
OL  
V
12 mA  
24 mA  
0.4  
e
7V  
S0 or S1  
All others  
S0 or S1  
5.5V, V  
I
I
I
I
I
mA  
mA  
mA  
I
e
5.5V, V  
5.5V  
e
e
V
V
5.5V, V  
2.7V  
IH  
IL  
CC  
I
³
³
All others  
S0 or S1  
All others  
e
e
e
5.5V, V  
5.5V, V  
0.4V  
CC  
I
õ
e
O
b
b
b
b
112  
I
I
ERR or MERR  
V
V
2.25V  
30  
112  
30  
mA  
mA  
O
CC  
e
e
5.5V, (See Note 1)  
150  
150  
CC  
CC  
e
a
²
³
All typical values are at V  
CC  
5V, T  
25 C.  
§
A
For I/O ports (Q through Q ), the parameters I and I include the off-state output current.  
IH IL  
A
H
õ
The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I  
.
OS  
Note 1: I  
CC  
is measured with S0 and S1 at 4.5V and all CB and DB pins grounded.  
11  
DP8402A Switching Characteristics  
e
e
e
50 pF, T Min to Max (unless otherwise noted)  
A
V
CC  
4.5V to 5.5V, C  
L
Military  
Min  
Commercial  
From  
To  
Symbol  
Test Conditions  
Units  
ns  
(Input)  
(Output)  
Max  
43  
43  
67  
67  
60  
60  
35  
60  
30  
30  
30  
30  
Min  
10  
10  
15  
15  
10  
10  
7
Max  
40  
40  
55  
55  
48  
48  
30  
50  
25  
25  
25  
25  
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
DB and CB  
DB  
ERR  
ERR  
MERR  
MERR  
CB  
S1  
S1  
S1  
S1  
R1  
S1  
S1  
S0  
S0  
S0  
S0  
S0  
H, S0  
L, S0  
H, S0  
L, S0  
L, R  
H, R  
L, R  
H, R  
500X  
500X  
500X  
500X  
10  
10  
15  
15  
10  
10  
7
L
L
L
L
t
t
pd  
DB and CB  
DB  
ns  
pd  
e
t
pd  
t
pd  
t
pd  
t
pd  
t
en  
t
dis  
t
en  
t
dis  
S0 and S1  
v
DB  
R2  
500X  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
v
e
e
e
e
e
e
e
e
e
e
CB  
L, S0  
X, S0  
H, R1  
H, S1  
H, S1  
H, S1  
H, S1  
L, R1  
H, R1  
R2  
R2  
500X  
500X  
e
LEDB0  
S1  
DB  
v
u
e
CB  
R2  
500X  
10  
2
10  
2
e
e
e
e
e
e
e
e
OECB  
CB  
X, R1  
X, R1  
X, R1  
X, R1  
R2  
R2  
R2  
R2  
500X  
500X  
500X  
500X  
v
OECB  
CB  
2
2
u
OEB0 thru OEB3  
OEB0 thru OEB3  
DB  
2
2
v
u
DB  
2
2
DP8403 Switching Characteristics  
e
e
e
50 pF, T Min to Max (unless otherwise noted)  
A
V
CC  
4.5V to 5.5V, C  
L
Military  
Commercial  
From  
To  
Test Conditions  
Units  
Symbol  
(Input)  
(Output)  
²
²
Min Typ  
Max Min Typ  
Max  
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
DB and CB  
DB  
ERR  
ERR  
S1  
S1  
S1  
S1  
H, S0  
L, S0  
H, S0  
L, S0  
680X  
L, S0  
X, S0  
L, R  
H, R  
L, R  
H, R  
500X  
500X  
500X  
500X  
26  
26  
40  
40  
40  
40  
26  
40  
24  
24  
24  
24  
26  
26  
40  
40  
40  
40  
26  
40  
24  
24  
24  
24  
L
L
L
L
t
ns  
pd  
pd  
t
DB and CB  
MERR  
ns  
t
t
t
t
t
t
t
t
S0 and S1  
v
DB  
CB  
CB  
DB  
CB  
CB  
CB  
DB  
DB  
R
L
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
v
pd  
e
e
e
e
e
e
e
e
e
S1  
S1  
S0  
S1  
S1  
S1  
S1  
L, R  
680X  
680X  
pd  
L
LEDB0  
S1  
H, R  
L
v
u
pd  
H, R  
L
680X  
pd  
e
e
e
e
OECB  
X, S0  
X, S0  
X, S0  
X, S0  
H, R  
L
680X  
680X  
680X  
680X  
u
PLH  
PHL  
PLH  
PHL  
OECB  
H, R  
L
v
OEB0 thru OEB3  
H, R  
L
u
v
5V, T  
OEB0 thru OEB3  
H, R  
L
e
e a  
25 C.  
²
All typical values are at V  
§
CC  
A
12  
e
e
e
50 pF, T  
A
DP8404 Switching Characteristics, V  
4.5V to 5.5V, C  
Min to Max  
Commercial  
CC  
L
Military  
From  
To  
Symbol  
Test Conditions  
Units  
ns  
(Input)  
(Output)  
²
²
Min Typ  
Max Min Typ  
Max  
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
S1  
S1  
S1  
S1  
R1  
S1  
S0  
S1  
S1  
S1  
S1  
H, S0  
L, S0  
H, S0  
L, S0  
L, R  
H, R  
L, R  
H, R  
500X  
500X  
500X  
500X  
26  
26  
40  
40  
35  
35  
35  
18  
18  
18  
18  
26  
26  
40  
40  
35  
35  
35  
18  
18  
18  
18  
L
L
L
L
t
t
DB and CB  
ERR  
pd  
pd  
DB and CB  
MERR  
ns  
e
t
pd  
t
pd  
t
pd  
t
en  
t
dis  
t
en  
t
dis  
S0 and S1  
v
DB  
CB  
CB  
CB  
CB  
CB  
DB  
DB  
R2  
500X  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
v
e
e
e
e
e
e
e
e
R2 500X  
L, S0  
H, R1  
X, S0  
X, S0  
X, S0  
X, S0  
L, R1  
e
S1  
R2  
500X  
u
e
e
e
e
e
e
e
e
OECB  
OECB  
OECB  
OECB  
H, R1  
H, R1  
H, R1  
H, R1  
R2  
R2  
R2  
R2  
500X  
500X  
500X  
500X  
v
u
v
u
e
e
e
DP8405 Switching Characteristics, V  
4.5V to 5.5V, C  
50 pF, T  
Min to Max  
CC  
L
A
Military  
Commercial  
From  
To  
Test Conditions  
Units  
ns  
Symbol  
(Input)  
(Output)  
²
²
Min  
500X  
Typ  
26  
26  
40  
40  
40  
40  
40  
24  
24  
24  
24  
Max  
Min  
Typ  
26  
26  
40  
40  
40  
40  
40  
24  
24  
24  
24  
Max  
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
DB and CB  
DB  
ERR  
ERR  
S1  
S1  
S1  
S1  
H, S0  
L, S0  
H, S0  
L, S0  
680X  
L, S0  
L, R  
H, R  
L, R  
H, R  
L
L
L
L
t
t
pd  
500X  
500X  
DB and CB  
MERR  
ns  
pd  
500X  
t
t
t
t
t
t
t
S0 and S1  
v
CB  
CB  
DB  
CB  
CB  
DB  
DB  
R
L
ns  
ns  
ns  
ns  
ns  
ns  
ns  
v
pd  
e
e
e
e
e
e
e
DB  
S1  
S1  
S0  
S1  
S1  
S1  
S1  
L, R  
680X  
pd  
L
H, R  
L
680X  
u
pd  
e
e
e
e
OECB  
OECB  
OEDB  
OEDB  
X, S0  
X, S0  
X, S0  
X, S0  
H, R  
L
500X  
680X  
680X  
680X  
u
v
u
v
PLH  
PHL  
PLH  
PHL  
H, R  
L
H, R  
L
H, R  
L
e
e a  
25 C.  
²
All typical values are at V  
5V, T  
§
CC  
A
13  
Switching Waveforms  
TL/F/8535–6  
FIGURE 1. Read, Flag, and Correct Mode  
TL/F/8535–7  
FIGURE 2. Read, Correct Modify Mode  
14  
Switching Waveforms (Continued)  
TL/F/8535–8  
FIGURE 3. Diagnostic Mode  
15  
DP8402A Interfaced to the DP8418/19/28/29 System Diagram  
TL/F/8535–9  
16  
DP8402A Interfaced to the DP8420A/21A/22A System Diagram  
Tl/F/853512  
Physical Dimensions inches (millimeters)  
Hermetic Dual-In-Line (D)  
Order Number DP8402AD or DP8403D  
NS Package Number D52A  
17  
Physical Dimensions inches (millimeters) (Continued)  
Ý
Lit. 103062  
Plastic Chip Carrier (V)  
Order Number DP8402AV  
NS Package Number V68A  
48 Lead Hermetic DIP (D)  
Order Number DP8404D or DP8405D  
NS Package Number D48A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
a
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax:  
(
49) 0-180-530 85 86  
@
13th Floor, Straight Block,  
Ocean Centre, 5 Canton Rd.  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
Email: cnjwge tevm2.nsc.com  
a
a
a
a
Deutsch Tel:  
English Tel:  
Fran3ais Tel:  
Italiano Tel:  
(
(
(
(
49) 0-180-530 85 85  
49) 0-180-532 78 32  
49) 0-180-532 93 58  
49) 0-180-534 16 80  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

DP8402AD

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8402AV

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8403

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8403D

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8404

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8404D

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8405

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8405D

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and Correction Circuits (EDACs)
NSC

DP8406

32-Bit Parallel Error Detection and Correction Circuit
NSC

DP8406D

84 SERIES, 32-BIT ERROR DETECT AND CORRECT CKT, CDIP52, SIDE BRAZED, CERAMIC, DIP-52
TI

DP8406D(74F632DC)

32-Bit Parallel Error Detection and Correction Circuit
NSC

DP8406QV

32-Bit Parallel Error Detection and Correction Circuit
NSC