UPD44325364F5-E40-EQ2 [NEC]

36M-BIT QDRII SRAM 4-WORD BURST OPERATION; 36M位QDRII SRAM 4字突发操作
UPD44325364F5-E40-EQ2
型号: UPD44325364F5-E40-EQ2
厂家: NEC    NEC
描述:

36M-BIT QDRII SRAM 4-WORD BURST OPERATION
36M位QDRII SRAM 4字突发操作

存储 内存集成电路 静态存储器 时钟
文件: 总36页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD44325084, 44325094, 44325184, 44325364  
36M-BIT QDRTMII SRAM  
4-WORD BURST OPERATION  
Description  
The µPD44325084 is a 4,194,304-word by 8-bit, the µPD44325094 is a 4,194,304-word by 9-bit, the µPD44325184 is a  
2,097,152-word by 18-bit and the µPD44325364 is a 1,048,576-word by 36-bit synchronous quad data rate static RAM  
fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.  
The µPD44325084, µPD44325094, µPD44325184 and µPD44325364 integrate unique synchronous peripheral  
circuitry and a burst counter. All input registers controlled by an input clock pair (K and /K) are latched on the positive  
edge of K and /K.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high density  
and wide bit configuration.  
These products are packaged in 165-pin PLASTIC FBGA.  
Features  
1.8 ± 0.1 V power supply and HSTL I/O  
DLL circuitry for wide output data valid window and future frequency scaling  
Separate independent read and write data ports with concurrent transactions  
100% bus utilization DDR READ and WRITE operation  
Four-tick burst for reduced address frequency  
Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
Two output clocks (C and /C) for precise flight time  
and clock skew matching-clock and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability with µs restart  
User programmable impedance output  
Fast clock cycle time : 3.3 ns (300 MHz) , 4.0 ns (250 MHz) , 5.0 ns (200 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M16784EJ1V0DS00 (1st edition)  
Date Published October 2004 NS CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
2003  
µPD44325084, 44325094, 44325184, 44325364  
Ordering Information  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization Core Supply  
I/O  
Package  
(word x bit)  
Voltage  
V
Interface  
µPD44325084F5-E33-EQ2 Note  
µPD44325084F5-E40-EQ2  
µPD44325084F5-E50-EQ2  
µPD44325094F5-E33-EQ2 Note  
µPD44325094F5-E40-EQ2  
µPD44325094F5-E50-EQ2  
µPD44325184F5-E33-EQ2 Note  
µPD44325184F5-E40-EQ2  
µPD44325184F5-E50-EQ2  
µPD44325364F5-E33-EQ2 Note  
µPD44325364F5-E40-EQ2  
µPD44325364F5-E50-EQ2  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
300  
250  
200  
300  
250  
200  
300  
250  
200  
300  
250  
200  
4 M x 8-bit  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
FBGA (13 x 15)  
4 M x 9-bit  
2 M x 18-bit  
1M x 36-bit  
Note Under development  
Preliminary Data Sheet M16784EJ1V0DS  
2
µPD44325084, 44325094, 44325184, 44325364  
Pin Configurations  
/××× indicates active low signal.  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44325084F5-EQ2]  
1
2
3
A
4
5
/NW1  
NC  
A
6
7
NC  
/NW0  
A
8
9
A
10  
A
11  
CQ  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
NC  
D4  
/W  
/K  
/R  
NC  
NC  
NC  
Q4  
NC  
Q5  
VDDQ  
NC  
NC  
D6  
NC  
NC  
Q7  
A
A
K
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
NC  
D2  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
D5  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
VREF  
Q1  
G
H
J
VREF  
NC  
NC  
Q6  
K
L
NC  
NC  
NC  
NC  
NC  
TMS  
M
N
P
R
NC  
D7  
VSS  
VSS  
NC  
TCK  
A
A
C
A
A
A
A
/C  
A
A
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
: Write input  
: Nibble Write data select  
: Input clock  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
D0 to D7  
Q0 to Q7  
/R  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
/W  
/NW0, /NW1  
K, /K  
C, /C  
: Output clock  
CQ, /CQ  
ZQ  
/DLL  
: Echo clock  
: Output impedance matching  
: DLL disable  
NC  
: No connection  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.  
Preliminary Data Sheet M16784EJ1V0DS  
3
µPD44325084, 44325094, 44325184, 44325364  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44325094F5-EQ2]  
1
2
3
A
4
5
6
7
NC  
/BW0  
A
8
9
A
10  
A
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
NC  
D5  
/W  
NC  
NC  
A
/K  
/R  
NC  
NC  
NC  
Q5  
NC  
Q6  
VDDQ  
NC  
NC  
D7  
NC  
NC  
Q8  
A
A
K
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
NC  
D3  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
VREF  
Q2  
NC  
NC  
NC  
NC  
D0  
G
H
J
VREF  
NC  
NC  
Q7  
K
L
M
N
P
R
NC  
D8  
VSS  
VSS  
NC  
TCK  
A
A
C
A
A
A
A
/C  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
: Write input  
: Byte Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
D0 to D8  
Q0 to Q8  
/R  
/W  
/BW0  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
/DLL  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.  
Preliminary Data Sheet M16784EJ1V0DS  
4
µPD44325084, 44325094, 44325184, 44325364  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44325184F5-EQ2]  
1
2
3
4
5
/BW1  
NC  
A
6
7
NC  
/BW0  
A
8
9
A
10  
VSS  
NC  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
Q9  
A
/W  
/K  
/R  
D9  
A
K
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
A
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
D11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q12  
D13  
VREF  
NC  
NC  
NC  
VREF  
Q4  
G
H
J
K
L
NC  
D3  
Q15  
NC  
NC  
Q1  
M
N
P
R
D17  
NC  
VSS  
VSS  
NC  
D0  
A
A
C
A
A
TCK  
A
A
/C  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
: Write input  
: Byte Write data select  
: Input clock  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
D0 to D17  
Q0 to Q17  
/R  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
/W  
/BW0, /BW1  
K, /K  
C, /C  
: Output clock  
CQ, /CQ  
ZQ  
/DLL  
: Echo clock  
: Output impedance matching  
: DLL disable  
NC  
: No connection  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 2A and 10A are expansion addresses: 10A for 72Mb and 2A for 144Mb.  
Preliminary Data Sheet M16784EJ1V0DS  
5
µPD44325084, 44325094, 44325184, 44325364  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44325364F5-EQ2]  
1
2
3
4
5
/BW2  
/BW3  
A
6
7
/BW1  
/BW0  
A
8
9
10  
VSS  
Q17  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
/CQ  
Q27  
D27  
D28  
Q29  
Q30  
D30  
/DLL  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
VSS  
NC  
/W  
/K  
/R  
A
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
A
A
K
A
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
D15  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
VREF  
Q4  
G
H
J
K
L
D3  
Q11  
Q1  
M
N
P
R
VSS  
VSS  
D9  
A
A
C
A
A
D0  
A
A
/C  
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
: Write input  
: Byte Write data select  
: Input clock  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
D0 to D35  
Q0 to Q35  
/R  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
/W  
/BW0 to /BW3  
K, /K  
C, /C  
: Output clock  
CQ, /CQ  
ZQ  
/DLL  
: Echo clock  
: Output impedance matching  
: DLL disable  
NC  
: No connection  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 3A and 10A are expansion addresses: 3A for 72Mb and 10A for 144Mb.  
Preliminary Data Sheet M16784EJ1V0DS  
6
µPD44325084, 44325094, 44325184, 44325364  
Pin Identification  
Symbol  
Description  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. All transactions operate on a burst of four words (two clock periods of bus activity). These  
inputs are ignored when device is deselected.  
D0 to Dxx  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges of K and /K  
during WRITE operations. See Pin Configurations for ball site location of individual signals.  
x8 device uses D0 to D7.  
x9 device uses D0 to D8.  
x18 device uses D0 to D17.  
x36 device uses D0 to D35.  
Q0 to Qxx  
Synchronous Data Outputs: Output data is synchronized to the respective C and /C or to K and /K rising edges  
if C and /C are tied HIGH. This bus operates in response to /R commands. See Pin Configurations for ball site  
location of individual signals.  
x8 device uses Q0 to Q7.  
x9 device uses Q0 to Q8.  
x18 device uses Q0 to Q17.  
x36 device uses Q0 to Q35.  
/R  
Synchronous Read: When LOW this input causes the address inputs to be registered and a READ cycle to be  
initiated. This input must meet setup and hold times around the rising edge of K and is ignored on the  
subsequent rising edge of K.  
/W  
Synchronous Write: When LOW this input causes the address inputs to be registered and a WRITE cycle to be  
initiated. This input must meet setup and hold times around the rising edge of K and is ignored on the  
subsequent rising edge of K.  
/BWx  
/NWx  
Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble  
to be registered and written during WRITE cycles. These signals must meet setup and hold times around the  
rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations  
for signal to data relationships.  
K, /K  
C, /C  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous  
inputs must meet setup and hold times around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of  
/C is used as the output timing reference for first and third output data. The rising edge of C is used as the  
output reference for second and fourth output data. Ideally, /C is 180 degrees out of phase with C. C and /C  
may be tied HIGH to force the use of K and /K as the output reference clocks instead of having to provide C and  
/C clocks. If tied HIGH, C and /C must remain HIGH and not be toggled during device operation.  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q  
tristates.  
CQ, /CQ  
ZQ  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. DQ and CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to  
ground. This pin cannot be connected directly to GND or left unconnected.  
/DLL  
DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
TDO  
VREF  
VDD  
IEEE 1149.1 Test Output: 1.8V I/O level.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power Supply: 1.8V nominal. See DC Characteristics and Operating Conditions for range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC Characteristics  
and Operating Conditions for range.  
VSS  
NC  
Power Supply: Ground  
No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic level  
applied to the ball sites. These signals may be connected to ground to improve package heat dissipation.  
Preliminary Data Sheet M16784EJ1V0DS  
7
µPD44325084, 44325094, 44325184, 44325364  
Block Diagram  
[µPD44325084]  
20  
ADDRESS  
/R  
ADDRESS  
REGISTRY  
& LOGIC  
20  
/W  
K
/W  
MUX  
/NW0  
/NW1  
8
2
16  
16  
16  
16  
Q0 to Q7  
220x 32  
DATA  
32  
8
D0 to D7  
/R  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
CQ,  
/CQ  
MUX  
K
K
K
C, /C  
OR  
/K  
K, /K  
[µPD44325094]  
20  
ADDRESS  
/R  
ADDRESS  
REGISTRY  
& LOGIC  
20  
/W  
K
/W  
MUX  
MUX  
/BW0  
9
2
18  
18  
18  
18  
Q0 to Q8  
220x 36  
DATA  
36  
9
D0 to D8  
/R  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
CQ,  
/CQ  
K
K
K
C, /C  
OR  
/K  
K, /K  
[µPD44325184]  
19  
ADDRESS  
/R  
ADDRESS  
REGISTRY  
& LOGIC  
19  
/W  
K
/W  
MUX  
MUX  
/BW0  
/BW1  
36  
36  
36  
18  
2
219x 72  
Q0 to Q17  
DATA  
72  
18  
D0 to D17  
/R  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
36  
K
CQ,  
/CQ  
K
K
C, /C  
OR  
/K  
K, /K  
Preliminary Data Sheet M16784EJ1V0DS  
8
µPD44325084, 44325094, 44325184, 44325364  
[µPD44325364]  
18  
ADDRESS  
/R  
ADDRESS  
REGISTRY  
& LOGIC  
18  
/W  
K
/W  
MUX  
/BW0  
/BW1  
/BW2  
/BW3  
72  
72  
72  
36  
218x 144  
Q0 to Q35  
DATA  
144  
REGISTRY  
& LOGIC  
MEMORY  
36  
72  
2
ARRAY  
D0 to D35  
CQ,  
/CQ  
/R  
K
MUX  
K
K
C, /C  
OR  
/K  
K, /K  
Power-on Sequence  
The following two timing charts show the recommended power-on sequence, i.e., when starting the clock after  
VDD/VDDQ stable and when starting the clock before VDD/VDDQ stable.  
1. Clock starts after VDD/VDDQ stable  
V
DD/VDDQ  
V
DD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Clock  
Clock Start  
1,024 cycles or more  
Stable Clock  
Start  
Normal Operation  
2. Clock starts before VDD/VDDQ stable  
V
DD/VDDQ  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Clock  
Clock Start  
30 ns (MIN.)  
1,024 cycles or more Start  
DLL Reset or DLL Off  
Stable Clock  
Normal Operation  
Preliminary Data Sheet M16784EJ1V0DS  
9
µPD44325084, 44325094, 44325184, 44325364  
Truth Table  
Operation  
CLK  
/R  
H
/W  
L
D or Q  
WRITE cycle  
L H  
Data in  
Load address, input write data on two  
consecutive K and /K rising edge  
READ cycle  
Input data  
Input clock  
DA(A+0)  
DA(A+1)  
DA(A+2)  
DA(A+3)  
K(t+1) ↑  
/K(t+1) ↑  
K(t+2) ↑  
/K(t+2) ↑  
L H  
L
X
Data out  
Load address, read data on two  
consecutive C and /C rising edge  
NOP (No operation)  
Output data  
QA(A+0)  
QA(A+1)  
QA(A+2)  
QA(A+3)  
Output clock /C(t+1) ↑  
C(t+2) /C(t+2) C(t+3) ↑  
L H  
H
X
H
X
D=X or Q=High-Z  
Previous state  
STANDBY(Clock stopped)  
Stopped  
Remarks 1. H : High level, L : Low level, × : don’t care, : rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges  
except if C and /C are HIGH then data outputs are delivered at K and /K rising edges.  
3. /R and /W must meet setup/hold times around the rising edge (LOW to HIGH) of K and are registered at  
the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = /(/K) = C = /(/C) when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
7. If /R was LOW to initiate the previous cycle, this signal becomes a don't care for this operation however it  
is strongly recommended that this signal is brought HIGH as shown in the truth table.  
8. /W during write cycle and /R during read cycle were HIGH on previous K clock rising edge. Initiating  
consecutive READ or WRITE operations on consecutive K clock rising edges is not permitted. The  
device will ignore the second request.  
Preliminary Data Sheet M16784EJ1V0DS  
10  
µPD44325084, 44325094, 44325184, 44325364  
Byte Write Operation  
[µPD44325084]  
Operation  
K
/K  
/NW0  
/NW1  
Write D0 to D7  
L H  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
L H  
Write D0 to D3  
Write D4 to D7  
Write nothing  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : High level, L : Low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /NW0 and /NW1 can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
[µPD44325094]  
Operation  
K
L H  
/K  
/BW0  
Write D0 to D8  
Write nothing  
0
0
1
1
L H  
L H  
L H  
Remarks 1. H : High level, L : Low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BW0 can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[µPD44325184]  
Operation  
K
L H  
/K  
/BW0  
/BW1  
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : High level, L : Low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BW0 and /BW1 can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Preliminary Data Sheet M16784EJ1V0DS  
11  
µPD44325084, 44325094, 44325184, 44325364  
[µPD44325364]  
Operation  
K
/K  
/BW0  
/BW1  
/BW2  
/BW3  
Write D0 to D35  
L H  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
L H  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : High level, L : Low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BW0 to /BW3 can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Preliminary Data Sheet M16784EJ1V0DS  
12  
µPD44325084, 44325094, 44325184, 44325364  
Bus Cycle State Diagram  
LOAD NEW  
READ ADDRESS;  
R_Count = 0;  
R_Init = 1  
LOAD NEW  
WRITE ADDRESS;  
W_Count = 0  
Always  
/W = L & W_Count = 4  
/R = L & R_Count = 4  
Always  
WRITE DOUBLE;  
READ DOUBLE;  
W_Count = W_Count+2  
R_Count = R_Count+2  
/R = H  
& R_Count = 4  
/W = L  
R_Init = 0  
W_Count = 2  
Always  
R_Count = 2  
Always  
/R = L  
/W = H  
& W_Count = 4  
INCREMENT READ  
ADDRESS BY TWO  
R_Init = 0  
INCREMENT WRITE  
ADDRESS BY TWO  
/R = H  
/W = H  
READ PORT NOP  
R_Init = 0  
WRITE PORT NOP  
Power UP  
Supply voltage  
provided  
Supply voltage  
provided  
Remarks 1. The address is concatenated with two additional internal LSBs to facilitate burst operation.  
The address order is always fixed as: xxx...xxx+0, xxx...xxx+1, xxx...xxx+2, xxx...xxx+3.  
Bus cycle is terminated at the end of this sequence (burst count = 4).  
2. Read and write state machines can be active simultaneously.  
Read and write cannot be simultaneously initiated. Read takes precedence.  
3. State machine control timing is controlled by K.  
Preliminary Data Sheet M16784EJ1V0DS  
13  
µPD44325084, 44325094, 44325184, 44325364  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
0
TYP.  
MAX.  
Unit  
V
Supply voltage  
VDD  
VDDQ  
VIN  
+2.5  
Output supply voltage  
Input voltage  
VDD  
VDD + 0.5 (2.5 V MAX.)  
VDDQ + 0.5 (2.5 V MAX.)  
70  
V
V
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
VI/O  
TA  
V
°C  
°C  
Tstg  
–55  
+125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
Supply voltage  
Symbol  
Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit  
V
Note  
VDD  
Output supply voltage  
High level input voltage  
Low level input voltage  
Clock input voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
VDD  
V
1
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1, 2  
1, 2  
1, 2  
V
–0.3  
V
Reference voltage  
VREF  
0.68  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
High level input voltage  
Low level input voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
VREF + 0.2  
TYP.  
MAX.  
Unit  
V
Note  
1
1
VREF – 0.2  
V
Note 1. Overshoot: VIH (AC) VDD + 0.7 V for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
Preliminary Data Sheet M16784EJ1V0DS  
14  
µPD44325084, 44325094, 44325184, 44325364  
DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
Unit Note  
x8, x9 x18  
x36  
Input leakage current  
I/O leakage current  
Operating supply current  
(Read Write cycle)  
ILI  
–2  
–2  
+2  
+2  
µA  
µA  
ILO  
IDD  
VIN VIL or VIN VIH, –E33  
800 1,100 1,250 mA  
II/O = 0 mA  
–E40  
–E50  
700  
600  
950 1,050  
Cycle = MAX.  
800  
450  
900  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, –E33  
mA  
II/O = 0 mA  
–E40  
–E50  
400  
Cycle = MAX.  
350  
High level output voltage  
Low level output voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note1  
VOL(Low) IOL 0.1 mA  
VOL Note2  
VDDQ – 0.2  
VDDQ/2–0.12  
VSS  
VDDQ  
V
V
3,4  
3,4  
3,4  
3,4  
VDDQ/2+0.12  
0.2  
VDDQ/2–0.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
pF  
Input capacitance(Address, Control)  
Input / Output capacitance(D, Q)  
Clock Input capacitance  
4
6
5
5
7
6
CI/O  
VI/O = 0 V  
Vclk = 0 V  
pF  
Cclk  
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Preliminary Data Sheet M16784EJ1V0DS  
15  
µPD44325084, 44325094, 44325184, 44325364  
AC Characteristics (TA = 0 to 70 °C, VDD = 1.8 ± 0.1 V)  
AC Test Conditions  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.25 V  
0.75 V  
Test Points  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
VDDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
Preliminary Data Sheet M16784EJ1V0DS  
16  
µPD44325084, 44325094, 44325184, 44325364  
Read and Write Cycle  
-E33  
-E40  
-E50  
Parameter  
Symbol  
Unit Note  
(300 MHz)  
(250 MHz)  
(200 MHz)  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Clock  
Average Clock cycle time (K, /K, C, /C) TKHKH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3.3  
8.4  
0.2  
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
2.3  
2.8  
3.55  
Clock phase jitter (K, /K, C, /C)  
Clock HIGH time (K, /K, C, /C)  
Clock LOW time (K, /K, C, /C)  
Clock to /clock (K/K., C/C.)  
Clock to /clock (/KK., /CC.)  
TKC var  
TKHKL  
TKLKH  
TKH /KH  
T /KHKH  
1.32  
1.32  
1.49  
1.49  
0
0
0
0
0
1.6  
1.6  
1.8  
1.8  
0
0
0
0
2.0  
2.0  
2.2  
2.2  
0
0
0
Clock to data clock 250 to 300 MHz TKHCH  
1.45  
1.8  
2.3  
2.8  
3.55  
(KC., /K/C.)  
200 to 250 MHz  
167 to 200 MHz  
133 to 167 MHz  
< 133 MHz  
1.8  
2.3  
2.8  
3.55  
DLL lock time (K, C)  
K static to DLL reset  
TKC lock  
TKC reset  
Cycle  
ns  
3
1,024  
30  
1,024  
30  
1,024  
30  
Output Times  
C, /C HIGH to output valid  
C, /C HIGH to output hold  
C, /C HIGH to echo clock valid  
C, /C HIGH to echo clock hold  
CQ, /CQ HIGH to output valid  
CQ, /CQ HIGH to output hold  
C HIGH to output High-Z  
TCHQV  
TCHQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
– 0.45  
– 0.45  
– 0.27  
– 0.45  
0.45  
0.45  
0.27  
0.45  
– 0.45  
– 0.45  
– 0.3  
– 0.45  
0.45  
0.45  
0.3  
0.45  
– 0.45  
– 0.45  
– 0.35  
– 0.45  
0.45  
0.45  
0.35  
0.45  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
4
4
C HIGH to output Low-Z  
TCHQX1  
Setup Times  
Address valid to K rising edge  
Control inputs (/R, /W) valid to K rising  
edge  
TAVKH  
TIVKH  
ns  
ns  
5
5
0.4  
0.4  
0.5  
0.5  
0.6  
0.6  
Data inputs and write data select  
inputs (/BWx, /NWx) valid to K, /K  
rising edge  
TDVKH  
ns  
5
0.3  
0.35  
0.4  
Hold Times  
K rising edge to address hold  
K rising edge to control inputs (/R, /W)  
hold  
TKHAX  
TKHIX  
ns  
ns  
5
5
0.4  
0.4  
0.5  
0.5  
0.6  
0.6  
K, /K rising edge to data inputs and  
write data select inputs (/BWx, /NWx)  
hold  
TKHDX  
ns  
5
0.3  
0.35  
0.4  
Preliminary Data Sheet M16784EJ1V0DS  
17  
µPD44325084, 44325094, 44325184, 44325364  
Notes 1. The device will operate at clock frequencies slower than TKHKH(MAX.).  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.  
DLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
5. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.  
5. VDDQ is 1.5 V DC.  
Preliminary Data Sheet M16784EJ1V0DS  
18  
µPD44325084, 44325094, 44325184, 44325364  
Read and Write Timing  
WRITE  
READ  
NOP  
WRITE  
READ  
NOP  
1
2
3
4
5
6
7
K
TKHKL TKLKH  
TKHKH  
TKH/KH T/KHKH  
/K  
/R  
TKHIX  
TIVKH  
TKHIX  
TIVKH  
/W  
A0  
A2  
A1  
A3  
Address  
TDVKH TKHDX  
TDVKH  
TKHDX  
TAVKH TKHAX  
Data in  
D10  
D11  
D12  
Q02  
D13  
Q03  
D30  
D31  
Q21  
D32  
D33  
Q23  
Data out  
Q20  
Q22  
Q00  
Q01  
Qx2  
Qx3  
TCHQX1  
TCHQX  
TCQHQV  
TCHQX  
TCHQZ  
TCHQV  
TCHQV  
CQ  
TCHCQX  
TCHCQV  
/CQ  
TCHCQX  
TCHCQV  
TKHCH  
C
TKHKL TKLKH  
TKHKH  
TKH/KH T/KHKH  
TKHCH  
/C  
Remarks 1. Q00 refers to output from address A0+0.  
Q01 refers to output from the next internal burst address following A0,i.e.,A0+1.  
2. Outputs are disable (high impedance) one clock cycle after a NOP.  
3. In this example, if address A0=A1, data Q00=D10, Q01=D11.  
Write data is forwarded immediately as read results.  
Preliminary Data Sheet M16784EJ1V0DS  
19  
µPD44325084, 44325094, 44325184, 44325364  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
Test Mode Select. This is the command input for the TAP controller state machine.  
TMS  
TDI  
10R  
11R  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. Output changes in response to the falling edge of TCK. This is the  
output side of the serial registers placed between TDI and TDO.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
µA  
Note  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ ,  
µA  
Outputs disabled  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
VIH  
VIL  
1.3  
–0.3  
1.6  
1.4  
VDD+0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 µA  
| IOHT | = 2 mA  
IOLC = 100 µA  
IOLT = 2 mA  
JTAG output low voltage  
0.2  
0.4  
Preliminary Data Sheet M16784EJ1V0DS  
20  
µPD44325084, 44325094, 44325184, 44325364  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
Preliminary Data Sheet M16784EJ1V0DS  
21  
µPD44325084, 44325094, 44325184, 44325364  
JTAG AC Characteristics (TA = 0 to 70 °C)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Note  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
tTHTH  
fTF  
100  
10  
ns  
MHz  
ns  
tTHTL  
tTLTH  
40  
40  
ns  
Output time  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
20  
ns  
ns  
ns  
ns  
10  
10  
Setup time  
TMS setup time  
Capture setup time  
tMVTH  
tCS  
10  
10  
ns  
ns  
Hold time  
TMS hold time  
Capture hold time  
tTHMX  
tCH  
10  
10  
ns  
ns  
JTAG Timing Diagram  
tTHTH  
TCK  
t
MVTH  
tTHTL  
tTLTH  
TMS  
TDI  
tTHMX  
tDVTH  
tTHDX  
tTLOV  
tTLOX  
TDO  
Preliminary Data Sheet M16784EJ1V0DS  
22  
µPD44325084, 44325094, 44325184, 44325364  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
109  
bit  
Boundary register  
bit  
ID Register Definition  
Part number Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0100 1101  
0000 0000 0100 1110  
0000 0000 0100 1111  
0000 0000 0101 0000  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
µPD44325084  
µPD44325094  
µPD44325184  
µPD44325364  
4M x 8  
4M x 9  
XXXX  
XXXX  
XXXX  
XXXX  
1
1
1
1
00000010000  
2M x 18  
1M x 36  
00000010000  
00000010000  
Preliminary Data Sheet M16784EJ1V0DS  
23  
µPD44325084, 44325094, 44325184, 44325364  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x8  
x9  
x18 x36  
no.  
x8  
x9  
x18 x36  
no.  
x8  
x9  
x18  
x36  
1
/C  
C
A
A
A
A
A
A
A
6R  
6P  
6N  
7P  
7N  
7R  
8R  
8P  
9R  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
NC  
NC  
NC  
NC  
NC  
NC  
Q3  
D3  
NC  
NC  
NC  
NC  
NC  
NC  
Q4  
D4  
NC D15 10D  
NC Q15 9E  
73  
74  
NC  
Q4  
D4  
NC  
NC  
NC  
NC  
NC  
NC  
Q5  
D5  
NC  
Q5  
D5  
NC  
NC  
NC Q28  
Q11 Q20  
D11 D20  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1H  
1J  
2
3
Q7  
D7  
Q7 10C  
D7 11D  
75  
4
76  
NC  
D29  
5
NC D16 9C  
NC Q16 9D  
77  
NC Q29  
6
78  
NC Q12 Q21  
7
Q8  
D8  
Q8 11B  
D8 11C  
79  
NC  
NC  
NC  
Q6  
D6  
D12 D21  
NC D30  
8
80  
9
NC  
NC  
NC  
NC  
NC D17  
9B  
81  
NC Q30  
Q13 Q22  
D13 D22  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
NC  
NC  
Q0  
D0  
Q0  
D0  
Q0 11P  
D0 10P  
D9 10N  
NC Q17 10B  
82  
CQ  
VSS  
A
11A  
83  
NC NC NC  
NC NC NC  
10A  
84  
/DLL  
Q9  
9P  
9A  
85  
NC  
NC  
NC  
NC  
NC  
NC  
Q6  
D6  
NC  
NC  
NC  
D31  
NC NC  
NC NC  
Q1  
D1  
Q1 10M  
D1 11N  
A
8B  
86  
NC Q31  
2J  
A
7C  
87  
NC Q14 Q23  
3K  
3J  
NC NC NC D10 9M  
NC NC NC Q10 9N  
NC  
/R  
6C  
8A  
88  
NC  
NC  
NC  
Q7  
D7  
NC  
NC  
D14 D23  
NC D32  
89  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
3M  
1N  
Q0  
D0  
Q1  
D1  
Q2  
D2  
Q2 11L  
D2 11M  
NC  
NC  
NC /BW1 7A  
90  
NC Q32  
Q15 Q24  
D15 D24  
55 /NW0 /BW0 /BW0 /BW0 7B  
91  
NC NC NC D11 9L  
NC NC NC Q11 10L  
56  
57  
58  
K
6B  
6A  
92  
/K  
93  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
D7  
NC  
D33  
NC NC  
NC NC  
Q3  
D3  
Q3 11K  
D3 10K  
NC  
NC  
NC /BW3 5B  
94  
NC Q33  
59 /NW1 NC /BW1 /BW2 5A  
95  
NC Q16 Q25  
NC NC NC D12 9J  
NC NC NC Q12 9K  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
/W  
A
4A  
5C  
4B  
3A  
2A  
1A  
96  
NC  
NC  
NC  
Q8  
D8  
NC  
NC  
D16 D25  
NC D34  
97  
Q1  
D1  
Q2  
D2  
Q4  
D4  
Q4 10J  
D4 11J  
11H  
A
98  
NC Q34 2M  
A
A
A
NC  
99  
Q17 Q26  
D17 D26  
3P  
2N  
ZQ  
VSS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
NC NC NC D13 10G  
NC NC NC Q13 9G  
/CQ  
NC  
NC  
NC  
D35  
2P  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q9 Q18 2B  
D9 D18 3B  
NC Q35  
1P  
NC NC  
NC NC  
Q5  
D5  
Q5 11F  
D5 11G  
A
A
A
A
A
A
3R  
NC D27 1C  
NC Q27 1B  
4R  
NC NC NC D14 9F  
NC NC NC Q14 10F  
4P  
NC Q10 Q19 3D  
NC D10 D19 3C  
5P  
Q2  
D2  
Q3  
D3  
Q6  
D6  
Q6 11E  
D6 10E  
5N  
NC  
NC D28 1D  
5R  
Internal  
Preliminary Data Sheet M16784EJ1V0DS  
24  
µPD44325084, 44325094, 44325184, 44325364  
JTAG Instructions  
Instructions  
EXTEST  
Description  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output drive is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is  
placed in the test-logic-reset state.  
The BYPASS instruction is loaded in the instruction register when the bypass register is placed  
between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This  
allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-  
DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to  
capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state).  
Although allowing the TAP to sample metastable input will not harm the device, repeatable results  
cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input  
data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any  
other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving  
the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced to an  
inactive drive state (high impedance) and the boundary register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
1
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
1
1
0
1
1
1
Note 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
Preliminary Data Sheet M16784EJ1V0DS  
25  
µPD44325084, 44325094, 44325184, 44325364  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1 kresistor.  
TDO should be left unconnected.  
Preliminary Data Sheet M16784EJ1V0DS  
26  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output Inactive  
TDO  
Test Logic (Data Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
Instruction  
IDCODE  
Output Inactive  
TDO  
µPD44325084, 44325094, 44325184, 44325364  
Package Drawing  
165-PIN PLASTIC FBGA (13x15)  
E
w S B  
ZD  
ZE  
B
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
w S A  
INDEX MARK  
y1 S  
A2  
h
A
S
ITEM MILLIMETERS  
A1  
e
y
D
E
13.00  
15.00  
1.50  
0.50  
1.00  
0.60  
1.40  
0.40  
1.00  
0.50  
0.08  
0.08  
0.15  
0.20  
S
ZD  
ZE  
e
φ M  
x
φ
b
S A B  
h
A
A1  
A2  
b
y
x
w
y1  
This package drawing is a preliminary version. It may be changed in the future.  
Preliminary Data Sheet M16784EJ1V0DS  
29  
µPD44325084, 44325094, 44325184, 44325364  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
µPD44325084F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
µPD44325094F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
µPD44325184F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
µPD44325364F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
Preliminary Data Sheet M16784EJ1V0DS  
30  
µPD44325084, 44325094, 44325184, 44325364  
Revision History  
Edition/  
Page  
Previous  
edition  
Type of  
revision  
Location  
Description  
Date  
This  
edition  
(Previous edition This edition)  
1st edition/ Throughout Throughout Modification  
Oct. 2004  
Preliminary Product Information  
Preliminary Data sheet  
F5-EQ1 F5-EQ2  
Package Code  
Deletion  
-E60 (167MHz)  
p.2  
p.2  
Addition  
Ordering Information  
"Note Under development" has been added to  
E33.  
pp.3-6  
p.9  
pp.3-6  
Pin Configurations  
Remark 2 has been added  
Power-on sequence has been added  
Power-on Sequence  
p.15  
p.15  
Modification DC Characteristics IDD (MAX.)  
MAX.  
Unit  
MAX.  
Unit  
x8, x9 x18 x36  
x8, x9 x18 x36  
E33 840 860 910 mA  
E40 730 750 800  
E50 630 650 700  
E33 800 1,100 1,250 mA  
E40 700 950 1,050  
E50 600 800 900  
DC Characteristics ISB1 (MAX.)  
MAX.  
x8, x9 x18 x36  
290  
Unit  
mA  
MAX.  
x8, x9 x18 x36  
450  
Unit  
mA  
E33  
E40  
E50  
E33  
E40  
E50  
250  
400  
210  
350  
Preliminary Data Sheet M16784EJ1V0DS  
31  
µPD44325084, 44325094, 44325184, 44325364  
[ MEMO ]  
Preliminary Data Sheet M16784EJ1V0DS  
32  
µPD44325084, 44325094, 44325184, 44325364  
[ MEMO ]  
Preliminary Data Sheet M16784EJ1V0DS  
33  
µPD44325084, 44325094, 44325184, 44325364  
[ MEMO ]  
Preliminary Data Sheet M16784EJ1V0DS  
34  
µPD44325084, 44325094, 44325184, 44325364  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
Preliminary Data Sheet M16784EJ1V0DS  
35  
µPD44325084, 44325094, 44325184, 44325364  
QDR RAMs and Quad Data Rate RAMs comprise a new series of products developed by Cypress Semiconductor,  
Renesas, IDT, Micron Technology, Inc., NEC Electronics, and Samsung.  
The information in this document is current as of October, 2004. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD44325364F5-E40-EQ2-A

QDR SRAM, 1MX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44325364F5-E50-EQ2

36M-BIT QDRII SRAM 4-WORD BURST OPERATION
NEC

UPD444001

4M-BIT CMOS FAST SRAM 4M-WORD BY 1-BIT
NEC

UPD444001LE-10

4M-BIT CMOS FAST SRAM 4M-WORD BY 1-BIT
NEC

UPD444001LE-10

4MX1 STANDARD SRAM, 10ns, PDSO32, 10.16 MM, PLASTIC, SOJ-32
RENESAS

UPD444001LE-10-A

4MX1 STANDARD SRAM, 10ns, PDSO32, 10.16 MM, LEAD FREE, PLASTIC, SOJ-32
RENESAS

UPD444001LE-10-A

Standard SRAM, 4MX1, 10ns, CMOS, PDSO32, 10.16 MM, LEAD FREE, PLASTIC, SOJ-32
NEC

UPD444001LE-11

4M-BIT CMOS FAST SRAM 4M-WORD BY 1-BIT
NEC