UPD16520GS-BGG [NEC]

VERTICAL DRIVER FOR CCD SENSORS; 垂直驱动器,用于CCD传感器
UPD16520GS-BGG
型号: UPD16520GS-BGG
厂家: NEC    NEC
描述:

VERTICAL DRIVER FOR CCD SENSORS
垂直驱动器,用于CCD传感器

驱动器 传感器 CD
文件: 总16页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD16520  
VERTICAL DRIVER FOR CCD SENSORS  
The µPD16520 is a vertical driver for CCD image sensors that has a level conversion circuit and a 3-level output  
function. Since it incorporates a CCD vertical register driver equivalent to the µPD16510 (10 channels, consisting of  
six 3-level channels and four 2-level channels) and a VOD shutter driver (1 channel), it is ideal as a vertical driver for  
multiple-electrode high-pixel CCD transfer type area image sensors employed in digital still cameras.  
The µPD16520 uses a CMOS process to achieve optimum transmission delay characteristics for vertical driving of  
CCD image sensors, as well as output on-state resistance characteristics. The µPD16520 also supports low-voltage  
logic (logic supply voltage: 2.0 to 5.5 V).  
FEATURES  
CCD vertical register driver: 10 channels (3-level: 6 channels, 2-level: 4 channels)  
VOD shutter driver: 1 channel  
High withstand voltage: 33 V Max.  
Low-output on-state resistance: 30 TYP.  
Low-voltage input supported (Logic supply voltage: 2.0 to 5.5 V)  
Latch-up free  
Same drive capacity as µPD16510  
Small package: 38-pin plastic shrink SOP (300 mil)  
APPLICATIONS  
Digital still cameras, digital video cameras, etc.  
ORDERING INFORMATION  
Part Number  
Package  
µPD16520GS-BGG  
38-pin plastic shrink SOP (300 mil)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S14201EJ1V0DS00 (1st edition)  
Date Published May 1999 N CP(K)  
Printed in Japan  
1999  
©
µPD16520  
PIN CONFIGURATION (TOP VIEW)  
38-pin plastic shrink SOP (300 mil)  
µPD16520GS-BGG  
1
2
3
4
5
GND  
VSS  
38  
37  
VDD1  
TO1  
Vcc  
TI1  
36  
35  
TI2  
VDD2a  
TO2  
TI3  
34  
33  
6
7
TI4  
TO3  
VDD2a  
32  
31  
TI5  
TO4  
TI6  
8
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
BI1  
9
30  
29  
TO5  
VDD2a  
10  
11  
12  
13  
28  
27  
26  
25  
TO6  
BO1  
BO2  
VDD2b  
BO3  
BO4  
14  
15  
16  
17  
24  
23  
22  
21  
20  
BI2  
BI3  
SUBO  
Vsb  
BI4  
18  
19  
Vss  
SUBI  
PIN NAMES  
BI1 to BI4:  
BO1 to BO4:  
GND:  
2 Level Driver Input  
TO1 to TO6:  
VDD1:  
VDD2a:  
VDD2b:  
VCC:  
3 Level Pulse Output  
Power Supply (VH)  
Power Supply (VMa)  
Power Supply (VMb)  
Power Supply (Logic)  
Power Supply (VHH)  
Power Supply (VL)  
2 Level Pulse Output  
Ground  
PG1 to PG6:  
SUBI:  
3 Level Driver Input  
VOD Shutter Drive Pulse Input  
VOD Shutter Drive Pulse Output  
3 Level Driver Input  
SUBO:  
Vsb:  
TI1 to TI6:  
VSS:  
2
Data Sheet S14201EJ1V0DS00  
µPD16520  
BLOCK DIAGRAM  
Vss  
38  
37  
1
GND  
VDD1  
Vcc  
TI1  
2
3
+
36  
3 level  
3 level  
3 level  
TO1  
+
TI2  
TI3  
TI4  
TI5  
TI6  
4
5
6
7
8
VDD2a  
35  
34  
+
TO2  
+
+
33  
32  
31  
TO3  
+
VDD2a  
TO4  
+
PG1  
PG2  
PG3  
9
3 level  
3 level  
+
10  
11  
12  
+
30  
29  
28  
TO5  
+
PG4  
PG5  
PG6  
VDD2a  
+
13  
14  
3 level  
2 level  
TO6  
+
+
15  
16  
BI1  
BI2  
27  
BO1  
+
2 level  
2 level  
2 level  
2 level  
26  
25  
24  
BO2  
VDD2b  
BI3  
BI4  
+
17  
18  
BO3  
+
23  
BO4  
22  
21  
20  
SUBO  
+
19  
SUBI  
Vsb  
Vss  
Data Sheet S14201EJ1V0DS00  
3
µPD16520  
1. PIN FUNCTIONS  
Pin No.  
Pin Name  
GND  
I/O  
I
Function  
1
Ground  
2
VCC  
Logic power supply  
3
TI1  
3-level driver input (for charge transfer) (See Function  
Tables.)  
4
TI2  
I
5
TI3  
I
6
TI4  
I
7
TI5  
I
8
TI6  
I
9
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
BI1  
I
3-level driver input (for charge read) (See Function  
Tables.)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
I
I
I
I
I
I
2-level driver input (for charge transfer) (See Function  
Tables.)  
BI2  
I
BI3  
I
BI4  
I
SUBI  
VSS  
I
VOD shutter drive pulse input  
VL power supply  
O
O
O
O
O
O
O
O
O
O
O
Vsb  
VHH power supply (for SUB drive)  
VOD shutter drive pulse output  
2-level pulse output  
SUBO  
BO4  
BO3  
VDD2b  
BO2  
BO1  
TO6  
VDD2a  
TO5  
TO4  
VDD2a  
TO3  
TO2  
VDD2a  
TO1  
VDD1  
VSS  
VMb power supply (for 2-level driver)  
2-level pulse output  
3-level pulse output  
VMa power supply (for 3-level driver)  
3-level pulse output  
VMa power supply (for 3-level driver)  
3-level pulse output  
VMa power supply (for 3-level driver)  
3-level pulse output  
VH power supply  
VL power supply  
4
Data Sheet S14201EJ1V0DS00  
µPD16520  
Function Tables  
VL = VSS, VMa = VDD2a, VMb = VDD2b, VH = VDD1, VHH = Vsb  
Pins TO1 to TO6  
Input  
Output  
Pin Name  
Pin No.  
TI1 TI2 TI3 TI4 TI5 TI6 PG1 PG2 PG3 PG4 PG5 PG6 TO1 TO2 TO3 TO4 TO5 TO6  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
36  
34  
33  
31  
30  
28  
L
L
L
H
L
VH  
VMa  
VL  
H
H
H
VL  
Pins BO1 to BO4  
Input  
Output  
BO2  
26  
Pin Name  
Pin No.  
BI1  
15  
BI2  
16  
BI3  
17  
BI4  
18  
BO1  
27  
BO3  
24  
BO4  
23  
L
VMb  
VL  
H
Pin SUBO  
Input  
SUBI  
19  
Output  
SUBO  
22  
Pin Name  
Pin No.  
L
VHH  
H
VL  
Data Sheet S14201EJ1V0DS00  
5
µPD16520  
2. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (T  
A
= 25°C, GND = 0 V)  
Parameter  
Symbol  
VSS  
Conditions  
Ratings  
0.0 to 10  
Unit  
V
Supply voltage  
VCC  
VSS 0.3 to VSS + 20.0  
VSS 0.3 to VSS + 33.0  
VSS 0.3 to VSS + 33.0  
VSS 0.3 to VSS + 33.0  
VSS 0.3 to VCC + 0.3  
25 to +85  
V
VDD1  
VDD2  
Vsb  
VI  
V
V
V
Input pin voltage  
V
Operating ambient temperature  
Storage temperature  
Allowable dissipation  
TA  
°C  
°C  
mW  
Tstg  
40 to +125  
Pd  
500  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Range (T = 25°C, GND = 0 V)  
A
Parameter  
Supply voltage  
Symbol  
VCC  
Conditions  
MIN.  
2.0  
TYP.  
15.0  
MAX.  
5.5  
Unit  
V
VDD1  
VDD1-VSS  
VDD2a  
VDD2b  
VSS  
Note  
Note  
10.5  
16.5  
1.0  
1.0  
10.0  
21.0  
31.0  
+4.0  
+4.0  
6.0  
31.0  
VCC  
V
V
V
V
V
Vsb-VSS  
VIH  
Note  
V
Input voltage, high  
0.8VCC  
0
V
Input voltage, low  
VIL  
0.3VCC  
+70  
V
Operating ambient temperature  
TA  
20  
°C  
Note Set VDD1 and VSS to values that satisfy VDD1-VSS rating.  
6
Data Sheet S14201EJ1V0DS00  
µPD16520  
Electrical Specifications  
(Unless otherwise specified, VDD1 = +15 V, VDD2a = 0 V, VDD2b = +1.0 V, Vsb = +21.5 V, VCC = +2.5 V, VSS =  
7.0 V, TA = 25°C, GND = 0 V)  
Parameter  
Output voltage, high  
Output voltage, middle  
Symbol  
VH  
Conditions  
IO = 20 µA  
MIN.  
VDD1 0.1  
VDD2a 0.1  
VDD2b  
VSS  
TYP.  
MAX.  
VDD1  
VDD2a  
VDD2b + 0.1  
VSS + 0.1  
Vsb  
Unit  
V
VMa  
VMb  
VL  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 10 mA  
IO = ±10 mA  
IO = 10 mA  
V
V
Output voltage, low  
V
Output voltage, sub-high  
Output voltage, sub-low  
Output on-state resistance  
VsubH  
VsubL  
RL  
Vsb 0.1  
VSS  
V
VSS + 0.1  
30  
V
20  
30  
30  
30  
RM  
45  
RH  
40  
Rsub  
TD1  
TD2  
TD3  
TP1  
TP2  
TP3  
40  
Transmission delay time 1  
Transmission delay time 2  
Transmission delay time 3  
Rise/fall time 1  
No load  
200  
ns  
ns  
ns  
ns  
ns  
ns  
See Figure 2-2 Timing Charts.  
200  
200  
See Figure 2-1 Output Load  
Equivalence Circuit.  
500  
Rise/fall time 2  
500  
See Figure 2-2 Timing Charts.  
Rise/fall time 3  
200  
Data Sheet S14201EJ1V0DS00  
7
µPD16520  
Figure 2-1. Output Load Equivalence Circuit  
(a) Between output pins (b) Between output pin and GND  
BO4  
TO1  
TO1  
BO4  
R10  
R1  
TO1'  
BO3  
R10  
TO2  
R1  
TO2  
BO3  
BO4'  
BO4'  
C10  
TO1'  
R2  
R2  
TO2'  
C1  
R9  
BO3'  
R9  
C2  
C3  
C4  
BO3'  
TO2'  
C9  
TO3'  
R3  
TO3  
BO2  
TO3  
R3  
TO3'  
BO2'  
BO2  
R8 BO2'  
C8  
R8  
TO4'  
C7  
C5  
R4  
BO1'  
TO6  
C6  
BO1'  
R7  
R4  
R7  
TO5'  
R5  
TO6'  
TO4'  
BO1  
TO4  
R6  
RGND  
TO6'  
TO5'  
TO4  
BO1  
R5  
R6  
TO5  
TO6  
TO5  
SUB0  
C11  
Output Load Capacitance Symbol  
TO1'  
TO2'  
C_33  
TO3'  
C_33  
C_33  
TO4'  
TO5'  
TO6'  
C_33  
C_33  
C_33  
C_33  
C_33  
BO1'  
C_32  
C_23  
C_32  
C_23  
C_32  
C_23  
BO2'  
BO3'  
BO4'  
C_23  
C_32  
C_23  
C_32  
C_23  
C_32  
C_22  
C_22  
C_22  
GND  
C1  
TO1'  
TO2'  
TO3'  
TO4'  
TO5'  
TO6'  
BO1'  
BO2'  
BO3'  
BO4'  
SUBO  
C_33  
C_33  
C_33  
C_33  
C_33  
C_33  
C_33  
C_23  
C_32  
C_23  
C_32  
C_23  
C_32  
C_22  
C_32  
C_23  
C_32  
C_23  
C_32  
C_23  
C_22  
C_22  
C_33  
C_33  
C_33  
C_33  
C_33  
C_32  
C_23  
C_32  
C_23  
C2  
C_33  
C_33  
C_33  
C_33  
C_23  
C_32  
C_23  
C_32  
C3  
C_33  
C_33  
C_33  
C_32  
C_23  
C_32  
C_23  
C4  
C_33  
C_33  
C_23  
C_32  
C_23  
C_32  
C5  
C_33  
C_32  
C_23  
C_32  
C_23  
C6  
C_23  
C_32  
C_23  
C_32  
C7  
C_22  
C_22  
C_22  
C8  
C_22  
C_22  
C9  
C_22  
C10  
C11  
8
Data Sheet S14201EJ1V0DS00  
µPD16520  
Output Load Equivalence Circuit Constants  
Parameter  
Symbol  
R1 to R10  
Constant  
Vertical register serial resistor  
0 Ω  
Vertical register ground resistor  
RGND  
C_33  
0 Ω  
Capacitance 1 between vertical register clocks (3 level-3 level)  
Capacitance 2 between vertical register clocks (2 level-2 level)  
Capacitance 3 between vertical register clocks (3 level-2 level)  
Capacitance 4 between vertical register clocks (2 level-3 level)  
Vertical register ground capacitance 1 (3 level)  
Vertical register ground capacitance 2 (2 level)  
Substrate ground capacitance  
0 pF  
0 pF  
C_22  
C_32  
1000 pF  
500 pF  
C_23  
C1 to C6  
C7 to C10  
C11  
3000 pF  
1500 pF  
1600 pF  
Figure 2-2. Timing Charts  
BI1 to BI4  
TI1 to TI6  
TD1  
TD1  
VMb  
VMa  
BO1 to BO4  
TO1 to TO6  
VL  
TP1  
TP1  
PG1 to PG6  
TD2  
TD2  
VH  
TO1 to TO6  
VMa  
TP2  
TP2  
SUBI  
TD3  
TD3  
VHH  
VL  
SUBO  
TP3  
TP3  
Data Sheet S14201EJ1V0DS00  
9
µPD16520  
3. CAUTIONS  
3.1 Power ON/OFF Sequence  
In the µPD16520, a PN junction (diode) exists between VDD2 VDD1, input pin (TI1 to TI6, PG1 to PG6, BI1 to  
BI4, SUBI) VCC, so that in the case of voltage conditions: VDD2 > VDD1, input pin voltage (TI1 to TI6, PG1 to  
PG6, BI1 to BI4, SUBI) > VCC, an abnormal current flows. Therefore, when turning the power ON/OFF, make sure  
that the following voltage conditions are satisfied: VDD2 VDD1, input pin voltage (TI1 to TI6, PG1 to PG6, BI1 to  
BI4, SUBI) VCC. Also, to minimize the negative potential applied to the SUB pin of the CCD image sensor, following  
the power ON/OFF sequence described below.  
(1) Power ON  
<1> Powering ON VCC  
Make sure that input pin voltage (TI1 to TI6, PG1 to PG6, BI1 to BI4, SUBI) VCC. Also, when Vsb = 2 V,  
make sure that VCC reaches the rated voltage.  
<2> Powering ON Vsb, VDD1, VDD2a, VDD2b, VSS  
At this time, make SUBI high level (0.8VCC or higher).  
Vsb  
VDD1  
Vcc  
2V  
VDD2a, VDD2b  
0V  
<1> <2>  
Vss  
Time  
10  
Data Sheet S14201EJ1V0DS00  
µPD16520  
(2) Power OFF  
<1> Powering OFF Vsb, VDD1, VDD2a, VDD2b, VSS  
Until VCC power OFF, keep SUBI high level (0.8VCC or higher).  
<2> Powering OFF VCC  
Power OFF VCC when Vsb becomes 2 V or lower. At this time, make sure that the input pin voltage (TI1 to  
TI6, PG1 to PG6, BI1 to BI4, SUBI) VCC.  
<1>  
Vsb  
VDD1  
<2>  
Vcc  
VDD2a, VDD2b  
2V  
0V  
Vss  
Time  
3.2. Recommended Connection of Unused Pins  
Handle input pins and output pins that are not used as follows.  
Input pin:  
High level (connect to VCC)  
Output pin: Leave open  
Data Sheet S14201EJ1V0DS00  
11  
µPD16520  
4. APPLICATION CIRCUIT EXAMPLE  
µ
µ
µ
µ
µ
µ
µ
µ
12  
Data Sheet S14201EJ1V0DS00  
µPD16520  
5. PACKAGE DRAWING  
38-PIN PLASTIC SSOP (300 mil)  
38  
20  
detail of lead end  
G
F
P
L
1
19  
A
E
H
I
J
S
B
C
N
S
K
M
D
M
NOTE  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
12.7±0.3  
0.65 MAX.  
0.65 (T.P.)  
+0.05  
0.37  
D
0.1  
E
F
G
H
I
0.125±0.075  
1.675±0.125  
1.55  
7.7±0.2  
5.6±0.2  
J
1.05±0.2  
+0.1  
0.2  
K
0.05  
L
M
N
0.6±0.2  
0.10  
0.10  
+7°  
3°  
P
3°  
P38GS-65-BGG  
Data Sheet S14201EJ1V0DS00  
13  
µPD16520  
6. RECOMMENDED SOLDERING CONDITIONS  
The µPD16520 should be soldered and mounted under the following recommended conditions.  
For the details of the recommended soldering conditions, refer to the document Semiconductor Device  
Mounting Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact your NEC sales  
representative.  
Table 6-1. Surface Mounting Type Soldering Conditions  
µPD16520GS-BGG: 38-pin plastic shrink SOP (300 mil)  
Soldering Method  
Infrared reflow  
VPS  
Soldering Conditions  
Recommended  
Condition Symbol  
Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher),  
Count: Three times or less  
IR35-00-3  
Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher),  
Count: Three times or less  
VP15-00-3  
WS60-00-1  
Wave soldering  
Partial heating  
Solder bath temperature: 260°C, Time: 10 sec. Max., Count: Once,  
Preheating temperature: 120°C Max. (package surface temperature)  
Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)  
Caution Do not use different soldering methods together (except for partial heating).  
14  
Data Sheet S14201EJ1V0DS00  
µPD16520  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Data Sheet S14201EJ1V0DS00  
15  
µPD16520  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

UPD166007T1F

Buffer/Inverter Based Peripheral Driver, 130A, TO-252, 5 PIN
NEC

UPD16601

MOS Integrated Circuit
NEC

UPD166010T1F-E1-AY

UPD166010T1F-E1-AY
RENESAS

UPD166011T1J

INTELLIGENT POWER DEVICE
RENESAS

UPD166011T1J-E1-AY

INTELLIGENT POWER DEVICE
RENESAS

UPD166013T1J

INTELLIGENT POWER DEVICE
RENESAS

UPD166013T1J-E1-AY

INTELLIGENT POWER DEVICE
RENESAS

UPD166015GR

MOS INTEGRATED CIRCUIT
RENESAS

UPD166015GR-E1-AY

MOS INTEGRATED CIRCUIT
RENESAS

UPD166015GR-E2-AY

MOS INTEGRATED CIRCUIT
RENESAS

UPD166017T1F

INTELLIGENT POWER DEVICE
RENESAS

UPD166017T1F-E1-AY

INTELLIGENT POWER DEVICE
RENESAS