UPD166007T1F [NEC]

Buffer/Inverter Based Peripheral Driver, 130A, TO-252, 5 PIN;
UPD166007T1F
型号: UPD166007T1F
厂家: NEC    NEC
描述:

Buffer/Inverter Based Peripheral Driver, 130A, TO-252, 5 PIN

驱动 接口集成电路
文件: 总24页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD166007  
SINGLE N-CHANNEL HIGH SIDE INTELLIGENT POWER DEVICE  
GENERAL DESCRIPTION  
The μPD166007 device is an N-channel high-side switch with charge pump, current controlled input, diagnostic  
feedback with load current sense and embedded protection functions.  
FEATURES  
PACKAGE DRAWING (unit: mm)  
Built-in charge pump  
6.5 0.2  
5.0 TYP  
4.3 MIN  
2.3 0.1  
Low on-state resistance  
0.5 0.1  
Short-circuit protection  
6
- Shutdown by short-circuit detection  
Over-temperature protection  
- Shutdown with auto-restart on cooling  
Small multi-chip package: JEDEC 5-PIN TO-252  
Built-in diagnostic function  
1
2
3
4
5
0 to 0.25  
0.6 0.1  
1.14  
- Proportional load current sensing  
- Defined fault signal in case of thermal shutdown and/or  
short circuit shutdown  
1.14  
0.508  
NOTE  
1.  
No Plating area  
ORDERING INFORMATION  
Part Number  
Package  
Quality Grade  
Special  
μPD166007T1F  
5-PIN TO-252(MP-3ZK)  
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
BLOCK DIAGRAM  
3&Tab  
ICC  
VCC  
Dynamic  
clamp  
Voltage sensor  
+
VON  
Charge  
pump  
Control  
logic  
Internal power  
supply  
Current  
detector  
1&5  
ESD  
Output voltage  
sensor  
IN  
2
OUT  
IS  
IL  
4
Temperature  
sensor  
Current sense  
ESD  
VOUT  
IIN  
IIS  
VI  
RIS  
VIN  
Load  
Load GND  
Logic GND  
Logic GND  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S18529EJ2V0DS00 (2nd edition)  
Date Published April 2007 CP(K)  
Printed in Japan  
©NEC Electronics Corporation 2006  
μPD166007  
APPLICATION  
Light bulb (to 55W) switching  
Switching of all types of 14 V DC grounded loads, such as inductor, resistor and capacitor  
Replacement for fuse and relay  
PIN CONFIGURATION  
Tab  
Pin No.  
Terminal Name  
Function  
1
OUT  
IN  
Output to load; pin 1 and 5 must be externally shorted.  
Input; activates the power switch, if shorted to ground.  
Supply Voltage; tab and pin 3 are internally shorted.  
Sense Output; diagnostic feedback NOTE  
2
3/Tab  
4
1
4 5  
2 3  
VCC  
IS  
5
OUT  
Output to load; pin 1 and 5 must be externally shorted.  
NOTE: If current sense and diagnostic features are not used, IS terminal has to be connected to GND via resistor.  
ABSOLUTE MAXIMUM RATING (Ta = 25°C, unless otherwise specified)  
Parameter  
VCC voltage  
Symbol  
Test Conditions  
Rating  
28  
Unit  
V
VCC1  
VCC voltage for full short circuit VCC2  
protection  
18  
36  
V
V
RI = 1 Ω, RL = 1.5 Ω, td = 400 ms,  
RIS = 1 kΩ, IN = low or high  
DC, Tc = 25°C  
VCC voltage (Load Dump)  
VCC3  
Load current  
IL  
30  
A
A
Load current (short circuit  
current)  
IL(SC)  
Self Limited  
Tc = 25°C  
Power dissipation  
PD  
59  
–40 to +150  
–55 to +150  
2.0  
W
°C  
°C  
Channel temperature  
Storage temperature  
Tch  
Tstg  
VESD  
Electric discharge capability  
(Human Body Model)  
IN, IS  
kV  
kV  
V
R = 1.5 kΩ, C = 100pF  
4.0  
OUT  
Voltage of IN pin (DC)  
Voltage of IS pin (DC)  
VIN  
VIS  
VCC=14V  
VCC=14V  
VCC+14 V, VCC–28 V  
VCC+14 V, VCC–28 V  
V
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Symbol  
Test Conditions  
Tch = –40 to 150°C  
Min.  
8
Typ.  
Max.  
18  
Unit  
V
Power supply voltage  
VCC  
2
Data Sheet S18529EJ2V0DS  
μPD166007  
THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
45  
Max.  
55  
Unit  
Thermal Resistance  
Rth(ch-a)  
Device on 50 mm × 50 mm × 1.5 mm  
epoxy PCB FR4 with 6 cm2 of 70 um  
copper area  
°C/W  
ELECTRICAL CHARACTERISTICS (VCC = 12 V, Tch = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Tch = –40 to 150°C  
Min.  
Typ.  
Max.  
Unit  
mA  
Required current capability of  
Input switch  
IIH  
0.7  
2.2  
μA  
μA  
μA  
Input current for turn-off  
Standby Current  
IIL  
10  
6
Tch = 25°C  
ICC(off)  
Iin = 0 A  
4
Tch = –40 to 150°C  
Tch = 25°C  
4
15  
On State Resistance  
Ron  
IL = 7.5 A  
8
10  
mΩ  
Tch = 150°C  
14  
18  
RL = 2.2 Ω,  
μs  
μs  
μs  
μs  
Turn On Time  
Turn Off Time  
Rise time  
Ton  
200  
250  
150  
100  
400  
700  
300  
500  
Tch = –40 to 150°C  
refer to page 15  
Toff  
Tr  
Fall time  
Tf  
25 to 50% VOUT, RL=2.2 Ω,  
Slew rate on  
dV/dton  
V/μs  
V/μs  
0.2  
0.2  
0.6  
0.5  
Tch = –40 to 150°C, refer to page 15  
50 to 25% VOUT, RL=2.2 Ω,  
Slew rate off  
-dV/dtoff  
Tch = –40 to 150°C, refer to page 15  
3
Data Sheet S18529EJ2V0DS  
μPD166007  
PROTECTION FUNCTIONS (VCC = 12 V, Tch = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
VCC = –12 V, IL = –7.5 A, RIS = 1 kΩ  
Tch = 25°C  
Min.  
Typ.  
Max.  
Unit  
Output voltage drop at reverse  
battery conditonNote  
Vds(rev)  
0.8  
0.6  
50  
0.84  
0.63  
120  
V
V
A
Tch = 150°C  
Note  
Note  
IL6, 3(SC)  
IL6, 6(SC)  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Short circuit detection current  
VCC–VIN = 6 V,  
Von = 3 V  
50  
20  
10  
45  
VCC–VIN = 6 V,  
Von = 6 V  
35  
110  
180  
160  
120  
200  
170  
120  
90  
35  
35  
IL12, 3(SC)  
IL12, 6(SC)  
VCC–VIN = 12 V,  
Von = 3 V  
110  
105  
95  
76  
50  
Note  
VCC–VIN = 12 V,  
Von = 6 V  
90  
85  
40  
10  
60  
50  
30  
80  
Note  
IL12, 12(SC)  
VCC–VIN = 12 V,  
Von = 12 V  
55  
50  
45  
Note  
IL18, 3(SC)  
IL18, 6(SC)  
VCC–VIN = 18 V,  
Von = 3 V  
130  
125  
110  
110  
110  
100  
75  
Note  
VCC–VIN = 18 V,  
Von = 6 V  
Note  
IL18, 12(SC)  
IL18, 18(SC)  
Von(CL)  
VCC–VIN = 18 V,  
Von = 12 V  
70  
65  
Note  
VCC–VIN = 18 V,  
Von = 18 V  
50  
50  
5
45  
Output clamp voltage  
IL = 40 mA  
30  
34  
40  
V
(inductive load switch off)  
Over load detection voltage  
Tch = –40 to 150°C  
Tch = –40 to 150°C  
VON(OvL)  
td(OC)  
0.65  
0.8  
1
1.45  
3.5  
V
Turn-on check delay after input  
current positive slope  
1.9  
ms  
°C  
°C  
Thermal shutdown temperature  
Thermal hysteresis  
Tth  
150  
175  
10  
ΔTth  
Note Not subject to production test, specified by design.  
4
Data Sheet S18529EJ2V0DS  
μPD166007  
DIAGNOSTIC CHARACTERISTICS (VCC = 12 V, Tch = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Current sense ratio  
KILIS  
KILIS = IL/IIS  
VIS < VOUT – 6 V, IIS < IIS,lim  
Tch = –40°C  
IL = 30 A  
IL = 7.5 A  
8300  
8300  
8300  
7500  
8000  
8200  
6100  
6500  
7600  
0
9350  
9400  
9450  
9400  
9500  
9550  
9600  
9600  
9600  
11000  
10600  
10000  
11400  
10800  
10200  
14200  
12800  
11500  
60  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
Tch = –40°C  
Tch = 25°C  
Tch = 150°C  
IL = 2.5 A  
μA  
Sense current offset current  
IIS,offset  
IIS,fault  
VIN = 0 V, IL = 0 A  
Sense current under fault  
condition  
Under fault conditions  
8 V < Vcc – VIS < 12 V,  
Tch = –40 to 150°C  
3.5  
3.5  
6.0  
7.0  
12.0  
12.0  
mA  
Sense current saturation  
current  
IIS,lim  
Vis < Vout – 6 V,  
mA  
Tch = –40 to 150°C  
Tch = –40 to 150°C  
Fault sense signal delay after  
short circuit detectionNote  
tsdelay(fault)  
μs  
2
6
μA  
Sense current leakage current  
IIS(LL)  
IIN = 0 A  
0.1  
0.5  
Current sense settling time  
after input current positive  
slopeNote  
tson(IS)  
Tch = –40 to  
IL = 0 A 20 A  
150°C  
μs  
μs  
250  
50  
1000  
100  
Current sense settling time  
during on conditionNote  
Tsic(IS)  
IL = 10 A 20 A  
Note Not subject to production test, specified by design.  
5
Data Sheet S18529EJ2V0DS  
μPD166007  
FEATURES DESCLIPTION  
Driver Circuit (On-Off Control)  
The high-side output is turned on, if the input pin is shorted to ground. The input current is below IIH. The high-side  
output is turned off, if the input pin is open or the input current is below IIL. Rin0 is 130 Ω typ. ESD protection diode:  
46 V typ.  
VCC  
IIN  
VZ,IN  
0
Logic  
VOUT  
ZD  
Rin0  
IN  
VCC  
IIN  
OFF  
ON  
OFF  
ON  
0
t
Switching a resistive load  
Switching lamps  
IIN  
IIN  
0
0
IL  
IL  
0
0
VOUT  
VOUT  
Vcc  
0
0
IIS  
IIS  
IIS,lim  
t
t
0
0
6
Data Sheet S18529EJ2V0DS  
μPD166007  
Switching an inductive load  
IIN  
Vcc  
0
IL  
SW1  
0
IS  
ESD  
VOUT  
Ris  
VCC  
Control  
Logic  
0
OUT  
Von(CL)  
IIS  
0
t
Dynamic clamp operation at inductive load switch off  
The dynamic clamp circuit works only when the inductive load is switched off. When the inductive load is switched off,  
the voltage of OUT falls below 0V. The gate voltage of SW1 is then nearly equal to GND because the IS terminal is  
connected to GND via an external resister. Next, the voltage at the source of SW1 (= gate of output MOS) falls below  
the GND voltage.  
SW1 is turned on, and the clamp diode is connected to the gate of the output MOS, activating the dynamic clamp  
circuit.  
When the over-voltage is applied to VCC, the gate voltage and source voltage of SW1 are both nearly equal to GND.  
SW1 is not turned on, the clamp diode is not connected to the gate of the output MOS, and the dynamic clamp circuit  
is not activated.  
7
Data Sheet S18529EJ2V0DS  
μPD166007  
Short circuit protection  
Case 1: IN pin is shorted to ground in an overload condition, which includes a short circuit condition.  
The device shuts down automatically when either or both of following conditions (a, b) is detected. The sense  
current is fixed at IIS,fault. Shutdown is latched until the next reset via input.  
(a) IL > IL(sc)  
(b) Von>Von(OvL) after td(OC)  
Case1-(a) IL > IL(sc)  
IIN  
Short circuit detection  
0
IL(SC)  
IL  
(Evaluation circuit)  
0
Vcc  
VOUT /Vcc  
VBAT  
Von  
Vcc  
OUT  
IS  
IIN  
IIS  
IN  
VON  
VOUT  
VBAT  
RIS  
IL  
VOUT  
VIN  
VIS  
0
RL  
tsdelay(fault)  
: Cable impedance  
IIS  
0
IIS,fault  
t
tsdelay(fault): Fault sense signal delay after short circuit detection  
IL(SC): Short circuit detection current  
Depending on the external impedance  
Typical Short circuit detection current characteristics  
The short circuit detection current changes according VCC voltage and Von voltage for the purpose of to be  
strength of the robustness under short circuit condition.  
I
L(SC) VS. VCC-VIN  
150  
120  
90  
60  
30  
0
IL(SC) [A]  
160  
Von=3V  
140  
120  
100  
80  
Von=6V  
Von=12V  
V
CC-V =18V  
IN  
60  
40  
VCC-V =12V  
IN  
20  
V
CC-V =6V  
IN  
0
0
Von [V]  
5
10  
15  
20  
5
10  
15  
20  
VCC-V [V]  
IN  
8
Data Sheet S18529EJ2V0DS  
μPD166007  
Case1-(b) Von>Von(OvL) after td(OC)  
Short circuit detection  
IIN  
(Evaluation circuit)  
0
IL  
IL(SC)  
Vcc  
Von  
0
OUT  
IS  
IIN  
IIS  
IN  
VOUT /Vcc  
VBAT  
VOUT  
Vcc  
VBAT  
RIS  
IL  
VIN  
VIS  
Von(OvL)  
RL  
VON  
VOUT  
0
: Cable impedance  
td(oc)  
IIS  
0
td(oc): Turn-on check delay after input current positive slope  
IIS,fault  
t
Depending on the external impedance  
9
Data Sheet S18529EJ2V0DS  
μPD166007  
Case 2: Short circuit during on-condition  
The device shuts down automatically when either or both of following conditions (a, b) is detected. The sense  
current is fixed at IIS,fault. Shutdown is latched until the next reset via input.  
(a) IL > IL(sc)  
(b) Von>Von(OvL) after td(oc)  
Case2-(a) IL > IL(sc)  
IIN  
Short circuit detection  
(Evaluation circuit)  
0
IL  
IL(SC)  
Vcc  
Von  
OUT  
IS  
0
IIN  
IIS  
VOUT  
Vcc  
IN  
VOUT  
VBAT  
RIS  
IL  
VIN  
VIS  
RL  
0
: Cable impedance  
tsdelay(fault)  
IIS,fault  
IIS  
tsdelay(fault): Fault sense signal delay after short circuit detection  
IL(SC): short circuit detection current  
0
t
Depending on the external impedance  
10  
Data Sheet S18529EJ2V0DS  
μPD166007  
Case2-(b) Von>Von(OvL) after td(OC)  
IIN  
Short circuit detection  
0
IL(SC)  
IL  
0
VOUT/Vcc  
Vcc  
VBAT  
1V(typ)  
VOUT  
0
tsdelay(fault)  
IIS,fault  
td(oc)  
IIS  
t
0
Depending on the external impedance  
td(oc): Turn-on check delay after input current positive slope  
tsdelay(fault): Fault sense signal delay after short circuit detection  
IL(SC): Short circuit detection current  
(Evaluation circuit)  
Vcc  
Von  
OUT  
IS  
IIN  
IIS  
IN  
VOUT  
VBAT  
RIS  
IL  
VIN  
VIS  
RL  
: Cable impedance  
11  
Data Sheet S18529EJ2V0DS  
μPD166007  
Over-temperature protection  
The output is switched off if over-temperature is detected. The device switches on again after it cools down.  
IIN  
0
Tch  
Tth  
ΔTth  
VOUT  
0
IIS  
IIS,fault  
t
0
Power dissipation under reverse battery condition  
In the case of a reverse battery condition, the intrinsic body diode causes power dissipation. Additional power is  
dissipated by the internal resister. The following is the formula for estimation of total power dissipation Pd(rev) in a  
reverse battery condition.  
Pd(rev) = Vds(rev) × IL + (Vcc – Vf – Iin(rev) × Rin) × Iin(rev) + (Vcc – Iis(rev) × Ris) × Iis(rev)  
Iin(rev) = (Vcc – ( Vf +Vf,IN)) / (Rin0 + Rin)  
Iis(rev) = (Vcc – Vf,IS) / (Ris0 + Ris)  
Vf,IN: Forward voltage of Vz,IN  
Vf,IS: Forward voltage of Vz,IS  
Vf: Forward voltage of parasitic diode of external input switch  
The reverse current through the intrinsic body diode has to be limited by the connected load. The current through  
sense pin IN is limited by Rin0 130ohm typ.. (Please refer to Current sense output). The current through input pin  
IS is limited by Ris0 130ohm typ. and external Ris. (Please refer to Driver Circuit (On-Off Control) ).  
12  
Data Sheet S18529EJ2V0DS  
μPD166007  
Device behavior at low voltage condition  
If the voltage supply goes down, the device cannot keep a fully ON state under 4.6V(typ), and Von voltage is going  
to increase. Then, if Von voltage goes over Von(OvL), the device shuts down the output. Shutdown is latched until the  
next reset via input. Shutdown does not work during td(oc) after input is active. VON(OvL) goes down under 4.6V.  
IIN  
0
IL  
0
VOUT/Vcc  
Vcc  
VBAT  
VOUT  
Von(OvL)  
0
t
td(oc)  
Over load detection voltage characteristics under low voltage supply condition  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
5
10  
15  
20  
Voltage supply Vcc - VIN [V]  
13  
Data Sheet S18529EJ2V0DS  
μPD166007  
Current sense output  
VCC  
Ris0 is 130 Ω typ. Vz,IS = 46 V (typ.), RIS = 1 kΩ nominal.  
IS can be only driven by the internal circuit as long as Vis  
< Vout–6 V. Ris should be less than 20 kΩ for any  
application. Even If current sense and diagnostic features  
are not used, Ris has to be connected.  
VZ,IS  
ZD  
IS  
IIS  
Ris0  
Note For large values of RIS, VIS can almost reach Vcc.  
Ris  
IIS  
IIS,lim  
KILIS=IL/IIS  
VIS<Vout-6V, IIS<IIS,lim  
IIS,offset  
IL  
IL,lim  
Current sense ratio  
16000  
14000  
12000  
10000  
8000  
Tch = -40degreeC  
Tch = 150degreeC  
6000  
4000  
0
5
10  
15  
20  
IL[A]  
25  
30  
35  
Load Current  
14  
Data Sheet S18529EJ2V0DS  
μPD166007  
Measurement condition  
Switching waveform of OUT Terminal  
IIN  
ton  
toff  
tr  
tf  
90%  
90%  
50%  
50%  
25%  
VOUT  
dV/dton  
-dV/dtoff  
25%  
10%  
10%  
Switching waveform of IS terminal  
IIN  
tson(IS)  
tSIC(IS)  
tSIC(IS)  
IIS  
15  
Data Sheet S18529EJ2V0DS  
μPD166007  
Truth table  
Input Current  
State  
Output  
OFF  
ON  
Sense Current  
0 mA (IIS(LL))  
Nominal  
IIS,fault  
L
Normal Operation  
H
Over-temperature or Short circuit  
Open Load  
OFF  
ON  
IIS,offset  
Application example in principle  
5V  
Vbat  
1)  
UPD166007  
R
Micro.  
VCC  
2)  
IN  
OUT  
OUT  
OUTPUT PORT  
R
3)  
R
IS  
Load  
ADC PORT  
GND  
R
Ris  
1) In order to prevent leakage current through at IN terminal via PCB,  
it is recommended to pull up the IN terminal to VCC using around 1 to10kΩ (approx.) resistor.  
2) If output current is over destruction current characteristics for inductive load at a single off,  
it must be connected through an external component for protection purpose.  
3) If current sense and diagnostic features are not used, IS terminal has to be connected to GND via resistor.  
16  
Data Sheet S18529EJ2V0DS  
μPD166007  
TYPICAL CHARACTERISTICS  
INPUT CURRENT FOR TURN OFF VS.  
AMBIENT TEMPERATURE  
REQUIRED CURRENT CAPABIRITY OF INPUT SWITCH  
VS. AMBIENT TEMPERATURE  
120  
100  
80  
60  
40  
20  
0
3
2.5  
2
1.5  
1
0.5  
0
Vcc=12V  
150 200  
Vcc=12V  
200  
-50  
0
50  
100  
150  
-50  
0
50  
100  
Ambient Temperature Ta[degreeC]  
Ambient Temperature Ta[degreeC]  
STANDBY CURRENT VS. AMBIENT TEMPERATURE  
20  
18  
16  
14  
12  
10  
8
6
4
Vcc=12V  
IIN=0A  
2
0
-50  
0
50  
100  
150  
200  
Ambient Temperature Ta[degreeC]  
TURN OFF TIME VS. AMBIENT TEMPERATURE  
TURN ON TIME VS. AMBIENT TEMPERATURE  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
Vcc=18V  
Vcc=12V  
Vcc=6V  
Vcc=6V  
Vcc=12V  
Vcc=18V  
RL=2.2ohm  
RL=2.2ohm  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Ambient Temperature Ta[degreeC]  
Ambient Temperature Ta[degreeC]  
17  
Data Sheet S18529EJ2V0DS  
μPD166007  
FALL TIME VS. AMBIENT TEMPERATURE  
RISE TIME VS. AMBIENT TEMPERATURE  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
Vcc=6V  
Vcc=18V  
Vcc=12V  
Vcc=18V  
Vcc=12V  
Vcc=6V  
RL=2.2ohm  
RL=2.2ohm  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Ambient Temperature Ta[degreeC]  
Ambient Temperature Ta[deg]  
OUTPUT CLAMP VOLTAGE (INDUCTIVE LOAD SWITCH OFF)  
VS. AMBIENT TEMPERATURE  
SENSE CURRENT OFFSET CURRENT  
VS. AMBIENT TEMPERATURE  
40  
38  
36  
34  
32  
30  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
Vcc=12V  
IL=40mA  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Ambient Temperature Ta[degreeC]  
Ambient Temperature Ta[degreeC]  
SENSE CURRENT LEAKAGE CURRENT VS.  
AMBIENT TEMPERATURE  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
Vcc=12V  
Iin=0A  
-50  
0
50  
100  
150  
200  
Ambient Temperature Ta[degreeC]  
18  
Data Sheet S18529EJ2V0DS  
μPD166007  
SENSE CURRENT UNDER FAULT CONDITION  
VS. AMBIENT TEMPERATURE  
SENSE CURRENT SATURATION CURRENT  
VS. AMBIENT TEMPERATURE  
14  
12  
10  
8
14  
12  
10  
8
Vcc-Vis=12V  
Vcc-Vis=8V  
6
6
4
4
2
2
Vis<VOUT-6V  
0
0
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Ambient Temperature Ta[degreeC]  
Ambient Temperature Ta[degreeC]  
ON STATE RESISTANCE VS. AMBIENT TEMPERATURE  
ON STATE RESISTENCE VS. VCC - VIN VOLTAGE  
20  
12  
18  
16  
14  
12  
10  
8
10  
8
6
4
6
4
2
2
Tch=25degreeC  
0
0
-50  
0
50  
100  
150  
200  
0
5
10  
15  
20  
Ambient Temperature Ta[degreeC]  
VCC-VIN Voltage[V]  
SLEW RATE VS. AMBIENT TEMPERATURE  
0.45  
0.4  
0.35  
0.3  
-dV/dtoff  
dV/dton  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-50  
0
50  
100  
150  
200  
Ambient Tempereture Ta[degreeC]  
19  
Data Sheet S18529EJ2V0DS  
μPD166007  
THERMAL CHARACTERISTICS  
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH  
1000  
100  
10  
Rth(ch-a)=55.0degreeC/W  
Rth(ch-c)=3.17degreeC/W  
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse width (s)  
MAXIMUM ALLOWABLE LOAD INDUCTANCE FOR A SINGLE SWITCH OFF  
Destruction current characteristics for inductive load at a single switch off  
100  
Tch=150degreeC, VCC=12V  
10  
L[mH]  
1
0.1  
0.01  
1
10  
100  
IAS[A]  
20  
Data Sheet S18529EJ2V0DS  
μPD166007  
REVISION HISTORY  
Revision  
Major changes since last version  
Released 1st edition November 2006  
Released 2nd edition April 2007  
Page  
1st edition  
Revised ton, tr characteristics  
3
3
Add dV/dton, -dV/dtoff characteristics  
Add VON(OvL) characteristics  
4
Add td(OC) characteristics  
4
Add explanation device behavior at switching a inductive load  
Add Short circuit protection Case 1-(b)  
Add Short circuit protection Case 2-(b)  
Add explanation device behavior at low voltage condition  
Revised Measurement condition waveform  
Revised application example in principle  
Add maximum allowable load inductance for a single switch off  
7
2nd edition  
9
11  
13  
15  
16  
20  
21  
Data Sheet S18529EJ2V0DS  
μPD166007  
[MEMO]  
22  
Data Sheet S18529EJ2V0DS  
μPD166007  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
V
IH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
23  
Data Sheet S18529EJ2V0DS  
μPD166007  
These commodities, technology or software, must be exported in accordance  
with the export administration regulations of the exporting country.  
Diversion contrary to the law of that country is prohibited.  
The information in this document is current as of April, 2007. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD16601

MOS Integrated Circuit
NEC

UPD166010T1F-E1-AY

UPD166010T1F-E1-AY
RENESAS

UPD166011T1J

INTELLIGENT POWER DEVICE
RENESAS

UPD166011T1J-E1-AY

INTELLIGENT POWER DEVICE
RENESAS

UPD166013T1J

INTELLIGENT POWER DEVICE
RENESAS

UPD166013T1J-E1-AY

INTELLIGENT POWER DEVICE
RENESAS

UPD166015GR

MOS INTEGRATED CIRCUIT
RENESAS

UPD166015GR-E1-AY

MOS INTEGRATED CIRCUIT
RENESAS

UPD166015GR-E2-AY

MOS INTEGRATED CIRCUIT
RENESAS

UPD166017T1F

INTELLIGENT POWER DEVICE
RENESAS

UPD166017T1F-E1-AY

INTELLIGENT POWER DEVICE
RENESAS

UPD166019T1F

Single P-Channel High-Side Intelligent Power Device
RENESAS