2SJ687-ZK-E1-AY [NEC]

MOS FIELD EFFECT TRANSISTOR; MOS场效应
2SJ687-ZK-E1-AY
型号: 2SJ687-ZK-E1-AY
厂家: NEC    NEC
描述:

MOS FIELD EFFECT TRANSISTOR
MOS场效应

晶体 小信号场效应晶体管 开关
文件: 总8页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS FIELD EFFECT TRANSISTOR  
2SJ687  
SWITCHING  
P-CHANNEL POWER MOSFET  
DESCRIPTION  
The 2SJ687 is P-channel MOSFET device and a excellent switch that can be driven by a low power-supply voltage.  
FEATURES  
Low on-state resistance  
RDS(on)1 = 7.0 mΩ MAX. (VGS = 4.5 V, ID = 10 A)  
RDS(on)2 = 9.0 mΩ MAX. (VGS = 3.0 V, ID = 10 A)  
RDS(on)3 = 20 mΩ MAX. (VGS = 2.5 V, ID = 10 A)  
2.5 V drive available  
Avalanche capability ratings  
ORDERING INFORMATION  
PART NUMBER  
LEAD PLATING  
Pure Sn (Tin)  
PACKING  
PACKAGE  
2SJ687-ZK-E1-AY Note  
2SJ687-ZK-E2-AY Note  
TO-252 (MP-3ZK)  
0.27 g TYP.  
Tape 2500 p/reel  
Note Pb-free (This product does not contain Pb in external electrode.)  
(TO-252)  
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)  
Drain to Source Voltage (VGS = 0 V)  
Gate to Source Voltage (VDS = 0 V)  
Drain Current (DC) (TC = 25°C)  
Drain Current (pulse) Note1  
VDSS  
VGSS  
ID(DC)  
ID(pulse)  
PT1  
20  
m12  
V
V
m20  
A
m60  
A
Total Power Dissipation (TC = 25°C)  
Total Power Dissipation (TA = 25°C)  
Channel Temperature  
36  
W
W
°C  
°C  
A
PT2  
1.0  
Tch  
150  
Storage Temperature  
Tstg  
55 to +150  
20  
Single Avalanche Current Note2  
Single Avalanche Energy Note2  
IAS  
EAS  
40  
mJ  
Notes 1. PW 10 μs, Duty Cycle 1%  
2. Starting Tch = 25°C, VDD = 10 V, RG = 25 Ω, VGS = 12 0 V  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. D18719EJ2V0DS00 (2nd edition)  
Date Published May 2007 NS  
Printed in Japan  
2007  
The mark <R> shows major revised points.  
The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.  
2SJ687  
ELECTRICAL CHARACTERISTICS (TA = 25°C)  
CHARACTERISTICS  
Zero Gate Voltage Drain Current  
Gate Leakage Current  
SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
10  
UNIT  
μA  
nA  
V
IDSS  
VDS = 20 V, VGS = 0 V  
<R>  
<R>  
IGSS  
VGS = m12 V, VDS = 0 V  
VDS = 10 V, ID = 1 mA  
VDS = 10 V, ID = 10 A  
VGS = 4.5 V, ID = 10 A  
VGS = 3.0 V, ID = 10 A  
VGS = 2.5 V, ID = 10 A  
VDS = 10 V,  
m100  
1.45  
Gate to Source Cut-off Voltage  
Forward Transfer Admittance Note  
Drain to Source On-state Resistance Note  
VGS(off)  
| yfs |  
RDS(on)1  
RDS(on)2  
RDS(on)3  
Ciss  
0.6  
1.2  
20  
S
5.4  
7.1  
7.0  
9.0  
20  
mΩ  
mΩ  
mΩ  
pF  
pF  
pF  
ns  
10.8  
4400  
1070  
760  
36  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Turn-on Delay Time  
Rise Time  
Coss  
VGS = 0 V,  
Crss  
f = 1 MHz  
td(on)  
tr  
VDD = 10 V, ID = 10 A,  
VGS = 4.5 V,  
220  
270  
310  
57  
ns  
Turn-off Delay Time  
Fall Time  
td(off)  
tf  
RG = 3 Ω  
ns  
ns  
Total Gate Charge  
QG  
VDD = 16 V,  
nC  
nC  
nC  
V
Gate to Source Charge  
Gate to Drain Charge  
Body Diode Forward Voltage Note  
Reverse Recovery Time  
Reverse Recovery Charge  
QGS  
VGS = 4.5 V,  
12  
QGD  
VF(S-D)  
trr  
ID = 20 A  
28  
IF = 20 A, VGS = 0 V  
IF = 20 A, VGS = 0 V,  
di/dt = 100 A/μs  
0.85  
200  
240  
1.5  
ns  
Qrr  
nC  
Note Pulsed  
TEST CIRCUIT 2 SWITCHING TIME  
TEST CIRCUIT 1 AVALANCHE CAPABILITY  
D.U.T.  
D.U.T.  
L
RG  
= 25 Ω  
50 Ω  
V
V
GS()  
R
L
90%  
90%  
V
GS  
V
GS  
10%  
0
V
DD  
PG.  
GS = 12 0 V  
Wave Form  
RG  
V
PG.  
V
DD  
DS()  
90%  
BVDSS  
I
AS  
V
DS  
V
0
GS()  
V
DS  
10% 10%  
V
DS  
0
Wave Form  
I
D
t
d(on)  
t
r
t
d(off)  
t
f
V
DD  
τ
t
on  
t
off  
τ = 1  
μ
s
Starting Tch  
Duty Cycle 1%  
TEST CIRCUIT 3 GATE CHARGE  
D.U.T.  
I
G
= 2 mA  
RL  
PG.  
V
DD  
50 Ω  
2
Data Sheet D18719EJ2V0DS  
2SJ687  
TYPICAL CHARACTERISTICS (TA = 25°C)  
DERATING FACTOR OF FORWARD BIAS  
SAFE OPERATING AREA  
TOTAL POWER DISSIPATION vs.  
CASE TEMPERATURE  
120  
100  
80  
60  
40  
20  
0
40  
35  
30  
25  
20  
15  
10  
5
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Tch - Channel Temperature - °C  
TC - Case Temperature - °C  
FORWARD BIAS SAFE OPERATING AREA  
-1000  
-100  
-10  
I
D(pulse)  
D(DC)  
I
PW = 1 ms  
10 ms  
R
DS(on) Limited  
(VGS = 4.5 V)  
-1  
T
C
= 25°C  
Single Pulse  
-0.1  
-0.1  
-1  
-10  
-100  
VDS - Drain to Source Voltage - V  
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH  
1000  
100  
10  
Rth(ch-A) = 125°C/Wi  
Rth(ch-C) = 3.47°C/Wi  
1
0.1  
0.01  
Single Pulse  
100 μ  
1 m  
10 m  
100 m  
1
10  
100  
1000  
PW - Pulse Width - s  
3
Data Sheet D18719EJ2V0DS  
2SJ687  
DRAIN CURRENT vs.  
FORWARD TRANSFER CHARACTERISTICS  
DRAIN TO SOURCE VOLTAGE  
-60  
-40  
-20  
0
-100  
-10  
V
DS = 10 V  
Pulsed  
V
GS = 4.5 V  
-1  
2.5 V  
-0.1  
T
ch = 55°C  
25°C  
25°C  
75°C  
125°C  
150°C  
-0.01  
-0.001  
-0.0001  
Pulsed  
0
-1  
-2  
-3  
0
-1  
-2  
-3  
VDS - Drain to Source Voltage - V  
VGS - Gate to Source Voltage - V  
GATE TO SOURCE CUT-OFF VOLTAGE vs.  
CHANNEL TEMPERATURE  
FORWARD TRANSFER ADMITTANCE vs.  
DRAIN CURRENT  
<R>  
-2  
-1.5  
-1  
100  
10  
T
ch = 55°C  
25°C  
1
25°C  
75°C  
125°C  
150°C  
-0.5  
0
0.1  
V
DS = 10 V  
= 1 mA  
V
DS = 10 V  
I
D
Pulsed  
0.01  
-75  
-25  
25  
75  
125  
175  
-0.001 -0.01  
-0.1  
-1  
-10  
-100  
ID - Drain Current - A  
Tch - Channel Temperature - °C  
DRAIN TO SOURCE ON-STATE RESISTANCE vs.  
DRAIN CURRENT  
DRAIN TO SOURCE ON-STATE RESISTANCE vs.  
GATE TO SOURCE VOLTAGE  
50  
60  
I
D
= 10 A  
Pulsed  
50  
Pulsed  
40  
30  
20  
10  
0
40  
30  
20  
V
GS = 2.5 V  
10  
0
4.5 V  
0
-5  
-10  
-15  
-0.1  
-1  
-10  
-100  
VGS - Gate to Source Voltage - V  
ID - Drain Current - A  
4
Data Sheet D18719EJ2V0DS  
2SJ687  
DRAIN TO SOURCE ON-STATE RESISTANCE vs.  
CHANNEL TEMPERATURE  
CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE  
15  
10  
5
10000  
1000  
100  
C
iss  
V
GS = 2.5 V  
C
oss  
4.5 V  
C
rss  
V
GS = 0 V  
I = 10 A  
D
f = 1 MHz  
Pulsed  
0
-0.01  
-0.1  
-1  
-10  
-100  
-75  
-25  
25  
75  
125  
175  
VDS - Drain to Source Voltage - V  
Tch - Channel Temperature - °C  
SWITCHING CHARACTERISTICS  
DYNAMIC INPUT/OUTPUT CHARACTERISTICS  
-25  
1000  
100  
10  
-5  
-4  
-3  
-2  
-1  
0
V
DD = 16 V  
t
d(off)  
10 V  
-20  
-15  
-10  
-5  
4 V  
t
f
t
r
V
GS  
t
d(on)  
V
V
R
DD = 10 V  
GS = 4.5 V  
V
DS  
I
D
= 20 A  
G
= 3 Ω  
0
-0.1  
-1  
-10  
-100  
0
10  
20  
30  
40  
50  
60  
ID - Drain Current - A  
QG - Gate Charge - nC  
SOURCE TO DRAIN DIODE  
FORWARD VOLTAGE  
REVERSE RECOVERY TIME vs.  
DIODE FORWARD CURRENT  
-100  
10000  
1000  
100  
4.5 V  
-10  
-1  
V
GS = 0 V  
2.5 V  
-0.1  
-0.01  
di/dt = 100 A/μs  
V
GS = 0 V  
Pulsed  
10  
0
-0.5  
-1  
-1.5  
-0.1  
-1  
-10  
-100  
VF(S-D) - Source to Drain Voltage - V  
IF - Diode Forward Current - A  
5
Data Sheet D18719EJ2V0DS  
2SJ687  
SINGLE AVALANCHE CURRENT vs.  
INDUCTIVE LOAD  
SINGLE AVALANCHE ENERGY  
DERATING FACTOR  
-100  
-10  
-1  
120  
100  
80  
60  
40  
20  
0
V
R
V
I
DD = 10 V  
= 25 Ω  
GS = 12 0 V  
AS ≤ −20 A  
G
I
AS = 20 A  
EAS = 40 mJ  
Starting Tch = 25°C  
V
R
V
DD = 10 V  
= 25 Ω  
G
GS = 12 0 V  
0.01  
0.1  
1
10  
25  
50  
75  
100  
125  
150  
L - Inductive Load - mH  
Starting Tch - Starting Channel Temperature - °C  
6
Data Sheet D18719EJ2V0DS  
2SJ687  
PACKAGE DRAWING (Unit: mm)  
TO-252 (MP-3ZK)  
2.3 0.1  
6.5 0.2  
5.1 TYP.  
4.3 MIN.  
0.5 0.1  
No Plating  
4
1
2
3
No Plating  
0.76 0.12  
1.14 MAX.  
0 to 0.25  
0.5 0.1  
2.3 2.3  
1.0  
1. Gate  
2. Drain  
3. Source  
4. Fin (Drain)  
EQUIVALENT CIRCUIT  
Drain  
Body  
Diode  
Gate  
Source  
Remark Strong electric field, when exposed to this device, can cause destruction of the gate oxide and ultimately  
degrade the device operation. Steps must be taken to stop generation of static electricity as much as  
possible, and quickly dissipate it once, when it has occurred.  
7
Data Sheet D18719EJ2V0DS  
2SJ687  
The information in this document is current as of May, 2007. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

2SJ687-ZK-E2-AY

MOS FIELD EFFECT TRANSISTOR
NEC

2SJ73

TRANSISTOR | JFET | P-CHANNEL | DUAL | 5MA I(DSS)
ETC

2SJ74

P CHANNEL JUNCTION TYPE (LOW NOISE AUDIO AMPLIFIER APPLICATIONS)
TOSHIBA

2SJ74-BL

TRANSISTOR P-CHANNEL, Si, SMALL SIGNAL, JFET, TO-92, 2-5F1D, SC-43, 3 PIN, FET General Purpose Small Signal
TOSHIBA

2SJ74-GR

暂无描述
TOSHIBA

2SJ74-V

暂无描述
TOSHIBA

2SJ74BL

TRANSISTOR | JFET | P-CHANNEL | 6MA I(DSS) | TO-92
ETC

2SJ74GR

TRANSISTOR | JFET | P-CHANNEL | 2.6MA I(DSS) | TO-92
ETC

2SJ74V

TRANSISTOR | JFET | P-CHANNEL | 2.6MA I(DSS) | TO-92
ETC

2SJ74_07

Low Noise Audio Amplifier Applications
TOSHIBA

2SJ75

SILICON P-Channel Transistor 2SJ75
TOSHIBA

2SJ76

Silicon P-Channel MOS FET
HITACHI