MX26L6411TC-10 [Macronix]

EEPROM;
MX26L6411TC-10
型号: MX26L6411TC-10
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

EEPROM

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总44页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCED INFORMATION  
MX26L6411  
64M[x16] SINGLE3VPAGEMODEMTPMEMORY  
FEATURES  
• 2.7V to 3.6V operation voltage  
• Block Structure  
• High Performance  
- Block erase time: 2s typ.  
- 64 x 64Kword Erase Blocks  
- Byte programming time: 210us typ.  
- Block programming time: 0.8s typ. (using Write to  
Buffer Command)  
• Fast random / page mode access time  
- 100/30 ns Read AccessTime (page depth:8-word)  
• 128-bit Protection Register  
• Program/Erase Endurance cycles: 100 cycles  
- 64-bit Unique Device Identifier  
- 64-bit User Programmable OTP Cells  
• 16-WordWrite Buffer  
Software Feature  
• Support Common Flash Interface (CFI)  
- MTP device parameters stored on the device and  
- 14 us/word Effective Programming Time  
• Enhanced Data Protection Features Absolute Protec-  
tion with VPEN = GND  
provide the host system to access.  
• Automation Suspend Options  
- Block Erase Suspend to Read  
- Block Erase Suspend to Program  
- Program Suspend to Read  
- Flexible Block Locking  
- Block Erase/Program Lockout during PowerTransi-  
tions  
Performance  
Packaging  
• Low power dissipation  
- 48-LeadTSOP  
- typical 15mA active current for page mode read  
- 80uA/(max.) standby current  
- Deep power-down current: 5uA  
Technology  
- Two bits per cell Nbit (0.25u) MTPTechnology  
electrical erasure and programming.The device uses a  
command register to manage this functionality.  
GENERAL DESCRIPTION  
The MXIC's MX26L6411 series MTP use the most ad-  
vance 2 bits/cell Nbit technology, double the storage ca-  
pacity of memory cell.The device provide the high den-  
sity MTP memory solution with reliable performance and  
most cost-effective.  
The MXIC's Nbit technology reliably stores memory con-  
tents even after the specific erase and program cycles.  
The MXIC cell is designed to optimize the erase and  
program mechanisms by utilizing the dielectric's charac-  
ter to trap or release charges from ONO layer.  
The device organized as by 16 bits of output bus. The  
device is packaged in 48-Lead TSOP. It is designed to  
be reprogrammed and erased in system or in standard  
EPROM programmers.  
The device uses a 2.7V to 3.6V VCC supply to perform  
the High Reliability Erase and auto Program/Erase algo-  
rithms.  
The highest degree of latch-up protection is achieved  
with MXIC's proprietary non-epi process. Latch-up pro-  
tection is proved for stresses up to 100 milliamps on  
address and data pin from -1V to VCC + 1V.  
The device offers fast access time and allowing opera-  
tion of high-speed microprocessors without wait states.  
The device augment EPROM functionality with in-circuit  
P/N:PM0947  
REV. 0.1, NOV. 20, 2002  
1
MX26L6411  
PIN CONFIGURATION  
48-TSOP (12mm x 20mm)  
WE  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
GND  
GND  
Q15  
Q7  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
4
5
Q14  
Q6  
6
7
Q13  
Q5  
8
9
Q12  
Q4  
A8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
A19  
A21  
A20  
A18  
A17  
A7  
VCC  
VCC  
NC  
MX26L6411 (x16 only)  
Normal Type  
Q11  
Q3  
Q10  
Q2  
A6  
A5  
Q9  
A4  
Q1  
A3  
Q8  
A2  
Q0  
A1  
OE  
A0  
GND  
GND  
CE  
PIN DESCRIPTION  
SYMBOL  
A0~A21  
Q0~Q15  
CE  
PIN NAME  
Address Input  
Data Inputs/Outputs  
Chip Enable Input  
Write Enable Input  
Output Enable Input  
Device Power Supply  
Device Ground  
WE  
OE  
VCC  
GND  
NC  
Pin Not Connected Internally  
Don't Use  
DU  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
2
MX26L6411  
BLOCK DIAGRAM  
WRITE  
STATE  
CONTROL  
INPUT  
PROGRAM/ERASE  
HIGH VOLTAGE  
CE  
OE  
WE  
MACHINE  
(WSM)  
LOGIC  
STATE  
REGISTER  
ADDRESS  
LATCH  
MTP  
ARRAY  
ARRAY  
A0-A21  
SOURCE  
HV  
AND  
COMMAND  
DATA  
BUFFER  
Y-PASS GATE  
DECODER  
PGM  
DATA  
HV  
SENSE  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
I/O BUFFER  
Q0-Q15  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
3
MX26L6411  
Figure 1. Block Architecture  
MTP memory reads erases and writes in-system via the local CPU. All bus cycles to or from the MTP memory  
conform to standard microprocessor bus cycles.  
3FFFFF  
63  
64-Kword Block  
3F0000  
.
.
.
1FFFFF  
1F0000  
31  
64-Kword Block  
.
.
.
01FFFF  
1
0
64-Kword Block  
64-Kword Block  
010000  
00FFFF  
000000  
Word Mode (x16)  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
4
MX26L6411  
Table 1. Bus Operations  
Command  
Sequence  
Read  
Array  
Output  
Disable  
Standby Read ID Read  
Query  
Read  
Read  
Write  
Status  
Status  
(WSM off)  
(WSM on)  
Notes  
CE  
3,4  
8,9  
Enabled Enabled Disabled Enabled Enabled  
Enabled  
VIL  
Enabled  
VIL  
Enabled  
VIH  
VIL  
OE (1)  
WE (1)  
Address  
VIL  
VIH  
X
VIH  
VIH  
X
X
X
X
VIL  
VIH  
See  
VIL  
VIH  
See  
VIH  
VIH  
X
X
X
Figure 2 Table 5  
Note 6 Note 7  
Q (2)  
Data out High Z  
High Z  
Data out  
Q7=Data out  
Q15-8=High Z  
Q6-0=High Z  
Data in  
NOTES:  
1. OE and WE should never be enabled simultaneously.  
2. Q refers to Q0~Q15.  
3. Refer to DC Characteristics.  
4. X can be VIL or VIH for control and address pins, and VPENLK or VPENH for VPEN . See DC Characteristics for  
VPENLK and VPENH voltages.  
5. High Z will be VOH with an external pull-up resistor.  
6. See Section , "Read Identifier Codes" for read identifier code data.  
7. See Section , "Read Query Mode Command" for read query data.  
8. Command writes involving block erase, program, or lock-bit configuration are reliably executed whenVCC is within  
specification.  
9. Refer toTable 2 on page 7 for valid DIN during a write operation.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
5
MX26L6411  
FUNCTION  
STANDBY  
The device includes on-chip program/erase control cir-  
cuitry. The Write State Machine (WSM) controls block  
erase and byte/word/page program operations. Opera-  
tional modes are selected by the commands written to  
the Command User Interface (CUI).The Status Register  
indicates the status of the WSM and when the WSM  
successfully completes the desired program or block  
erase operation.  
When CE disable the device (see table1) and place it in  
standby mode.The power consumption of this device is  
reduced. Data input/output are in a high-impedance(High-  
Z) state. If the memory is deselected during block erase,  
program or lock-bit configuration, the internal control cir-  
cuits remain active and the device consume normal ac-  
tive power until the operation completes.  
READ QUERY  
READ  
The read query operation outputs block status informa-  
tion, CFI (Common Flash Interface) ID string, system  
interface information, device geometry information and  
MXIC extended query information.  
The appropriate read command are required to be writ-  
ten to the CUI. Upon initial device powerup or after exit  
from deep powerdown, the device automatically resets  
to read array mode. In the read array mode, low level  
input to CE and OE, high level input to WE, and address  
signals to the address inputs (A21-A0) output the data  
of the addressed location to the data input/output  
(Q15~Q0).  
When reading information in read array mode, the de-  
vice defaults to asynchronous page mode. In this state,  
data is internally read and stored in a high-speed page  
buffer.A2:0 addresses data in the page buffer.The page  
size is 8 words. Asynchronous word mode is supported  
with no additional commands required.  
WRITE  
To write commands to the CUI enables reading of memory  
array data, device identifiers, reading and clearing of the  
Status Register, block erasure, program, and lock-bit con-  
figuration.The CUI is written when the device is enable,  
WE is active and OE is at high level. Address and data  
are latched on the earlier rising edge of WE and CE.  
Standard micro-processor write timings are used.  
OUTPUT DISABLE  
When OE is at VIH, output from the devices is disabled.  
Data input/output are in a high-impedance(High-Z) state.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
6
MX26L6411  
COMMAND DEFINITIONS  
Device operations are selected by writing specific address and data sequences into the CUI.Table 3 defines the valid  
register command sequences.  
Table 2. Command Definitions  
Command  
Sequence  
Read  
Array  
Read Read  
Read  
Clear  
Write to Word  
Sector  
ID  
Query Status  
Status  
Buffer  
Program Erase  
Register Register  
Notes  
5
6
7,8,9  
10,11  
9,10  
Bus Write Cycles Req'd  
1
> 2  
> 2  
2
1
> 2  
2
2
First Bus  
Operation(2)  
Write  
X
Write Write  
Write  
X
Write  
X
Write  
BA  
Write  
X
Write  
BA  
Write Cycles Address(3)  
Data(4,5)  
X
X
FFH  
90H  
98H  
70H  
Read  
X
50H  
E8H  
Write  
BA  
40H/10H  
Write  
PA  
20H  
Write  
BA  
Second Bus Operation(2)  
Read Query Address(3)  
Data(4,5)  
Read Read  
IA  
ID  
QA  
QD  
SRD  
N
PD  
D0H  
Command  
Sequence  
Sector  
Erase,  
Program  
Suspend  
10,12  
Sector  
Configur-  
ation  
Set Sector Clear  
Protection  
Program  
Erase,  
Program  
Resume  
10  
Lock-Bit  
Sector  
Lock-Bit  
Notes  
13  
Bus Write Cycles Req'd  
1
1
2
2
2
2
First Bus  
Operation(2) Write  
Write  
X
Write  
X
Write  
X
Write  
X
Write  
X
Write Cycle Address(3)  
Data(4,5)  
X
B0H  
D0H  
B8H  
Write  
X
60H  
Write  
BA  
60H  
Write  
X
C0H  
Write  
PA  
Second Bus Operation(2)  
Write Cycle Address(3)  
Data(4,5)  
CC  
01H  
D0H  
PD  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
7
MX26L6411  
NOTES:  
1. Bus operations are defined inTable 1.  
2. X = Any valid address within the device.  
BA = Address within the block.  
IA = Identifier Code Address: see Figure 2 and Table 13.  
QA = Query database Address.  
PA = Address of memory location to be programmed.  
RCD = Data to be written to the read configuration register.This data is presented to the device on A 16-1 ;all other  
address inputs are ignored.  
3. ID = Data read from Identifier Codes.  
QD = Data read from Query database.  
SRD = Data read from status register. See Table 14 for a description of the status register bits.  
PD = Data to be programmed at location PA. Data is latched on the rising edge of WE.  
CC = Configuration Code.  
4. The upper byte of the data bus (Q8-Q15) during command writes is a "Don't Care" in x16 operation.  
5. Following the Read Identifier Codes command, read operations access manufacturer, device and block lock  
codes. See Section 4.3 for read identifier code data.  
6. If the WSM is running, only Q7 is valid; Q15-Q8 and Q6-Q0 float, which places them in a high impedance state.  
7. After the Write to Buffer command is issued check the XSR to make sure a buffer is available for writing.  
8. The number of words to be written to the Write Buffer = N + 1, where N = word count argument.  
Count ranges on this device for word mode are N = 0000H to N =000FH.The third and consecutive bus cycles, as  
determined by N, are for writing data into the Write Buffer.  
The Confirm command (D0H) is expected after exactly N + 1 write cycles; any other command at that point in the  
sequence aborts the write to buffer operation. Please see Figure 4. "Write to Buffer Flowchart" for additional  
information.  
9. The write to buffer or erase operation does not begin until a Confirm command (D0h) is issued.  
10.Attempts to issue a block erase or program to a locked block.  
11.Either 40H or 10H are recognized by the WSM as the word program setup.  
12.Program suspends can be issued after either theWrite-to-Buffer or Word-Program operation is initiated.  
13.The clear block lock-bits operation simultaneously clears all block lock-bits.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
8
MX26L6411  
Figure 2. Device Identifier Code Memory Map  
3FFFFF  
Block 63  
Reserved for Future  
Implementation  
3F0003  
3F0002  
Block 63 Lock Configuration  
Reserved for Future  
Implementation  
3F0000  
3EFFFF  
(Block 32 through 62)  
Block 31  
Reserved for Future  
Implementation  
1F0003  
1F0002  
Block 31 Lock Configuration  
Reserved for Future  
Implementation  
1F0000  
1EFFFF  
(Block 2 through 30)  
01FFFF  
Block 1  
Reserved for Future  
Implementation  
010003  
010002  
Block 1 Lock Configuration  
Reserved for Future  
Implementation  
010000  
00FFFF  
Block 0  
Reserved for Future  
Implementation  
000004  
000003  
000002  
000001  
Block 0 Lock Configuration  
Device Code  
Manufacturer Code  
000000  
NOTE:A0 is not used when obtaining these identifier codes.Data is always given on the low byte in x16 mode (upper  
byte contains 00h).  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
9
MX26L6411  
Read Array Command  
The device is in Read Array mode on initial device power  
up and after exit from deep power down, or by writing  
FFH to the Command User Interface.The read configu-  
ration register defaults to asynchronous read page mode.  
The device remains enabled for reads until another com-  
mand is written.  
Read Query Mode Command  
This section defines the data structure or "Database"  
returned by the Common Flash Interface (CFI) Query  
command. System software should parse this structure  
to gain critical information such as block size, density,  
x8/x16, and electrical specifications. Once this informa-  
tion has been obtained, the software will know which  
command sets to use to enable MTP writes, block  
erases, and otherwise control the MTP component.  
Query Structure Output  
The Query Database allows system software to gain in-  
formation for controlling the MTP component.This sec-  
tion describes the device CFI-compliant interface that  
allows the host system to access Query data.  
Query data are always presented on the lowest-order  
data outputs (DQ 0-7) only.The numerical offset value is  
the address relative to the maximum bus width supported  
by the device. On this family of devices, the Query table  
device starting address is a 10h, which is a word ad-  
dress for x16 devices.  
For a word-wide (x16) device, the first two bytes of the  
Query structure, "Q" and "R" in ASCII, appear on the  
low byte at word addresses 10h and 11h.This CFI-com-  
pliant device outputs 00H data on upper bytes.Thus, the  
device outputs ASCII "Q" in the low byte (DQ 0-7 ) and  
00h in the high byte (DQ 8-15 ).  
At Query addresses containing two or more bytes of in-  
formation, the least significant data byte is presented at  
the lower address, and the most significant data byte is  
presented at the higher address.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
10  
MX26L6411  
In all of the following tables, addresses and data are represented in hexadecimal notation, so the "h" suffix has been  
dropped.In addition, since the upper byte of word-wide devices is always "00h",the leading "00" has been dropped  
from the table notation and only the lower byte value is shown. Any x16 device outputs can be assumed to have 00h  
on the upper byte in this mode.  
Table 3. Summary of Query Structure Output as a Function of Device and Mode  
Device  
Query start location in  
maximum device bus  
width addresses  
Query data with maximum  
device bus width addressing  
Query data with byte  
addressing  
Type/Mode  
Hex  
Offset  
10:  
Hex  
Code  
0051  
0052  
0059  
ASCII  
Value  
"Q"  
Hex  
Hex  
Code  
51  
ASCII  
Offset  
20:  
Value  
"Q"  
x16 device  
x16 mode  
10h  
11:  
"R"  
21:  
00  
"Null"  
"R"  
12:  
"Y"  
22:  
52  
x16 device  
x8 mode  
20:  
51  
"Q"  
N/A (1)  
N/A (1)  
21:  
51  
"Q"  
22:  
52  
"R"  
NOTE:  
1. The system must drive the lowest order addresses to access all the device's array data when the device is  
configured in x8 mode.Therefore, word addressing, where these lower addresses are not toggled by the system, is  
"Not Applicable" for x8-configured devices.  
Table 4. Example of Query Structure Output of a x16- and x8-Capable Device  
Word Addressing  
Hex Code  
Byte Addressing  
Hex Code  
Offset  
A15-A0  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
...  
Value  
Offset  
A7-A0  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
...  
Value  
D15 - D0  
D7 - D0  
0051  
0052  
0059  
P_IDLO  
P_IDHI  
PLO  
"Q"  
"R"  
51  
51  
"Q"  
"Q"  
"Y"  
52  
"R"  
PrVendor  
ID#  
52  
"R"  
59  
"Y"  
PrVendor  
TblAdr  
AltVendor  
ID#  
59  
"Y"  
PHI  
P_IDLO  
P_IDLO  
P_IDHI  
...  
PrVendor  
ID#  
A_IDLO  
A_IDHI  
...  
ID#  
...  
...  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
11  
MX26L6411  
Query Structure Overview  
The Query command causes the MTP component to display the Common Flash Interface (CFI) Query structure or  
"database". The structure sub-sections and address locations are summarized below.  
Table 5. Query Structure (1)  
Offset  
00h  
Sub-Section  
Name Description  
Manufacturer Code  
01h  
Device Code  
(BA+2)h (2)  
04-0Fh  
10h  
Block Status Register  
Reserved  
Block-Specific Information  
Reserved forVendor-Specific Information  
Reserved forVendor-Specific Information  
Command Set ID andVendor Data Offset  
MTP Device Layout  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Primary MXIC-Specific Extended  
QueryTable  
1Bh  
27h  
P (3)  
Vendor-Defined Additional Information Specific to the  
PrimaryVendor Algorithm  
NOTES:  
1. Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a  
function of device bus width and mode.  
2. BA = Block Address beginning location (i.e., 02000h is block 2s beginning location when the block size is 128  
Kbyte).  
3. Offset 15 defines "P" which points to the Primary Intel-Specific Extended Query Table.  
Block Status Register  
The block status register indicates whether an erase operation completed successfully or whether a given block is  
locked or can be accessed for MTP program/erase operations.  
Table 6. Block Status Register  
Offset  
Length  
Description  
Address  
Value  
(BA+2)h (1)  
1
Block Lock Status Register  
BSR.0 Block Lock Status  
0 = Unlocked  
BA+2:  
--00 or --01  
BA+2:  
BA+2:  
(bit 0): 0 or 1  
(bit 1-7): 0  
1 = Locked  
BSR 1-7: Reserved for Future Use  
NOTE:  
1. BA =The beginning location of a Block Address (i.e., 008000h is block 1s (64-KB block) beginning location in word  
mode).  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
12  
MX26L6411  
CFI Query Identification String  
The CFI Query Identification String provides verification that the component supports the Common Flash Interface  
specification. It also indicates the specification version and supported vendor-specified command set(s).  
Table 7. CFI Identification  
Offset  
Length  
Description  
Add.  
Hex  
Code  
--51  
--52  
--59  
--01  
--00  
--31  
--00  
--00  
--00  
--00  
--00  
Value  
10h  
3
Query-unique ASCII string "QRY"  
10  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
1A:  
"Q"  
"R"  
"Y"  
13h  
15h  
17h  
19h  
2
2
2
2
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms  
Extended QueryTable primary algorithm address  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithm exists  
Secondary algorithm Extended QueryTable address.  
0000h means none exists  
System Interface Information  
The following device information can optimize system interface software.  
Table 8. System Interface Information  
Offset  
Length  
Description  
Add.  
1B:  
1C:  
1D:  
1E:  
Hex  
Value  
2.7 V  
3.6 V  
0.0V  
0.0V  
Code  
1Bh  
1
VCC logic supply minimum program/erase voltage  
bits 0-3 BCD 100 mV  
--27  
--36  
--00  
--00  
bits 4-7 BCD volts  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase voltage  
bits 0-3 BCD 100 mV  
bits 4-7 BCD volts  
VPP [programming] supply minimum program/erase voltage  
bits 0-3 BCD 100 mV  
bits 4-7 HEX volts  
VPP [programming] supply maximum program/erase voltage  
bits 0-3 BCD 100 mV  
bits 4-7 HEX volts  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
"n" such that typical single word program time-out = 2us  
"n" such that typical max. buffer write time-out = 2us  
"n" such that typical block erase time-out = 2ms  
"n" such that typical full chip erase time-out = 2ms  
1F:  
20:  
21:  
22:  
--07  
--07  
--0A  
--00  
--04  
--04  
--04  
--00  
128us  
128us  
1s  
NA  
"n" such that maximum word program time-out = 2 times typical 23:  
2ms  
2ms  
16s  
"n" such that maximum buffer write time-out = 2 times typical  
"n" such that maximum block erase time-out = 2 times typical  
"n" such that maximum chip erase time-out = 2 times typical  
24:  
25:  
26:  
NA  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
13  
MX26L6411  
Device Geometry Definition  
This field provides critical details of the MTP device geometry.  
Table 9. Device Geometry Definition  
Offset Length  
Description  
Code See Table  
Below  
27h  
28h  
1
2
"n" such that device size = 2n in number of bytes  
MTP device interface: x8 async(28:00,29:00),  
27:  
28:  
29:  
2A:  
2B:  
--17  
--01  
--00  
--05  
--00  
x16  
32  
x16 async(28:01,29:00), x8/x16 async(28:02,29:00)  
"n" such that maximum number of bytes in write buffer = 2n  
2Ah  
2
Number of erase block regions within device:  
1. x = 0 means no erase blocking; the device erases in "bulk"  
2. x specifies the number of device or partition regions with one or  
more contiguous same-size erase blocks  
2Ch  
2Dh  
1
4
2C:  
--01  
1
3. Symmetrically blocked partitions have one blocking region  
4. Partition size = (total blocks) x (individual block size)  
Erase Block Region 1 Information  
2D:  
2E:  
2F:  
30:  
--3F  
--00  
--00  
--02  
bits 0-15 = y, y+1 = number of identical-size erase blocks  
bits 16-31 = z, region erase block(s) size are z x 256 bytes  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
14  
MX26L6411  
Primary-Vendor Specific Extended Query Table  
Certain MTP features and commands are optional.The PrimaryVendor-Specific Extended Query table specifies this  
and other similar information.  
Table 10. Primary Vendor-Specific Extended Query  
Offset(1) Length Description  
Add.  
Hex  
Code  
--50  
--52  
--49  
--31  
--31  
--0A  
--00  
--00  
--00  
Value  
P=31h  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
(Optional MTP Features and Commands)  
3
Primary extended query table  
Unique ASCII string "PRI"  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
39:  
"P"  
"R"  
"I"  
1
1
Major version number, ASCII  
"1"  
"1"  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 9-31 are reserved; undefined bits are "0". If bit 31 is  
"1" then another 31 bit field of optional features follows at  
the end of the bit-30 field.  
bit 0 Chip erase supported  
bit 0 = 0  
No  
Yes  
Yes  
Yes(1)  
No  
4
bit 1 Suspend erase supported  
bit 1 = 1  
bit 2 = 1  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 3 = 1(1)  
bit 4 = 0  
bit 5 = 0  
bit 6 = 1  
bit 7 = 1  
bit 8 = 0  
bit 5 Instant Individual block locking supported  
bit 6 Protection bits supported  
No  
Yes  
Yes  
No  
bit 7 Page-mode read supported  
bit 8 Synchronous read supported  
(P+9)h  
1
Supported functions after suspend:read Array, Status,Query  
Other supported operations are:  
3A:  
--01  
bit 0 = 1  
bits 1-7 reserved; undefined bits are "0"  
bit 0 Program supported after erase suspend  
Block status register mask  
Yes  
(P+A)h  
(P+B)h  
3B:  
3C:  
--01  
--00  
2
1
1
bits 2-15 are Reserved; undefined bits are "0"  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Down Bit Status active  
VCC logic supply highest performance program/erase voltage  
bits 0-3 BCD value in 100 mV  
bit 0 = 1  
bit 1 = 0  
Yes  
No  
(P+C)h  
(P+D)h  
3D:  
3E:  
--33  
--00  
3.3V  
0.0V  
bits 4-7 BCD value in volts  
VPP optimum program/erase supply voltage  
bits 0-3 BCD value in 100 mV  
bits 4-7 HEX value in volts  
NOTE:  
1.Future devices may not support the described "Legacy Lock/Unlock" function.Thus bit 3 would have a value of "0".  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
15  
MX26L6411  
Table 11. Protection Register Information  
Offset(1) Length Description  
Add. Hex  
Code  
Value  
P=31h  
(Optional MTP Features and Commands)  
(P+E)h  
1
Number of Protection register fields in JEDEC ID space.  
"00h," indicates that 256 protection bytes are available  
Protection Field 1: Protection Description  
3F:  
--01  
01  
This field describes user-available OneTime Programmable  
(OTP) protection register bytes.Some are pre-programmed  
with device-unique serial numbers. Others are user-programmable.  
Bits 0-15 point to the protection register lock  
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
40:  
--00  
00h  
byte, the section's first byte. The following bytes are factory  
pre-programmed and user-programmable.  
bits 0-7 = Lock/bytes JEDEC-plane physical low address  
bits 8-15 = Lock/bytes JEDEC-plane physical high address  
bits 16-23 = "n" such that 2 n = factory pre-programmed bytes  
bits 24-31 = "n" such that 2 n = user-programmable bytes  
NOTE:  
1.The variable P is a pointer which is defined at CFI offset 15h.  
Table 12. Page Read Information  
Offset(1) Length Description  
Add.  
Hex  
Value  
P=31h  
(Optional MTP Features and Commands)  
Code  
Page Mode Read capability  
bits 0-7 = "n" such that 2n HEX value represents the number  
of read-page bytes. See offset 28h for device word width to  
determine page-mode data output width. 00h indicates no  
read page buffer.  
(P+13)h  
1
1
44:  
--04  
16 byte  
0
(P+14)h  
(P+15)h  
Number of synchronous mode read configuration fields that  
follow. 00h indicates no burst capability.  
Reserved for future use  
45:  
46:  
--00  
NOTE:  
1.The variable P is a pointer which is defined at CFI offset 15h.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
16  
MX26L6411  
DEVICE OPERATION  
SILICON ID READ  
The Silicon ID Read mode allows the reading out of a  
binary code from the device and will identify its manu-  
facturer and type. This mode is intended for use by  
programming equipment for the purpose of automatically  
matching the device to be programmed with its corre-  
sponding programming algorithm. This mode is func-  
tional over the entire temperature range of the device.  
inTable 13.)  
During the "Silicon ID Read" Mode, manufacturer's code  
(MXIC=C2H) can be read out by setting A0=VIL and  
device identifier can be read out by setting A0=VIH.  
To terminate the operation, it is necessary to write the  
read command. This command is valid only when the  
WSM is off or the device is suspended.  
To activate this mode, the two cycle "Silicon ID Read"  
command is requested. (The ID code value is illustrated  
Table 13. MX26L6411 Silicon ID Codes  
Type  
Address (1) Code (HEX) Q7 Q6  
Q5 Q4 Q3 Q2 Q1 Q0  
Manufacture Code  
Device Code  
00000  
C2H  
1
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
00001  
00BEH  
Block Lock Configuration  
- Block is Unlocked  
- Block is Locked  
- Reserved for Future Use  
X0002 (2)  
DQ0=0  
DQ0=1  
DQ1-7  
Notes:  
1. A0 is not used when obtaining the identifier codes.The lowest order address line is A1.  
2. X selects the specific blocks lock configuration code.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
17  
MX26L6411  
Table 14. Status Register Definitions  
High Z  
Symbol When Status  
Busy?  
Definition  
Notes  
"1"  
"0"  
Busy  
Block Erase Suspended Block Erase in  
Progress/Completed  
ERASE AND CLEAR LOCK-BITS Error in Block Erasure or Successful Block  
SR.7  
SR.6  
No  
WRITE STATE MACHINE STATUS Ready  
ERASE SUSPEND STATUS  
1
Yes  
SR.5  
Yes  
2
3
STATUS  
Clear Lock-Bits  
Erase or Clear  
Lock-Bits  
SR.4  
SR.3  
Yes  
Yes  
PROGRAM AND SET LOCK-BIT  
STATUS  
Error in Setting Lock-Bit Successful Set Block  
Lock Bit  
PROGRAMMINGVOLTAGE  
STATUS  
Low ProgrammingVoltage ProgrammingVoltage  
Detected, Operation  
Aborted  
OK  
SR.2  
SR.1  
Yes  
Yes  
Yes  
PROGRAM SUSPEND STATUS  
DEVICE PROTECT STATUS  
RESERVED  
Program suspended  
Program in progress/  
completed  
Block Lock-Bit Detected, Unlock  
Operation Abort  
4
5
SR.0  
Notes  
1. Check STS or SR.7 to determine block erase, program, or lock-bit configuration completion. SR.6-SR.0 are not  
driven while SR.7 = 0  
2. If both SR.5 and SR.4 are "1" after a block erase or lock-bit configuration attempt, an improper command se-  
quence was entered.  
3. SR.3 does not provide a continuous programming voltage level indication.TheWSM interrogates and indicates the  
programming voltage level only after Block Erase, Program, Set Block Lock-Bit, or Clear Block Lock-Bits com-  
mand sequences.  
4. SR.1 does not provide a continuous indication of block lock-bit values.The WSM interrogates the block lock-bits  
only after Block Erase, Program, or Lock-Bit configuration command sequences. It informs the system, depend-  
ing on the attempted operation, if the block lock-bit is set. Read the block lock configuration codes using the Read  
Identifier Codes command to determine block lock-bit status.  
5. SR.0 is reserved for future use and should be masked when polling the status register.  
Table 15. Extended Status Register Definitions  
High Z  
Symbol When Status  
Busy?  
Definition  
Notes  
"1"  
Write buffer available  
"0"  
XSR.7 No  
XSR.6- Yes  
XSR.0  
WRITE BUFFER STATUS  
RESERVED  
Write buffer not available  
1
2
Notes:  
1. After a Buffer-Write command, XSR.7 = 1 indicates that a Write Buffer is available.  
2. XSR.6-XSR.0 are reserved for future use and should be masked when polling the status register.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
18  
MX26L6411  
READ STATUS REGISTER COMMAND  
At this time, A read array/program command sequence  
can also be issued during erase suspend to read or pro-  
gram data in other blocks. During a program operation  
with block erase suspended, status register bit SR.7 will  
return to "0".The WSM will continue to run, idling in the  
SUSPEND state, regardless of the state of all input con-  
trol pins.  
The Status Register is read after writing the Read Status  
Register command of 70H to the Command User Inter-  
face. Also, after starting the internal operation the de-  
vice is set to the Read Status Register mode automati-  
cally.  
The only other valid commands while block erase is sus-  
pended are Read Query, Read Status Register, Clear  
Status Register, Configure, and Block Erase Resume.  
After a Block Erase Resume command is written to the  
MTP memory, the WSM will continue the block erase  
process. Status register bits SR.6 and SR.7 will auto-  
matically clear. Block erase cannot resume until pro-  
gram operations initiated during block erase suspend  
have completed.  
The contents of Status Register are latched on the later  
falling edge of OE or the first edge of CE that enables  
the device OE must be toggle toVIH or the device must  
be disable before further reads to update the status reg-  
ister latch.  
CLEAR STATUS REGISTER COMMAND  
The Erase Status, Program Status, Block Status bits  
and protect status are set to "1" by the Write State Ma-  
chine and can only be reset by the Clear Status Register  
command of 50H. These bits indicates various failure  
conditions.  
WRITE TO BUFFER COMMAND  
To program the device, a Write to Buffer command is  
issue first. A variable number of bytes, up to the buffer  
size, can be loaded into the buffer and written to the  
MTP device. First, the Write to Buffer Setup command  
is issued along with the Block Address (see Figure ,  
Write to Buffer Flowchart ” on page ). After the com-  
mand is issued, the extended Status Register (XSR) can  
be read when CE is VIL. XSR.7 indicates if the Write  
Buffer is available.  
BLOCK ERASE COMMAND  
Automated block erase is initiated by writing the Block  
Erase command of 20H followed by the Confirm com-  
mand of D0H. An address within the block to be erased  
is required (erase changes all block data to FFH).  
Block preconditioning, erase, and verify are handled in-  
ternally by the WSM (invisible to the system).The CPU  
can detect block erase completion by analyzing the sta-  
tus register bit SR.7.Toggle OE, CE to update the status  
register. The CUI remains in read status register mode  
until a new command is issued. Also, reliable block era-  
sure can only occur when VCC is valid.  
If the buffer is available, the number of words/bytes to  
be program is written to the device. Next, the start ad-  
dress is given along with the write buffer data. Subse-  
quent writes provide additional device addresses and  
data, depending on the count. After the last buffer data  
is given, a Write Confirm command must be issued.The  
WSM beginning copy the buffer data to the MTP array.  
If an error occurs while writing, the device will stop writ-  
ing, and status register bit SR.4 will be set to a "1" to  
indicate a program failure.The internal WSM verify only  
detects errors for "1" that do not successfully program  
to "0" . If a program error is detected, the status register  
should be cleared. Any time SR.4 and/or SR.5 is set, the  
device will not accept any more Write to Buffer com-  
mands.Reliable buffered writes can only occur whenVCC  
is valid. Also, successful programming requires that the  
corresponding block lock-bit be reset.  
BLOCK ERASE SUSPEND COMMAND  
This command only has meaning while the WSM is ex-  
ecuting Block erase operation, and therefore will only be  
responded to during Block erase operation. After this com-  
mand has been executed, the WSM suspend the erase  
operations, and then return to Read Status Register  
mode.The WSM will set the SR.6 bit to a "1". Once the  
WSM has reached the Suspend state, the WSM will set  
the Q7 bit to a "1".  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
19  
MX26L6411  
WORD PROGRAM COMMANDS  
Word program is executed by a two-command sequence.  
TheWord Program Setup command of 40H is written to  
the Command Interface, followed by a second write speci-  
fying the address and data to be written.TheWSM con-  
trols the program pulse application and verify operation.  
The CPU can detect the completion of the program event  
by analyzing the status register bit SR.7.  
Successful word programs require that the correspond-  
ing block lock-bit be cleared. If a word program is at-  
tempted when the corresponding block lock-bit is set,  
SR.1 and SR.4 will be set to "1".  
SUSPEND/RESUME COMMAND  
Writing the Suspend command of B0H during block erase  
operation interrupts the block erase operation and allows  
read out from another block of memory.Writing the Sus-  
pend command of B0H during program operation inter-  
rupts the program operation and allows read out from  
another block of memory.The Block address is required  
when writing the Suspend/Resume Command.The de-  
vice continues to output Status Register data when read,  
after the Suspend command is written to it. Polling the  
WSM Status and Suspend Status bits will determine when  
the erase operation or program operation has been sus-  
pended.When SR.7 = 1, SR.2 should also be set to "1",  
indicating that the device is in the program suspend mode.  
At this time, writing of the Read Array command to the  
CUI enables reading data from blocks other than that  
which is suspended.The only other valid commands while  
programming is suspended are Read Query, Read Sta-  
tus Register, Clear Status Register, Configure, and Pro-  
gram Resume. When the Resume command of D0H is  
written to the CUI, theWSM will continue with the erase  
or program processes. Status register bits SR.2 and SR.7  
will automatically clear.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
20  
MX26L6411  
Read Configuration  
The device will support both asynchronous page mode and standard word reads.No configuration is required.  
Status register and identifier only support standard word single read operations.  
Table 16. Read Configuration Register Definition  
RM  
R
15  
R
7
R
14  
R
6
R
13  
R
5
R
R
11  
R
3
R
10  
R
2
R
9
16(A16)  
12  
R
8
R
R
1
4
Notes  
RCR.16 = READ MODE (RM)  
Read mode configuration effects reads from the MTP  
array.  
0 = Standard Word Reads Enabled (Default)  
1 = Page-Mode Reads Enabled  
Status register, query, and identifier reads support  
standard word read cycles.  
RCR.15-1= RESERVED FOR FUTURE  
ENHANCEMENTS (R)  
These bits are reserved for future use. Set these  
bits to "0".  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
21  
MX26L6411  
Set Block Lock-Bit Commands  
Programming the Protection Register  
The protection register bits are programmed using the  
two-cycle Protection Program command.The 64-bit num-  
ber is programmed 16 bits at a time for word-wide parts  
and eight bits at a time for byte-wide parts. First write  
the Protection Program Setup command, C0H.The next  
write to the device will latch in address and data and  
program the specified location.  
This device provided the block lock-bits, to lock and  
unlock the individual block.To set the block lock-bit, the  
two cycle Set Block Lock-Bit command is requested.  
This command is invalid while theWSM is running or the  
device is suspended.Writing the set block lock-bit com-  
mand of 60H followed by confirm command and an ap-  
propriate block address. After the command is written,  
the device automatically outputs status register data when  
read.The CPU can detect the completion of the set lock-  
bit event by analyzing the status register bit SR.7. Also,  
reliable operations occur only when VCC is valid.  
Any attempt to address Protection Program commands  
outside the defined protection register address space will  
result in a status register error. Attempting to program a  
locked protection register segment will result in a status  
register error.  
Clear Block Lock-Bits Command  
Locking the Protection Register  
All set block lock-bits can clear by the Clear Block Lock-  
Bits command.This command is invalid while the WSM  
is running or the device is suspended.To Clear the block  
lock-bits, two cycle command is requested .The device  
automatically outputs status register data when read.The  
CPU can detect completion of the clear block lock-bits  
event by analyzing the status register bit SR.7. If a clear  
block lock-bits operation is aborted due to VCC  
transitioning out of valid range, block lock-bit values are  
left in an undetermined state. A repeat of clear block  
lock-bits is required to initialize block lock-bit contents  
to known values.  
The user-programmable segment of the protection regis-  
ter is lockable by programming Bit 1 of the PR-LOCK  
location to 0. Bit 0 of this location is programmed to 0 at  
the Intel factory to protect the unique device number. Bit  
1 is set using the Protection Program command to pro-  
gram "FFFD" to the PR-LOCK location. After these bits  
have been programmed, no further changes can be made  
to the values stored in the protection register. Protection  
Program commands to a locked section will result in a  
status register error. Protection register lockout state is  
not reversible.  
Protection Register Program Command  
VCC--TRANSITIONS  
The device offer a 128-bit protection register to increase  
the security of a system design.The 128-bits protection  
register are divided into two 64-bit segments. One is pro-  
grammed in the factory with a unique 64-bit number,  
which is unchangeable. The other one is left blank for  
customer designers to program as desired. Once the  
customer segment is programmed, it can be locked to  
prevent reprogramming.  
Block erase, program, and lock-bit configuration are not  
guaranteed if VCC falls outside of the specified operat-  
ing ranges.Therefore, block erase and lock-bit configu-  
ration commands must be repeated after normal opera-  
tion is restored. Device power-off clears the Status Reg-  
ister.  
The CUI latches commands issued by system software  
and is not altered by CE transitions, or WSM actions. Its  
state is read array mode upon power-up, or after VCC  
transitions belowVLKO.  
Reading the Protection Register  
The protection register is read in the identification read  
mode.The device is switched to this mode by writing the  
Read Identifier command 90H. Once in this mode, read  
cycles from addresses retrieve the specified informa-  
tion.To return to read array mode, write the Read Array  
command (FFH).  
After block erase, program, or lock-bit configuration, the  
CUI must be placed in read array mode via the Read  
Array command if subsequent access to the memory  
array is desired.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
22  
MX26L6411  
Figure 3. Protection Register Memory Map  
Word  
Address  
A[22 -1]: 64 Mbit  
88H  
4 Words  
User Programmed  
85H  
84H  
4 Words  
Factory Programmed  
81H  
80H  
1 Word Lock  
NOTE: A 0 is not used in x16 mode when accessing the protection register map (See Table 20 for x16 addressing).  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
23  
MX26L6411  
Table 17. Word-Wide Protection Register Addressing  
Word  
Use  
A8  
1
A7  
0
A6  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
LOCK  
Both  
0
0
1
2
3
4
5
6
7
Factory  
Factory  
Factory  
Factory  
User  
1
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
1
0
1
0
0
0
0
1
0
User  
1
0
0
0
0
1
1
User  
1
0
0
0
0
1
1
User  
1
0
0
0
1
0
0
NOTE: 1. All address lines not specified in the above table must be 0 when accessing the Protection Register,  
i.e., A23-A9 = 0.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
24  
MX26L6411  
Figure 4. Write to Buffer Flowchart  
Start  
Set Time-Out  
NO  
Write E8H to Block Address  
Read Extended Status Register  
YES  
NO  
Write to Buffer  
Time-Out ?  
XSR.7=1 ?  
YES  
Write Word or Byte  
Count to Block Address  
Write Buffer Data,  
Start Address  
YES  
X = 0  
Check  
X=N ?  
Abort Write to  
Buffer Command?  
YES  
Write to Another  
Block Address  
NO  
Write to Buffer  
Failed  
YES  
Write Next Buffer Data,  
Device Address  
X = X+1  
Program Buffer to MTP  
Confirm D0H  
Another Write  
to Buffer ?  
Issue Read  
Status Command  
NO  
Read Status Register  
NO  
SR.7=1?  
YES  
Full Status Check if Desired  
Programming Complete  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
25  
MX26L6411  
Figure 5. Program Suspend/Resume Flowchart  
Start  
Write B0H  
Read Status Register  
NO  
SR.7=1 ?  
YES  
NO  
SR.2=1 ?  
YES  
Programming Completed  
Write FFH  
Read Array Data  
NO  
Done Reading  
YES  
Write D0H  
Write FFH  
Programming Resumed  
Read Array Data  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
26  
MX26L6411  
Figure 6. Word Programming Flowchart  
Bus  
Command  
Comments  
Operation  
Write  
Start  
Setup  
Data=40H  
Word Program Addr=Location to Be  
Programmed  
Write 40H,  
Address  
Write  
Word  
Program  
Data=Data to Be  
Programmed  
Write Data  
and Address  
Addr=Location to Be  
Programmed  
Read  
Status Register Data  
Read  
(Note 1)  
Standby  
Status Register  
Check SR.7  
1=WSM Ready  
0=WSM Busy  
0
SR.7=  
1.Toggling OE (low to high to low) updates the status  
register.This can be done in place of issuing the Read  
Status Register command. Repeat for subsequent pro-  
gramming operations.  
1
Full Status Check if Desired  
SR full status check can be done after each program  
operation, or after a sequence of programming opera-  
tions.  
Word Program Complete  
Write FFH after the last program operation to place  
device in read array mode.  
FULL STATUS CHECK PROCEDURE  
Bus  
Command Comments  
Read Status Register  
Data (See Above)  
Operation  
Standby  
Check SR.3  
1=Programming toVoltage  
Error Detect  
1
VPP Range Error  
SR.3=  
Standby  
Check SR.1  
1=Device Protect Detect  
RP=VIH, Block Lock-Bit is  
Set Only required for  
systems  
0
1
1
SR.1=  
0
Device Protect Error  
Programming Error  
Standby  
Check SR.4  
1=Programming Error  
Toggling OE (low to high to low) updates the status  
register.This can be done in place of issuing the Read  
Status Register command. Repeat for subsequent pro-  
gramming operations.  
SR.4=  
0
SR.4, SR.3, and SR.1 are only cleared by the Clear  
Status Register Command in cases where multiple lo-  
cation are programmed before full status is checked.  
If an error is detected, clear the status register before  
attempting retry or other error recovery.  
Word Program Successful  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
27  
MX26L6411  
Figure 7. Block Erase Flowchart  
Start  
Write 20H to Block Address  
Write Confirm D0H to Block Address  
Read  
Status Register  
NO  
NO  
SR.7=1 ?  
YES  
Write B0H?  
YES  
Full Status Check  
If Desired  
Suspend Loop  
Write D0H  
YES  
Erase MTP  
Block(s) Completed  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
28  
MX26L6411  
Figure 8. Block Erase Suspend/Resume Flowchart  
Bus  
Command  
Comments  
Start  
Operation  
Write  
Erase  
Data=B0H  
Suspend  
Addr=X  
Write B0H  
Read  
Status Register Data  
Addr=X  
Read  
Status Register  
Standby  
Check SR.7  
1=WSM Ready  
0=WSM Busy  
Check SR.6  
0
SR.7=  
Standby  
Write  
1=Block Erase Suspend  
0=Block Erase Completed  
Data=D0H  
1
0
Erase  
SR.6=  
1
Erase Completed  
Resume  
Addr=X  
Read  
Program  
Read or Program?  
No  
Read Array  
Program  
Loop  
Data  
Done ?  
Yes  
Write D0H  
Write FFH  
Block Erase Resumed  
Read Array Data  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
29  
MX26L6411  
Figure 9. Set Block Lock-Bit Flowchart  
Start  
Write 60H, Block Address  
Write 01H, Block Address  
Read  
Status Register  
NO  
SR.7=1 ?  
YES  
Full Status Check  
If Desired  
Set Lock-Bit Completed  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
NO  
Voltage Range Error  
SR.3=0 ?  
YES  
YES  
SR.4,5=1 ?  
Command Sequence Error  
NO  
NO  
Set Lock-Bit Error  
SR.4=0 ?  
YES  
Set Lock-Bit Successful  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
30  
MX26L6411  
Figure 10. Clear Lock-Bit Flowchart  
Start  
Write 60H  
Write D0H  
Read  
Status Register  
NO  
SR.7=1 ?  
YES  
Full Status Check  
If Desired  
Set Lock-Bit Completed  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
NO  
Voltage Range Error  
SR.3=0 ?  
YES  
YES  
SR.4,5=1 ?  
Command Sequence Error  
Clear Block Lock-Bits Error  
NO  
NO  
SR.5=0 ?  
YES  
Clear Block Lock-Bit Successful  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
31  
MX26L6411  
Figure 11. Protection Register Programming Flowchart  
Start  
Write C0H (Protection Reg.  
Program Setup)  
Write Protect. Register  
Address/Data  
Read  
Status Register  
NO  
SR.7=1 ?  
YES  
Full Status Check  
If Desired  
Program Completed  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
1,1  
VPEN Range Error  
SR.3, SR.4=  
0,1  
Protection Register  
Programming Error  
SR.1, SR.4=  
1,1  
Attempted Program to Locked  
Register-Aborted  
SR.1, SR.4=  
YES  
Program Successful  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
32  
MX26L6411  
OPERATING RATINGS  
ABSOLUTE MAXIMUM RATINGS  
StorageTemperature  
Commercial (C) Devices  
Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC  
Ambient Temperature (TA ). . . . . . . . . . . . 0°C to +70°C  
VCC Supply Voltages  
AmbientTemperature  
with Power Applied. . . . . . . . . . . . . .... -65oC to +125oC  
Voltage with Respect to Ground  
VCC for full voltage range. . . . . . . . . . . +2.7 V to 3.6 V  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V  
A9, OE, and  
All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is -0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot VSS to -2.0 V for periods of up to 20 ns. See  
Figure 6. Maximum DC voltage on input or I/O pins is  
VCC +0.5 V. During voltage transitions, input or I/O  
pins may overshoot to VCC +2.0 V for periods up to  
20 ns. See Figure 7.  
2. Minimum DC input voltage on pins A9 and OE is  
-0.5V.During voltage transitions, A9 and OE may over-  
shoot VSS to -2.0 V for periods of up to 20 ns. See  
Figure 6. Maximum DC input voltage on pin A9 is +12.5  
V which may overshoot to 14.0 V for periods up to 20  
ns.  
3.No more than one output may be shorted to ground at  
a time. Duration of the short circuit should not be  
greater than one second.  
Stresses above those listed under "Absolute Maximum  
Rat-ings" may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those in-  
dicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maxi-  
mum rating conditions for extended periods may affect  
device reliability.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
33  
MX26L6411  
DC Characteristics  
Symbol Parameter  
Notes Typ  
Max  
±1  
Unit Test Conditions  
ILI  
Input Load Current  
1
1
uA  
uA  
uA  
VCC = VCC Max, VIN = VCC or GND  
VCC = VCC Max, VIN = VCC or GND  
CMOS Inputs, VCC = VCC Max,  
Device is disabled (see table 1)  
TTL Inputs, VCC=VCC max,  
Device is disable (see table 1)  
IOUT(STS)=0mA  
ILO  
ICC1  
Output Leakage Current  
VCC Standby Current  
±10  
80  
1,2,3  
25  
0.71  
2
2
5
mA  
uA  
ICC2  
ICC3  
VCC Power-Down Current  
CMOS Inputs, VCC=VCC Max,  
Device is enabled (see Table 1)  
f=5MHz, IOUT=0mA  
15  
20  
mA  
VCC Page Mode Read Current 1,3  
VCCWord Mode Read Current 1,3  
CMOS Inputs, VCC=VCC Max,  
Device is enabled (see Table 1)  
f=33MHz, IOUT=0mA  
24  
60  
29  
70  
mA  
mA  
CMOS Inputs, VCC=VCC Max,  
Device is enabled (see Table 1)  
f=5MHz, IOUT=0MA  
ICC4  
ICC5  
ICC6  
ICC7  
VCC Program or Set Lock-Bit 1,4  
Current  
35  
40  
35  
40  
60  
70  
70  
80  
10  
mA  
mA  
mA  
mA  
mA  
CMOS Inputs  
TTL Inputs  
VCC Block Erase or Clear  
Block Lock-Bits Current  
VCC Program Suspend or  
Block Erase Suspend Current  
Input LowVoltage  
1,4  
CMOS Inputs  
TTL Inputs  
1,5  
Device is disabled (see Table 1)  
VIL  
3
3
3
-0.5  
2.0  
0.8  
VCC+0.5  
0.4  
V
V
V
V
V
VIH  
VOL  
Input HighVoltage  
Output LowVoltage  
VCC=VCC Min, IOL=2mA  
VCC=VCC Min, IOL=100uA  
VCC=VCC Min  
0.2  
0.85 x  
VCC  
IOH=-2.5mA  
VOH  
Output HighVoltage  
VCC LockoutVoltage  
3
5
VCC-0.2  
V
V
VCC=VCC Min  
IOH=-100uA  
VLKO  
2.2  
NOTES:  
1. All currents are in RMS unless otherwise noted. These currents are valid for all product versions (packages and  
speeds).  
2. CMOS inputs are either VCC ±0.2 V or GND ±0.2 V.TTL inputs are either VIL or VIH .  
3. Sampled, not 100% tested.  
4. ICCWS and ICCES are specified with the device de-selected. If the device is read or written while in erase suspend  
mode, the device's current draw is ICCR or ICCW .  
5.Block erases, programming, and lock-bit configurations are inhibited whenVCC <VLKO , and not guaranteed in the  
range betweenVLKO (min) andVCC (min), and aboveVCC (max).  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
34  
MX26L6411  
Figure 12. Transient Input/Output Reference Waveform  
3.0  
1.5V  
1.5V  
TEST POINTS  
0.0  
Input  
Output  
Note : AC test inputs are driven for a Logic "1" and 0.0V for a Logic "0".  
Input rise and fall times (10% tp 90%) < 5ns.  
Figure 13. Transient Equivalent Testing Load Circuit  
1.3V  
1N914  
RL=3.3K ohm  
Device  
Out  
Under Test  
CL  
NOTE: CL Includes Jig Capacitance  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
35  
MX26L6411  
AC Characteristics --Read-Only Operations (1,2)  
Versions  
VCC  
3.0V-3.6V(3)  
2.7V-3.6V(3)  
(All units in ns unless otherwise noted)  
Sym  
Parameter  
Notes  
Min  
Max  
Min  
Max  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
Read/Write CycleTime  
100  
100  
Address to Output Delay  
CEX to Output Delay  
100  
100  
50  
100  
100  
50  
2
OE to Non-Array Output Delay  
RESET High to Output Delay  
CEX to Output in Low Z  
2, 4  
180  
180  
5
5
5
5
5
0
0
0
0
OE to Output in Low Z  
CEX High to Output in High Z  
OE High to Output in High Z  
Output Hold from Address, CEX, or OE  
Change, Whichever Occurs First  
35  
15  
35  
15  
0
0
0
0
tELFL/tELFH CEX Low to BYTE High or Low  
tFLQV/tFHQV BYTE to Output Delay  
5
10  
10  
1000  
1000  
1000  
1000  
tFLQZ  
tEHEL  
tAPA  
BYTE to Output in High Z  
CEx High to CEx Low  
5
5
Page Address Access Time  
OE to Array Output Delay  
5, 6  
4
25  
25  
30  
30  
tGLQV  
NOTES:  
CEX low is defined as the first edge of CE that enables the device. CEX high is defined at the first edge of CE that  
disables the device (see Table 1).  
1. See AC Input/Output Reference Waveforms for the maximum allowable input slew rate.  
2. OE may be delayed up to t ELQV -t GLQV after the first edge of CE that enables the device (see Table 1) without  
impact on t ELQV .  
3. See Figures 12-13, Transient Input/Output Reference Waveform for VCC= 2.7V-3.6V, and Transient Equivalent  
Testing Load Circuit for testing characteristics.  
4.When reading the MTP array a faster tGLQV (R16) applies. Non-array reads refer to status register reads, query  
reads, or device identifier reads.  
5. Sampled, not 100% tested.  
6.For devices configured to standard word read mode, R15 (tAPA) will equal R2 (tAVQV).  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
36  
MX26L6411  
Figure 14. AC Waveform for Both Page-Mode and Standard Word Read Operations  
VIH  
VIL  
Address  
(A23-A3)  
tAVAV  
VIH  
VIL  
Address  
(A2-A0)  
Valid Address  
Valid Address Valid Address  
Valid Address  
tEHEL  
Disable  
VIH  
VIL  
CEx[E]  
Enable  
tEHQZ  
tAVQV  
VIH  
VIL  
OE [G]  
tGHQZ  
tELQV  
VIH  
VIL  
WE [W]  
tGLQV  
tOH  
tAPA  
tPHQV  
tELQX  
VOH  
VOL  
DATA[D/Q]  
Q0- Q15  
High Z  
High Z  
Valid  
Valid  
Valid  
Valid  
Output  
Output Output Output  
tGLQX  
VIH  
VIL  
VCC  
NOTE:  
1. CEX low is defined as the first edge of CE that enables the device. CEX high is defined at the first edge of CE that  
disables the device (see Table 1).  
2. For standard word read operations, tAPA will equal tAVQV.  
3. When reading the MTP array a faster tGLQV applies. Non-array reads refer to status register reads, query reads,  
or device identifier reads.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
37  
MX26L6411  
AC Characteristics--Write Operations (1,2)  
Versions  
Valid for All  
Speeds  
Unit  
Symbol  
Parameter  
Notes  
Min  
Max  
tPHWL (tPHEL )  
tELWL (tWLEL )  
tWP  
RESET High Recovery to WE(CEX) Going Low  
CEX (WE) Low toWE(CEX) Going Low  
Write PulseWidth  
3
4
4
5
5
2
0
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
sec  
us  
us  
70  
50  
55  
0
tDVWH (tDVEH )  
tAVWH (tAVEH )  
tWHEH (tEHWH)  
tWHDX (tEHDX)  
tWHAX (tEHAX)  
tWPH  
Data Setup to WE(CEX) Going High  
Address Setup to WE(CEX) Going High  
CEX (WE) Hold fromWE(CEX) High  
Data Hold fromWE(CEX) High  
Address Hold fromWE(CEX) High  
Write PulseWidth High  
0
0
6
3
30  
0
tVPWH (tVPEH)  
tWHGL (tEHGL)  
tQVVL  
VPEN Setup to WE(CEX) Going High  
Write Recovery before Read  
7
35  
0
VPEN Hold from Valid SRD, STS Going High  
3,8  
4,8  
4
tWHQV5 (tEHQV5) Set Lock-Bit Time  
64  
0.5  
25  
26  
75/85  
0.70  
tWHQV6 (tEHQV6) Clear Block Lock-Bits Time  
tWHRH1 (tEHRH1) Program Suspend LatencyTime to Read  
8
75/90  
35/40  
tWHRH (tEHRH)  
Erase Suspend LatencyTime to Read  
8
NOTES:  
CEX low is defined as the first edge of CE that enables the device. CEX high is defined at the first edge of CE that  
disables the device (see Table 1).  
1. Read timing characteristics during block erase, program, and lock-bit configuration operations are the same as  
during read-only operations. Refer to AC Characteristics-Read-Only Operations.  
2. A write operation can be initiated and terminated with either CE X or WE.  
3. Sampled, not 100% tested.  
4. Write pulse width (tWP) is defined from CEX orWE going low (whichever goes low last) to CEX orWE going high  
(whichever goes high first). Hence, tWP = tWLWH = tELEH = tWLEH = tELWH.  
5. Refer to Table 3 for valid A IN and D IN for block erase, program, or lock-bit configuration.  
6. Write pulse width high (t WPH) is defined from CEX or WE going high (whichever goes high first) to CEX or WE  
going low (whichever goes low first). Hence, tWPH = tWHWL = tEHEL = tWHEL = tEHWL .  
7. For array access, tAVQV is required in addition to tWHGL for any accesses after a write.  
8. VPEN should be held at VPENH until determination of block erase, program, or lock-bit configuration success  
(SR.1/3/4/5=0).  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
38  
MX26L6411  
Figure 15. AC Waveform for Write Operations  
A
B
C
D
E
F
VIH  
VIL  
Address  
(A)  
AIN  
AIN  
tAVWH  
(tAVEH)  
tWHAX  
(tEHAX)  
Disable  
VIH  
VIL  
CEx,(WE)[E(W)]  
Enable  
tWHGL  
(tEHGL)  
tWHEH  
(tEHWH)  
tPHWL  
(tPHEL)  
VIH  
VIL  
OE  
tELWL  
(tWLEL)  
tWPH  
tWHQZ/tWHRH  
Disable  
VIH  
VIL  
WE,(CEx)[W(E)]  
Enable  
tWP  
tOVWH  
(tDVEH)  
tWHDX  
(tEHDX)  
VIH  
VIL  
Valid  
DIN  
DATA[D/Q]  
STS[R]  
DIN  
DIN  
SRD  
tWHRL  
(tEHRL)  
VOH  
VOL  
NOTES:  
1. CEX low is defined as the first edge of CE that enables the device. CEX high is defined at the first edge of CE that  
disables the device (see Table 1).  
a.VCC power-up and standby.  
b.Write block erase, write buffer, or program setup.  
c.Write block erase or write buffer confirm, or valid address and data.  
d. Automated erase delay.  
e. Read status register or query data.  
f. Write Read Array command.  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
39  
MX26L6411  
ERASE AND PROGRAMMING PERFORMANCE(1)  
LIMITS  
PARAMETER  
MIN.  
TYP.(2)  
2.0  
MAX.  
15.0  
654  
UNITS  
sec  
Block Erase Time  
Write Buffer Byte Program Time  
(Time to Program 16 words)  
218  
us  
Byte Program Time (Using Word Program Command)  
Block Program Time (Using Write to Buffer Command)  
Block Erase/Program Cycles  
210  
0.8  
630  
2.4  
us  
sec  
100  
Cycles  
Note: 1.Not 100% Tested, Excludes external system level over head.  
2.Typical values measured at 25°C,3.3V. Additionally programming typically assume checkerboard pattern.  
LATCH-UP CHARACTERISTICS  
MIN.  
-1.0V  
MAX.  
13.5V  
Input Voltage with respect to GND on all pins except I/O pins  
Input Voltage with respect to GND on all I/O pins  
Current  
-1.0V  
Vcc + 1.0V  
+100mA  
-100mA  
Includes all pins except Vcc. Test conditions: Vcc = 5.0V, one pin at a time.  
CAPACITANCE TA=0°C to 70°C, VCC=2.7V~3.6V  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Set  
VIN=0  
TYP  
MAX  
8
UNIT  
pF  
CIN  
6
8
COUT  
Output Capacitance  
VOUT=0  
12  
pF  
Notes:  
1. Sampled, not 100% tested.  
2.Test conditions TA=25°C, f=1.0MHz  
DATA RETENTION  
Parameter  
Test Conditions  
Min  
10  
Unit  
Minimum Pattern Data Retention Time  
150  
125  
Years  
Years  
20  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
40  
MX26L6411  
ORDERING INFORMATION  
PLASTIC PACKAGE  
Part NO.  
Access Time  
(ns)  
Packagetype  
Cycles  
MX26L6411TC-10  
100/30  
48-TSOP  
100  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
41  
MX26L6411  
PACKAGE INFORMATION  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
42  
MX26L6411  
REVISION HISTORY  
Revision No. Description  
Page  
Date  
0.1  
1. To modify Package Information  
P42  
NOV/20/2002  
P/N:PM0947  
REV. 0.1,NOV. 20, 2002  
43  
MX26L6411  
MACRONIX INTERNATIONAL CO., LTD.  
HEADQUARTERS:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
EUROPE OFFICE:  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
JAPAN OFFICE:  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
SINGAPORE OFFICE:  
TEL:+65-348-8385  
FAX:+65-348-8096  
TAIPEI OFFICE:  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-453-8088  
FAX:+1-408-453-8488  
CHICAGO OFFICE:  
TEL:+1-847-963-1900  
FAX:+1-847-963-1909  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

MX26L6413TC-12

Flash, 4MX16, 120ns, PDSO48, 12 X 20 MM, PLASTIC, MO-142, TSOP1-48
Macronix

MX26L6413TC-90

Flash, 4MX16, 90ns, PDSO48, 12 X 20 MM, PLASTIC, MO-142, TSOP1-48
Macronix

MX26L6413TI-90

Flash, 4MX16, 90ns, PDSO48, 12 X 20 MM, PLASTIC, MO-142, TSOP1-48
Macronix

MX26L6413XBC-90

Flash, 4MX16, 90ns, PBGA63, 8 X 13 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, PLASTIC, MO-210, CSP-63
Macronix

MX26L6413XBI-12

Flash, 4MX16, 120ns, PBGA63, 8 X 13 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, PLASTIC, MO-210, CSP-63
Macronix

MX26L6413XBI-90

Flash, 4MX16, 90ns, PBGA63, 8 X 13 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, PLASTIC, MO-210, CSP-63
Macronix

MX26L6419

64M [x16] SINGLE 3V PAGE MODE MTP MEMORY
Macronix

MX26L6419TC-10

64M [x16] SINGLE 3V PAGE MODE MTP MEMORY
Macronix

MX26L6420

64M-BIT [4M x 16] CMOS MULTIPLE-TIME-PROGRAMMABLE EPROM
Macronix

MX26L6420

64M位[ 4Mx16 ]的CMOS多时间可编程存储器
MAXIM

MX26L6420MC-12

64M-BIT [4M x 16] CMOS MULTIPLE-TIME-PROGRAMMABLE EPROM
Macronix

MX26L6420MC-90

64M-BIT [4M x 16] CMOS MULTIPLE-TIME-PROGRAMMABLE EPROM
Macronix