MP1474 [MPS]

High-Efficiency, 2A, 16V, 500kHz Synchronous, Step-Down Converter; 高效率, 2A , 16V , 500kHz的同步,降压转换器
MP1474
型号: MP1474
厂家: MONOLITHIC POWER SYSTEMS    MONOLITHIC POWER SYSTEMS
描述:

High-Efficiency, 2A, 16V, 500kHz Synchronous, Step-Down Converter
高效率, 2A , 16V , 500kHz的同步,降压转换器

转换器
文件: 总16页 (文件大小:462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MP1474  
High-Efficiency, 2A, 16V, 500kHz  
Synchronous, Step-Down Converter  
The Future of Analog IC Technology  
DESCRIPTION  
FEATURES  
The MP1474 is a high-frequency, synchronous,  
rectified, step-down, switch-mode converter  
with built-in power MOSFETs. It offers a very  
compact solution to achieve a 2A continuous  
output current with excellent load and line  
regulation over a wide input supply range. The  
MP1474 has synchronous mode operation for  
higher efficiency over the output current load  
range.  
Wide 4.5V-to-16V Operating Input Range  
100m/40mLow RDS(ON) Internal Power  
MOSFETs  
High-Efficiency Synchronous Mode  
Operation  
Fixed 500kHz Switching Frequency  
Synchronizes from a 200kHz-to-2MHz  
External Clock  
Power-Save Mode at Light Load  
Internal Soft-Start  
Power Good Indicator  
OCP Protection and Hiccup  
Thermal Shutdown  
Output Adjustable from 0.8V  
Available in an 8-pin TSOT-23 Package  
Current-mode operation provides fast transient  
response and eases loop stabilization.  
Full protection features include over-current  
protection and thermal shut down.  
The MP1474 requires a minimal number of  
readily-available standard external components,  
and is available in a space-saving 8-pin  
TSOT23 package.  
APPLICATIONS  
Notebook Systems and I/O Power  
Digital Set-Top Boxes  
Flat-Panel Television and Monitors  
Distributed Power Systems  
All MPS parts are lead-free and adhere to the RoHS directive. For MPS green  
status, please visit MPS website under Quality Assurance. “MPS” and “The  
Future of Analog IC Technology” are Registered Trademarks of Monolithic  
Power Systems, Inc.  
TYPICAL APPLICATION  
Efficiency vs.  
Output Current  
R3  
20  
4.5V-16V  
5
2
V
=3.3V, I =0.01A-2A  
VIN  
IN  
BST  
SW  
OUT  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
C1  
22  
C4  
MP1474  
3.3V/2A  
3
V
=5V  
IN  
6
7
1
EN/SYNC  
L1  
V
=12V  
IN  
C2  
47  
EN/  
R1  
SYNC  
R6  
16k  
V
=16V  
40.2k  
IN  
VCC  
8
FB  
R5  
100k  
C5  
0.1  
R2  
13k  
PG  
GND  
4
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
OUTPUT CURRENT (A)  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
1
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
ORDERING INFORMATION  
Part Number*  
Package  
Top Marking  
MP1474DJ  
TSOT-23-8  
ADK  
* For Tape & Reel, add suffix –Z (e.g. MP1474DJ–Z);  
For RoHS Compliant Packaging, add suffix –LF (e.g. MP1474DJ–LF–Z)  
PACKAGE REFERENCE  
TOP VIEW  
PG  
IN  
FB  
1
2
3
4
8
7
6
5
VCC  
SW  
GND  
EN/SYNC  
BST  
ABSOLUTE MAXIMUM RATINGS (1)  
VIN ..................................................-0.3V to 17V  
Thermal Resistance (5)  
TSOT-23-8.............................100..... 55... °C/W  
θJA  
θJC  
V
SW......................................................................  
-0.3V (-5V for <10ns) to 17V (19V for <10ns)  
BST ........................................................ VSW+6V  
Notes:  
1) Exceeding these ratings may damage the device.  
2) About the details of EN pin’s ABS MAX rating, please refer to  
Page 9, Enable/SYNC control section.  
V
All Other Pins................................ -0.3V to 6V (2)  
3) The maximum allowable power dissipation is a function of the  
maximum junction temperature TJ (MAX), the junction-to-  
ambient thermal resistance θJA, and the ambient temperature  
TA. The maximum allowable continuous power dissipation at  
any ambient temperature is calculated by PD (MAX) = (TJ  
(MAX)-TA)/θJA. Exceeding the maximum allowable power  
dissipation will cause excessive die temperature, and the  
regulator will go into thermal shutdown. Internal thermal  
shutdown circuitry protects the device from permanent  
damage.  
(3)  
Continuous Power Dissipation (TA = +25°C)  
........................................................... 1.25W  
Junction Temperature...............................150°C  
Lead Temperature ....................................260°C  
Storage Temperature................. -65°C to 150°C  
Recommended Operating Conditions (4)  
Supply Voltage VIN ...........................4.5V to 16V  
Output Voltage VOUT.....................0.8V to VIN-3V  
Operating Junction Temp. (TJ). -40°C to +125°C  
4) The device is not guaranteed to function outside of its  
operating conditions.  
5) Measured on JESD51-7, 4-layer PCB.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
2
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
ELECTRICAL CHARACTERISTICS (6)  
VIN = 12V, TA = 25°C, unless otherwise noted.  
Parameter  
Symbol Condition  
Min  
Typ  
7
Max  
Units  
μA  
Supply Current (Shutdown)  
Supply Current (Quiescent)  
HS Switch-On Resistance  
LS Switch-On Resistance  
Switch Leakage  
IIN  
Iq  
VEN = 0V  
VEN = 2V, VFB = 1V  
0.6  
100  
40  
1
mA  
mΩ  
mΩ  
μA  
HSRDS-ON VBST-SW=5V  
LSRDS-ON VCC =5V  
SWLKG VEN = 0V, VSW =12V  
1
Current Limit (6)  
ILIMIT  
fSW  
Under 40% Duty Cycle  
VFB=0.75V  
3
A
Oscillator Frequency  
Fold-Back Frequency  
Maximum Duty Cycle  
Minimum On Time(6)  
Sync Frequency Range  
430  
500  
0.25  
95  
570  
kHz  
fSW  
fFB  
VFB<400mV  
DMAX  
τON MIN  
fSYNC  
VFB=700mV  
90  
%
40  
ns  
0.2  
791  
787  
2
MHz  
TA =25°C  
-40°C<TA<85°C (7)  
807  
807  
10  
823  
827  
50  
Feedback Voltage  
VFB  
mV  
Feedback Current  
IFB  
VFB=820mV  
nA  
V
EN Rising Threshold  
EN Falling Threshold  
VEN RISING  
VEN FALLING  
1.2  
1.1  
1.4  
1.6  
1.4  
1.25  
V
VEN=2V  
VEN=0  
2
0
μA  
μA  
EN Input Current  
IEN  
EN Turn-Off Delay  
ENtd-off  
PGvth-Hi  
PGvth-Lo  
PGTd  
5
μs  
VFB  
VFB  
ms  
Power-Good Rising Threshold  
Power-Good Falling Threshold  
Power-Good Delay  
0.9  
0.85  
0.4  
Power-Good Sink Current  
Capability  
VPG  
Sink 4mA  
0.4  
1
V
μA  
V
Power-Good Leakage Current  
IPG-LEAK  
INUVVth  
VIN Under-Voltage Lockout  
Threshold—Rising  
3.7  
3.9  
4.1  
VIN Under-Voltage Lockout  
Threshold—Hysteresis  
INUVHYS  
VCC  
650  
mV  
VCC Regulator  
5
3
V
%
VCC Load Regulation  
ICC=5mA  
Soft-Start Period  
τSS  
1.2  
150  
20  
ms  
°C  
°C  
Thermal Shutdown (6)  
Thermal Hysteresis (6)  
Notes:  
6) Guaranteed by design.  
7) Not tested in production and guaranteed by over-temperature correlation.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
3
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL CHARACTERISTICS  
VIN = 12V, VOUT = 3.3V, L=5.5μH, TA = 25°C, unless otherwise noted.  
Peak Current  
vs. Duty Cycle  
Load Regulation Line Regulation  
V
=5-16V, I  
=0-2A  
V =5V-16V  
IN  
IN OUT  
0.5  
0.3  
4.3  
4
0.3  
I
=0A  
OUT  
0.2  
0.1  
0
V
=12V  
IN  
V
=16V  
IN  
3.7  
3.4  
3.1  
2.8  
2.5  
0.1  
I
=1A  
OUT  
-0.1  
-0.3  
-0.5  
V
=5V  
IN  
-0.1  
-0.2  
-0.3  
I
=2A  
OUT  
0
0.4  
0.8  
1.2  
1.6  
2
5
6
7
8
9 10 11 12 13 14 15 16  
25 30 35 40 45 50 55 60 65 70 75  
OUTPUT CURRENT (A)  
INPUT VOLTAGE(V)  
Disabled Supply Current  
vs. Input Voltage  
Enabled Supply Current  
vs. Input Voltage  
V =1V  
FB  
V
=0V  
EN  
20  
800  
750  
700  
650  
600  
550  
500  
450  
400  
17  
14  
11  
8
5
2
-1  
-4  
-7  
-10  
0
5
10  
15  
20  
4
6
8
10 12 14 16 18  
INPUT VOLTAGE(V)  
INPUT VOLTAGE(V)  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
4
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS  
Performance waveforms are tested on the evaluation board of the Design Example section.  
VIN = 12V, VOUT = 3.3V, L=5.5μH, TA = 25°C, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
=5V  
V
=5V  
IN  
IN  
V
=12V  
V
=5V  
IN  
IN  
V
=12V  
IN  
V
=12V  
IN  
V
=16V  
IN  
V
=16V  
IN  
V
=16V  
IN  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Case Temperature Rise  
vs. Output Current  
I
=0A-2A  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
18  
15  
12  
9
V
=7V  
V
=5V  
IN  
IN  
V
=12V  
IN  
V
=12V  
IN  
V
=16V  
IN  
V
=16V  
IN  
6
3
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
0
0.5  
1
1.5  
2
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Short Entry  
Short Recovery  
Startup through Enable  
I
=0A  
I
=0A  
I
=0A  
OUT  
OUT  
OUT  
V
OUT  
V
V
OUT  
OUT  
2V/div.  
V
5V/div.  
2V/div.  
V
5V/div.  
2V/div.  
V
5V/div.  
PG  
PG  
PG  
V
IN  
V
V
EN  
IN  
10V/div.  
5V/div.  
10V/div.  
V
SW  
V
V
SW  
SW  
10V/div.  
10V/div.  
10V/div.  
I
INDUCTOR  
5A/div.  
I
I
INDUCTOR  
2A/div.  
INDUCTOR  
5A/div.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
5
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are tested on the evaluation board of the Design Example section.  
VIN = 12V, VOUT = 3.3V, L=5.5μH, TA = 25°C, unless otherwise noted.  
Startup through Enable  
Shutdown through  
Enable  
Shutdown through  
Enable  
I
=2A  
OUT  
I
=0A  
I
=2A  
OUT  
OUT  
V
V
OUT  
V
OUT  
OUT  
2V/div.  
2V/div.  
2V/div.  
V
V
PG  
V
PG  
PG  
5V/div.  
5V/div.  
5V/div.  
V
V
EN  
V
EN  
EN  
5V/div.  
5V/div.  
5V/div.  
V
V
SW  
V
SW  
SW  
10V/div.  
10V/div.  
10V/div.  
I
I
INDUCTOR  
2A/div.  
I
INDUCTOR  
2A/div.  
INDUCTOR  
2A/div.  
Startup through Input  
Voltage  
Startup through Input  
Voltage  
Shutdown through  
Input Voltage  
I
=0A  
I
=2A  
I
=0A  
OUT  
OUT  
OUT  
V
V
OUT  
V
OUT  
OUT  
2V/div.  
2V/div.  
2V/div.  
V
V
PG  
V
PG  
PG  
5V/div.  
5V/div.  
5V/div.  
V
V
IN  
V
IN  
IN  
5V/div.  
5V/div.  
5V/div.  
V
V
SW  
V
SW  
SW  
5V/div.  
5V/div.  
5V/div.  
I
I
INDUCTOR  
2A/div.  
I
INDUCTOR  
2A/div.  
INDUCTOR  
2A/div.  
Shutdown through  
Input Voltage  
Input / Output Ripple  
Load Transient Reponse  
I
=2A  
I
=1A-2A  
OUT  
OUT  
I
=2A  
OUT  
V
/AC  
OUT  
V
20mV/div.  
OUT  
2V/div.  
V
V
/AC  
PG  
OUT  
V
AC  
IN/  
5V/div.  
50mV/div.  
200mV/div.  
V
IN  
5V/div.  
V
SW  
V
SW  
10V/div.  
5V/div.  
I
OUT  
I
L
1A/div.  
I
INDUCTOR  
2A/div.  
2A/div.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
6
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
PIN FUNCTIONS  
Package  
Pin #  
Name Description  
Power Good Output. The output of this pin is an open drain that goes high if the output  
voltage exceeds 90% of the normal voltage. There is a 0.4ms delay between when  
FB90% to when the PG pin goes high.  
1
PG  
IN  
Supply Voltage. The IN pin supplies power for internal MOSFET and regulator. The  
MP1474 operates from a +4.5V to +16V input rail. Requires a low-ESR, and low-  
inductance capacitor (C1) to decouple the input rail. Place the input capacitor very close to  
this pin and connect it with wide PCB traces and multiple vias.  
2
3
Switch Output. Connect to the inductor and bootstrap capacitor. This pin is driven up to VIN  
by the high-side switch during the PWM duty cycle ON time. The inductor current drives  
the SW pin negative during the OFF time. The ON resistance of the low-side switch and  
the internal body diode fixes the negative voltage. Connect using wide PCB traces and  
multiple vias.  
SW  
System Ground. Reference ground of the regulated output voltage. PCB layout Requires  
extra care. For best results, connect to GND with copper and vias.  
4
5
6
7
GND  
BST  
Bootstrap. Requires a capacitor connected between SW and BST pins to form a floating  
supply across the high-side switch driver.  
Enable. EN=high to enable the MP1474. Apply an external clock change the switching  
frequency. For automatic start-up, connect EN pin to VIN with a 100kresistor.  
EN/SYNC  
VCC  
Internal 5V LDO output. Powers the driver and control circuits. Decouple with 0.1μF-to-  
0.22μF capacitor. Do not use a capacitor 0.22μF.  
Feedback. Connect to the tap of an external resistor divider from the output to GND to set  
the output voltage. The frequency fold-back comparator lowers the oscillator frequency  
when the FB voltage is below 400mV to prevent current limit runaway during a short circuit  
fault. Place the resistor divider as close to the FB pin as possible. Avoid placing vias on  
the FB traces.  
8
FB  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
7
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
FUNCTIONAL BLOCK DIAGRAM  
IN  
+
-
VCC  
Regulator  
RSEN  
Currrent Sense  
VCC  
Amplifer  
Bootstrap  
Regulator  
BST  
Oscillator  
HS  
Driver  
+
-
SW  
Comparator  
On Time Control  
Logic Control  
1pF  
VCC  
Current Limit  
Comparator  
50pF  
400k  
Reference  
EN/SYNC  
LS  
Driver  
1MEG  
6.5V  
+
+
-
FB  
GND  
-
Error Amplifier  
PG  
+
Ref  
Figure 1: Functional Block Diagram  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
8
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
OPERATION  
The MP1474 is a high-frequency, synchronous,  
rectified, step-down, switch-mode converter  
with built-in power MOSFETs. It offers a very  
compact solution that achieves a 2A continuous  
output current with excellent load and line  
regulation over a wide input supply range.  
The EN pin is clamped internally using a 6.5V  
series-Zener-diode as shown in Figure 2.  
Connecting the EN input pin through a pullup  
resistor to the voltage on the IN pin limits the  
EN input current to less than 100µA.  
For example, with 12V connected to IN, RPULLUP  
(12V – 6.5V) ÷ 100µA = 55k.  
The MP1474 operates in a fixed-frequency,  
peak-current–control mode to regulate the  
output voltage. An internal clock initiates a  
PWM cycle. The integrated high-side power  
MOSFET turns on and remains on until the  
current reaches the value set by the COMP  
voltage. When the power switch is off, it  
remains off until the next clock cycle starts. If,  
within 95% of one PWM period, the current in  
the power MOSFET does not reach the value  
set by the COMP value, the power MOSFET is  
forced off.  
Connecting the EN pin is directly to a voltage  
source without any pullup resistor requires  
limiting the amplitude of the voltage source to  
6V to prevent damage to the Zener diode.  
Figure 2: 6.5V Zener Diode Connection  
Internal Regulator  
For external clock synchronization, connect a  
clock with a frequency range between 200kHz  
and 2MHz 2ms after the output voltage is set:  
The internal clock rising edge will synchronize  
with the external clock rising edge. Select an  
external clock signal with a pulse width less  
than 1.7μs.  
A 5V internal regulator powers most of the  
internal circuitries. This regulator takes VIN and  
operates in the full VIN range. When VIN  
exceeds 5.0V, the output of the regulator is in  
full regulation. When VIN is less than 5.0V, the  
output decreases, and the part requires a 0.1µF  
ceramic decoupling capacitor.  
Under-Voltage Lockout (UVLO)  
Error Amplifier  
The MP1474 has under-voltage lock-out  
protection (UVLO). When the VCC voltage  
exceeds the UVLO rising threshold voltage, the  
MP1474 powers up. It shuts off when the VCC  
voltage drops below the UVLO falling threshold  
voltage. This is non-latch protection.  
The error amplifier compares the FB pin voltage  
to the internal 0.807V reference (VREF) and  
outputs a current proportional to the difference  
between the two. This output current then  
charges  
or  
discharges  
the  
internal  
compensation network to form the COMP  
voltage, which controls the power MOSFET  
current. The optimized internal compensation  
network minimizes the external component  
counts and simplifies the control loop design.  
The MP1474 is disabled when the input voltage  
falls below 3.25V. If an application requires a  
higher under-voltage lockout (UVLO) threshold,  
use the EN pin as shown in Figure 3 to adjust  
the input voltage UVLO by using two external  
resistors. For best results, set the UVLO falling  
threshold (VSTOP) above 4.5V using the  
enable resistors. Set the rising threshold  
(VSTART) to provide enough hysteresis to  
allow for any input supply variations.  
Enable/SYNC Control  
EN/SYNC is a digital control pin that turns the  
regulator on and off. Drive EN high to turn on  
the regulator; drive it low to turn it off. An  
internal 1Mresistor from EN/SYNC to GND  
allows EN/SYNC to be floated to shut down the  
chip.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
9
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
Thermal Shutdown  
Thermal shutdown prevents the chip from  
operating at exceedingly high temperatures.  
When the silicon die reaches temperatures that  
exceed 150°C, it shuts down the whole chip.  
When the temperature drops below its lower  
threshold, typically 130°C, the chip is enabled  
again.  
Floating Driver and Bootstrap Charging  
An external bootstrap capacitor powers the  
floating power MOSFET driver. This floating  
Figure 3: Adjustable UVLO  
Internal Soft-Start  
driver has its own UVLO protection. This  
UVLO’s rising threshold is 2.2V with a  
hysteresis of 150mV. The bootstrap capacitor  
voltage is regulated internally by VIN through  
D1, M1, R3, C4, L1 and C2 (Figure 4). If (VIN-  
VSW) exceeds 5V, U1 will regulate M1 to  
maintain a 5V BST voltage across C4. A 20ꢀ  
resistor placed between SW and BST cap. is  
strongly recommended to reduce SW spike  
voltage.  
The soft-start prevents the converter output  
voltage from overshooting during startup. When  
the chip starts, the internal circuitry generates a  
soft-start voltage (VSS) that ramps up from 0V to  
1.2V. When VSS is less than VREF, the error  
amplifier uses VSS as the reference. When VSS  
exceeds VREF, the error amplifier uses VREF as  
the reference. The SS time is internally set to  
1.2ms.  
Power Good Indicator  
D1  
MP1474 has an open drain pin as the power-  
good indicator (PG). Pull this up to VCC or  
another external source through a 100kꢀ  
resistor. When VFB exceeds 90% of VREF, PG  
switches goes high with 0.4ms delay time. If VFB  
goes below 85% of VREF, an internal MOSFET  
pulls the PG pin down to ground.  
VIN  
M1  
BST  
U1  
R3  
5V  
C4  
VOUT  
C2  
L1  
SW  
The internal circuit keeps the PG low once the  
input supply exceeds 1.2V.  
Figure 4: Internal Bootstrap Charging Circuit  
Over-Current-Protection and Hiccup  
The MP1474 has a cycle-by-cycle over-current  
limit when the inductor current peak value  
exceeds the set current limit threshold.  
Meanwhile, the output voltage drops until VFB is  
below the Under-Voltage (UV) threshold—  
typically 50% below the reference. Once UV is  
triggered, the MP1474 enters hiccup mode to  
periodically restart the part. This protection  
mode is especially useful when the output is  
dead-shorted to ground, and greatly reduces  
the average short circuit current to alleviate  
thermal issues and protect the regulator. The  
MP1474 exits the hiccup mode once the over-  
current condition is removed.  
Startup and Shutdown  
If both VIN and VEN exceed their respective  
thresholds, the chip starts. The reference block  
starts first, generating stable reference voltage  
and currents, and then the internal regulator is  
enabled. The regulator provides a stable supply  
for the remaining circuitries.  
Three events can shut down the chip: VEN low,  
VIN low, and thermal shutdown. During the  
shutdown procedure, the signaling path is first  
blocked to avoid any fault triggering. The  
COMP voltage and the internal supply rail are  
then pulled down. The floating driver is not  
subject to this shutdown command.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
10  
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
APPLICATION INFORMATION  
Setting the Output Voltage  
Where ΔIL is the inductor ripple current.  
The external resistor divider sets the output  
voltage (see Typical Application on page 1). The  
feedback resistor R1 also sets the feedback loop  
bandwidth with the internal compensation  
capacitor (see Typical Application on page 1).  
Choose R1 around 40k. R2 is then given by:  
Choose the inductor ripple current to be  
approximately 30% of the maximum load current.  
The maximum inductor peak current is:  
IL  
IL(MAX) ILOAD  
2
R1  
Use a larger inductor for improved efficiency  
under light-load conditions—below 100mA.  
R2  
V
OUT  
1  
Selecting the Input Capacitor  
0.807V  
The input current to the step-down converter is  
discontinuous, therefore requires a capacitor is to  
supply the AC current to the step-down converter  
while maintaining the DC input voltage. Use low  
ESR capacitors for the best performance. Use  
ceramic capacitors with X5R or X7R dielectrics  
for best results because of their low ESR and  
small temperature coefficients. For most  
applications, use a 22µF capacitor.  
The T-type network—as shown in Figure 5—is  
highly recommended when VOUT is low.  
Cf  
R1  
Rt  
8
FB  
VOUT  
R2  
Since C1 absorbs the input switching current, it  
requires an adequate ripple current rating. The  
RMS current in the input capacitor can be  
estimated by:  
Figure 5: T-Type Network  
Table 1 lists the recommended T-type resistors  
value for common output voltages.  
Table 1: Resistor Selection for Common Output  
Voltages  
VOUT  
VIN  
VOUT  
VIN  
IC1 ILOAD  
1  
VOUT  
(V)  
R1 (k) R2 (k) Rt (k) Cf(pF) L(μH)  
The worse case condition occurs at VIN = 2VOUT  
,
where:  
1.0  
1.2  
1.8  
2.5  
3.3  
5
20.5  
30.1  
40.2  
40.2  
40.2  
40.2  
84.5  
61.9  
32.4  
19.1  
13  
82  
82  
33  
33  
16  
16  
15  
15  
15  
15  
15  
15  
2.2  
2.2  
4.7  
4.7  
5.5  
5.5  
ILOAD  
IC1  
2
For simplification, choose an input capacitor with  
an RMS current rating greater than half of the  
maximum load current.  
7.68  
The input capacitor can be electrolytic, tantalum  
or ceramic. When using electrolytic or tantalum  
capacitors, add a small, high quality ceramic  
capacitor (e.g. 0.1μF) placed as close to the IC  
as possible. When using ceramic capacitors,  
make sure that they have enough capacitance to  
provide sufficient charge to prevent excessive  
voltage ripple at input. The input voltage ripple  
caused by capacitance can be estimated as:  
Selecting the Inductor  
Use a1µH-to-10µH inductor with a DC current  
rating of at least 25% percent higher than the  
maximum load current for most applications. For  
highest efficiency, use an inductor with a DC  
resistance less than 15m. For most designs,  
the inductance value can be derived from the  
following equation.  
ILOAD  
VOUT  
VOUT  
VOUT (V VOUT  
)
IN  
V  
1  
IN  
L1   
fS C1  
V
IN  
V
IN  
V  IL fOSC  
IN  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
11  
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
External Bootstrap Diode  
Selecting the Output Capacitor  
The output capacitor (C2) maintains the DC  
output voltage. Use ceramic, tantalum, or low-  
ESR electrolytic capacitors. For best results,  
use low ESR capacitors to keep the output  
voltage ripple low. The output voltage ripple can  
be estimated as:  
An external bootstrap diode can enhance the  
efficiency of the regulator given the following  
conditions:  
VOUT is 5V or 3.3V; and  
VOUT  
Duty cycle is high: D=  
>65%  
VIN  
   
VOUT  
VOUT  
1
In these cases, add an external BST diode from  
the VCC pin to BST pin, as shown in Figure 6.  
VOUT  
1  
R  
   
ESR  
fS L1  
V
8fS C2  
IN    
External BST Diode  
IN4148  
Where L1 is the inductor value and RESR is the  
equivalent series resistance (ESR) value of the  
output capacitor.  
BST  
VCC  
CBST  
MP1474  
SW  
For ceramic capacitors, the capacitance  
dominates the impedance at the switching  
frequency, and the capacitance causes the  
majority of the output voltage ripple. For  
simplification, the output voltage ripple can be  
estimated as:  
L
COUT  
Figure 6: Optional External Bootstrap Diode to  
Enhance Efficiency  
The recommended external BST diode is  
IN4148, and the BST capacitor value is 0.1µF  
to 1μF.  
VOUT  
8fS2 L1 C2  
VOUT  
ΔVOUT  
1  
V
IN  
For tantalum or electrolytic capacitors, the ESR  
dominates the impedance at the switching  
frequency. For simplification, the output ripple  
can be approximated as:  
VOUT  
VOUT  
ΔVOUT  
1  
RESR  
fS L1  
V
IN  
The characteristics of the output capacitor also  
affect the stability of the regulation system. The  
MP1474 can be optimized for a wide range of  
capacitance and ESR values.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
12  
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
PC Board Layout (8)  
PCB layout is very important to achieve stable  
operation especially for VCC capacitor and  
input capacitor placement. For best results,  
follow these guidelines:  
1. Use large ground plane directly connect to  
GND pin. Add vias near the GND pin if  
bottom layer is ground plane.  
2. Place the VCC capacitor to VCC pin and  
GND pin as close as possible. Make the  
trace length of VCC pin-VCC capacitor  
anode-VCC capacitor cathode-chip GND  
pin as short as possible.  
3. Place the ceramic input capacitor close to  
IN and GND pins. Keep the connection of  
input capacitor and IN pin as short and  
wide as possible.  
Design Example  
Below is a design example following the  
application guidelines for the specifications:  
4. Route SW, BST away from sensitive  
analog areas such as FB. It’s not  
recommended to route SW, BST trace  
under chip’s bottom side.  
Table 2: Design Example  
VIN  
VOUT  
Io  
12V  
3.3V  
2A  
5. Place the T-type feedback resistor R6 close  
to chip to ensure the trace which connects  
to FB pin as short as possible  
Notes:  
The detailed application schematic is shown in  
Figure 8. The typical performance and circuit  
waveforms have been shown in the Typical  
Performance Characteristics section. For more  
device applications, please refer to the related  
Evaluation Board Datasheets.  
8) The recommended layout is based on the Figure 7 Typical  
Application circuit on the next page.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
13  
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUITS  
R3  
20  
2
5
VIN  
BST  
IN  
C1  
0.1uF  
25V  
C1A  
22uF  
25V  
C4  
0.1uF  
MP1474  
L1  
GND  
GND  
5.5uH  
VOUT  
VOUT  
VOUT  
5V/2A  
C2A  
7
1
6
3
VCC  
PG  
VCC  
PG  
SW  
C5  
0.1uF  
C2  
22uF  
22uF  
R5  
100k  
GND  
GND  
GND  
C3  
15pF  
R4  
100k  
R6  
16k  
8
EN/SYNC  
FB  
EN/SYNC  
R1  
GND  
GND  
40.2k  
R2  
7.68k  
GND  
Figure 7: 12VIN, 5V/2A Output  
R3  
20  
2
5
VIN  
VCC  
BST  
IN  
C1  
C1A  
22uF  
25V  
C4  
0.1uF  
0.1uF  
25V  
MP1474  
L1  
5.5uH  
GND  
GND  
3.3V/2A  
C2A  
7
1
6
3
VCC  
PG  
SW  
C5  
0.1uF  
C2  
22uF  
22uF  
R5  
100k  
GND  
GND  
GND  
PG  
C3  
15pF  
R4  
100k  
R6  
16k  
8
EN/SYNC  
FB  
EN/SYNC  
R1  
GND  
GND  
40.2k  
R2  
13k  
GND  
Figure 8: 12VIN, 3.3V/2A Output  
R3  
20  
2
5
VIN  
VCC  
BST  
IN  
C1  
C1A  
22uF  
25V  
C4  
0.1uF  
0.1uF  
25V  
MP1474  
L1  
4.7uH  
GND  
GND  
2.5V/2A  
C2A  
7
3
VCC  
PG  
SW  
C5  
0.1uF  
C2  
22uF  
22uF  
R5  
100k  
GND  
GND  
GND  
1
6
PG  
C3  
15pF  
R4  
100k  
R6  
33k  
8
EN/SYNC  
FB  
EN/SYNC  
R1  
40.2k  
GND  
GND  
R2  
19.1k  
GND  
Figure 9: 12VIN, 2.5V/2A Output  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
14  
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER  
R3  
20  
2
7
1
6
5
VIN  
VCC  
BST  
IN  
C1  
C1A  
22uF  
25V  
C4  
0.1uF  
25V  
0.1uF  
MP1474  
L1  
GND  
GND  
4.7uH  
VOUT  
1.8V/2A  
C2A  
3
VCC  
PG  
SW  
C5  
0.1uF  
C2  
22uF  
22uF  
R5  
100k  
GND  
GND  
GND  
PG  
C3  
15pF  
R4  
100k  
R6  
33k  
8
EN/SYNC  
FB  
EN/SYNC  
R1  
40.2k  
GND  
GND  
R2  
32.4k  
GND  
Figure 10: 12VIN, 1.8V/2A Output  
R3  
20  
2
5
VIN  
VCC  
BST  
IN  
C1  
C1A  
22uF  
25V  
C4  
0.1uF  
25V  
0.1uF  
MP1474  
L1  
GND  
GND  
2.2uH  
VOUT  
1.2V/2A  
7
1
6
3
VCC  
PG  
SW  
C5  
0.1uF  
C2  
22uF  
C2A  
22uF  
R5  
100k  
GND  
GND  
GND  
PG  
C3  
15pF  
R4  
100k  
R6  
82k  
8
EN/SYNC  
FB  
EN/SYNC  
R1  
30.1k  
GND  
GND  
R2  
61.9k  
GND  
Figure 11: 12VIN, 1.2V/2A Output  
R3  
20  
2
7
1
6
5
VIN  
VCC  
BST  
IN  
C1  
C1A  
22uF  
25V  
C4  
0.1uF  
25V  
0.1uF  
MP1474  
L1  
GND  
GND  
2.2uH  
VOUT  
1V/2A  
3
VCC  
PG  
SW  
C5  
0.1uF  
C2  
22uF  
C2A  
22uF  
R5  
100k  
GND  
GND  
GND  
PG  
C3  
15pF  
R4  
100k  
R6  
82k  
8
EN/SYNC  
FB  
EN/SYNC  
R1  
20.5k  
GND  
GND  
R2  
84.5k  
GND  
Figure 12: 12VIN, 1V/2A Output  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
15  
MP1474 – SYNCHRONOUS STEP-DOWN CONVERTER WITH INTERNAL MOSFETS  
PACKAGE INFORMATION  
TSOT23-8  
NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third  
party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not  
assume any legal responsibility for any said applications.  
MP1474 Rev. 1.0  
9/26/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
16  

相关型号:

MP1474DJ

High-Efficiency, 2A, 16V, 500kHz Synchronous, Step-Down Converter
MPS

MP1474DJ-LF

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MO-193BA, TSOT-23, 8 PIN
MPS

MP1474DJ-LF-Z

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MO-193BA, TSOT-23, 8 PIN
MPS

MP1474DJ-Z

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, MO-193BA, TSOT-23, 8 PIN
MPS

MP1474SGJ

Switching Regulator
MPS

MP1474SGJ-Z

Switching Regulator
MPS

MP1475DJ

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, MO-193BA, TSOT-23, 8 PIN
MPS

MP1475DJ-LF

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MO-193BA, TSOT-23, 8 PIN
MPS

MP1475DJ-LF-Z

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MO-193BA, TSOT-23, 8 PIN
MPS

MP1475DJ-Z

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, MO-193BA, TSOT-23, 8 PIN
MPS

MP1475S

High-Efficiency, 3A, 16V, 500kHz Synchronous, Step-Down Converter
MPS

MP1475SGJ

High-Efficiency, 3A, 16V, 500kHz Synchronous, Step-Down Converter
MPS