MC88915TFN70 [MOTOROLA]

LOW SKEW CMOS PLL CLOCK DRIVER; 低偏移的CMOS PLL时钟驱动器
MC88915TFN70
型号: MC88915TFN70
厂家: MOTOROLA    MOTOROLA
描述:

LOW SKEW CMOS PLL CLOCK DRIVER
低偏移的CMOS PLL时钟驱动器

时钟驱动器 逻辑集成电路
文件: 总20页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
The MC88915T Clock Driver utilizes phase–locked loop technology to  
lock its low skew outputs’ frequency and phase onto an input reference  
clock. It is designed to provide clock distribution for high performance  
PC’s and workstations. For a 3.3V version, see the MC88LV915T data  
sheet.  
The PLL allows the high current, low skew outputs to lock onto a single  
clock input and distribute it with essentially zero delay to multiple  
components on a board. The PLL also allows the MC88915T to multiply a  
low frequency input clock and distribute it locally at a higher (2X) system  
frequency. Multiple 88915’s can lock onto a single reference clock, which  
is ideal for applications when a central system clock must be distributed  
synchronously to multiple boards (see Figure 7).  
LOW SKEW CMOS  
PLL CLOCK DRIVER  
Five “Q” outputs (Q0–Q4) are provided with less than 500 ps skew between their rising edges. The Q5 output is inverted (180°  
phase shift) from the “Q” outputs. The 2X_Q output runs at twice the “Q” output frequency, while the Q/2 runs at 1/2 the “Q”  
frequency.  
The VCO is designed to run optimally between 20 MHz and the 2X_Q F  
max  
specification. The wiring diagrams in Figure 5 detail  
the different feedback configurations which create specific input/output frequency relationships. Possible frequency ratios of the  
“Q” outputs to the SYNC input are 2:1, 1:1, and 1:2.  
The FREQ_SEL pin provides one bit programmable divide–by in the feedback path of the PLL. It selects between divide–by–1  
and divide–by–2 of the VCO before its signal reaches the internal clock distribution section of the chip (see the block diagram on  
page 2). In most applications FREQ_SEL should be held high (÷1). If a low frequency reference clock input is used, holding  
FREQ_SEL low (÷2) will allow the VCO to run in its optimal range (>20MHz and >40MHz for the TFN133 version).  
Innormalphase–lockedoperationthePLL_ENpinisheldhigh. PullingthePLL_ENpinlowdisablestheVCOandputsthe88915  
in a static “test mode”. In this mode there is no frequency limitation on the input clock, which is necessary for a low frequency board  
test environment. The second SYNC input can be used as a test clock input to further simplify board–level testing (see detailed  
description on page 11).  
Pulling the OE/RST pin low puts the clock outputs 2X_Q, Q0–Q4, Q5 and Q/2 into a high impedance state (3–state). After the  
OE/RST pin goes back high Q0–Q4, Q5 and Q/2 will be reset in the low state, with 2X_Q being the inverse of the selected SYNC  
input. Assuming PLL_EN is low, the outputs will remain reset until the 88915 sees a SYNC input pulse.  
A lock indicator output (LOCK) will go high when the loop is in steady–state phase and frequency lock. The LOCK output will go  
low if phase–lock is lost or when the PLL_EN pin is low. The LOCK output will go high no later than 10ms after the 88915 sees a  
SYNC signal and full 5V V  
.
CC  
Features  
Five Outputs (Q0–Q4) with Output–Output Skew < 500 ps each being phase and frequency locked to the SYNC input  
The phase variation from part–to–part between the SYNC and FEEDBACK inputs is less than 550 ps (derived from the t  
PD  
specification, which defines the part–to–part skew)  
Input/Output phase–locked frequency ratios of 1:2, 1:1, and 2:1 are available  
Input frequency range from 5MHz – 2X_Q FMAX spec. (10MHz – 2X_Q FMAX for the TFN133 version)  
Additional outputs available at 2X and +2 the system “Q” frequency. Also a Q (180° phase shift) output available  
All outputs have ±36 mA drive (equal high and low) at CMOS levels, and can drive either CMOS or TTL inputs. All inputs  
are TTL–level compatible. ±88mA I /I specifications guarantee 50transmission line switching on the incident edge  
OL OH  
Test Mode pin (PLL_EN) provided for low frequency testing. Two selectable CLOCK inputs for test or redundancy purposes.  
All outputs can go into high impedance (3–state) for board test purposes  
Lock Indicator (LOCK) accuracy indicates a phase–locked state  
Yield Surface Modeling and YSM are trademarks of Motorola, Inc.  
1/97  
REV 4  
Motorola, Inc. 1997  
MC88915TFN55/70/100/133/160  
Pinout: 28–Lead PLCC (Top View)  
OE/RST  
V
Q5  
2
GND Q4  
V
2X_Q  
26  
CC  
CC  
4
3
1
28  
27  
FEEDBACK  
REF_SEL  
SYNC[0]  
5
25  
Q/2  
GND  
Q3  
6
24  
23  
22  
21  
20  
19  
7
V
(AN)  
RC1  
8
V
CC  
CC  
9
Q2  
GND(AN)  
SYNC[1]  
10  
11  
GND  
LOCK  
12  
13  
14  
15  
V
16  
17  
18  
PLL_EN  
GND Q0  
Q1 GND  
FREQ_SEL  
CC  
FN SUFFIX  
PLASTIC PLCC  
CASE 776–02  
PIN SUMMARY  
Pin Name  
Num  
I/O  
Function  
1
1
1
1
1
1
5
1
1
1
1
1
1
11  
SYNC[0]  
SYNC[1]  
REF_SEL  
FREQ_SEL  
FEEDBACK  
RC1  
Q(0–4)  
Q5  
2x_Q  
Q/2  
LOCK  
OE/RST  
PLL_EN  
Input  
Input  
Input  
Input  
Input  
Reference clock input  
Reference clock input  
Chooses reference between sync[0] & Sync[1]  
Doubles VCO Internal Frequency (low)  
Feedback input to phase detector  
Input for external RC network  
Clock output (locked to sync)  
Inverse of clock output  
2 x clock output (Q) frequency (synchronous)  
Clock output(Q) frequency ÷ 2 (synchronous)  
Indicates phase lock has been achieved (high when locked)  
Output Enable/Asynchronous reset (active low)  
Disables phase–lock for low freq. testing  
Power and ground pins (note pins 8, 10 are  
“analog” supply pins for internal PLL only)  
Input  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
V
,GND  
CC  
MOTOROLA  
2
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
LOCK  
FEEDBACK  
SYNC (0)  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
0
1
PHASE/FREQ.  
DETECTOR  
CHARGE PUMP/LOOP  
FILTER  
M
U
X
SYNC (1)  
EXTERNAL REC NETWORK  
(RC1 Pin)  
REF_SEL  
2x_Q  
Q0  
0
1
PLL_EN  
MUX  
D
Q
Q
(
÷
1)  
2)  
CP  
1
R
R
R
M
U
X
(÷  
DIVIDE  
BY TWO  
0
Q1  
Q2  
Q3  
D
Q
CP  
FREQ_SEL  
OE/RST  
D
Q
Q
CP  
D
CP  
R
R
R
Q4  
Q5  
D
Q
Q
Q
CP  
D
CP  
Q/2  
D
CP  
R
MC88915T Block Diagram (All Versions)  
3
MOTOROLA  
MC88915TFN55/70/100/133/160  
MC88915TFN55 and MC88915TFN70  
SYNC INPUT TIMING REQUIREMENTS  
Minimum  
Symbol  
Parameter  
TFN70  
TFN55  
Maximum  
Unit  
t
t
,SYNC Inputs Rise/Fall Time, SYNC Inputs  
3.0  
ns  
RISE/FALL  
From 0.8 to 2.0V  
1
1
2
200  
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
28.5  
36.0  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown  
CYCLE  
in Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS  
(Voltages Referenced to GND) T =–40° C to +85° C for 55MHz Version; T =0° C to +70° C for 70MHz Version; V  
= 5.0 V ± 5%  
A
A
CC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
4.01  
4.51  
in  
1
= –36 mA  
I
OH  
V
OL  
Maximum Low–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
0.44  
0.44  
in  
1
= 36 mA  
I
OL  
I
Maximum Input Leakage Current  
V = V  
or GND  
– 2.1 V  
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
I
CC  
CC  
2
I
Maximum I /Input  
CC  
V = V  
I
CCT  
OLD  
2.0  
3
I
Minimum Dynamic Output Current  
V
= 1.0V Max  
= 3.85V Min  
88  
–88  
1.0  
OLD  
OHD  
I
V
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V  
I
or GND  
CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
IH IL CC  
5.25  
±50  
µA  
OZ  
OL  
I
O
1. I  
and I  
OH  
are 12mA and –12mA respectively for the LOCK output.  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I  
is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
Conditions  
C
Input Capacitance  
4.5  
40  
pF  
pF  
V
V
V
= 5.0 V  
= 5.0 V  
= 5.0 V  
IN  
CC  
CC  
CC  
C
Power Dissipation Capacitance  
PD  
PD  
Power Dissipation @ 50MHz with 50Thevenin Termination  
23mW/Output  
184mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
T = 25° C  
2
CC  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
FREQUENCY SPECIFICATIONS (T =–40° C to +85° C, V  
= 5.0 V ±5%)  
CC  
A
Guaranteed Minimum  
TFN70 TFN55  
70 55  
35 27.5  
Symbol  
Parameter  
Unit  
1
f
Maximum Operating Frequency (2X_Q Output)  
MHz  
MHz  
max  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
MOTOROLA  
4
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
MC88915TFN55 and MC88915TFN70 (continued)  
AC CHARACTERISTICS (T =–40° C to +85° C, V  
= 5.0V ±5%, Load = 50Terminated to V /2)  
CC CC  
A
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V  
and 0.8V  
)
CC  
Terminated to V /2  
CC  
CC  
1
t
Rise/Fall Time Into a 20pF Load, With  
Termination Specified in Note  
0.5  
1.6  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
2X_Q Output  
RISE  
FALL  
2
1
2
2
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3,  
Q4, Q5, Q/2 @ V /2  
CC  
0.5t  
– 0.5  
– 0.5  
0.5t  
0.5t  
0.5t  
0.5t  
+ 0.5  
+ 0.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(Q0–Q4, Q5, Q/2)  
CYCLE  
CYCLE  
CC  
1
t
Output Pulse Width:  
2X_Q @ 1.5V  
66MHz 0.5t  
50MHz  
40MHz  
Must Use Termination  
Specified in Note 2  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
0.5t  
0.5t  
– 1.0  
– 1.5  
+ 1.0  
+ 1.5  
1
2
2
t
Output Pulse Width:  
50–65MHz 0.5t  
– 1.0  
0.5t  
0.5t  
0.5t  
+ 1.0  
ns  
ns  
Into a 50Load  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
2X_Q @ V /2  
40–49MHz  
66–70MHz  
0.5t  
0.5t  
– 1.5  
– 0.5  
+ 1.5  
+ 0.5  
Terminated to V /2  
CC  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CC  
1,3  
t
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
See Note 4 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
SYNC Feedback  
CC  
–0.40  
(With 1Mfrom RC1 to An GND)  
–1.05  
+1.25  
+3.25  
500  
1,4  
t
Output–to–Output Skew Between Out-  
puts Q0–Q4, Q/2 (Rising Edges Only)  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
(Rising) See Note  
5
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew Between Out-  
puts Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
1,4  
SKEWall  
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
Terminated to V /2  
CC  
5
t
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
6
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
6
PHZ PLZ  
,t  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
1. These specifications are not tested, they are guaranteed by statistcal characterization. See AC specification Note 1.  
2. T  
3. The T  
in this spec is 1/Frequency at which the particular output is running.  
specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
CYCLE  
PD  
4. Under equally loaded conditions and at a fixed temperature and voltage.  
5. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t minimum is  
LOCK  
CC  
with C1 = 0.01µF.  
6. The t , t , t  
LOCK  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is  
PZL PHZ PLZ  
reached.  
5
MOTOROLA  
MC88915TFN55/70/100/133/160  
MC88915TFN100  
SYNC INPUT TIMING REQUIREMENTS  
Symbol  
Parameter  
Minimum  
Maximum  
Unit  
t
,SYNC Inputs Rise/Fall Time, SYNC Inputs From 0.8 to 2.0V  
3.0  
ns  
RISE/FALL  
1
2
t
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
20.0  
200  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown  
CYCLE  
in Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) T =–40° C to +85° C, V  
= 5.0 V ± 5%  
A
CC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
4.01  
4.51  
in  
1
= –36 mA  
I
OH  
V
OL  
Maximum Low–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
0.44  
0.44  
in  
1
= 36 mA  
I
OL  
I
Maximum Input Leakage Current  
V = V  
or GND  
– 2.1 V  
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
I
CC  
CC  
2
I
Maximum I /Input  
CC  
V = V  
I
CCT  
OLD  
2.0  
3
I
Minimum Dynamic Output Current  
V
OLD  
V
OHD  
= 1.0V Max  
= 3.85V Min  
88  
–88  
1.0  
I
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V  
I
or GND  
CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
IH IL CC  
5.25  
±50  
µA  
OZ  
I
O
1. I  
and I  
OH  
are 12mA and –12mA respectively for the LOCK output.  
OL  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I  
is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
Conditions  
C
Input Capacitance  
4.5  
40  
pF  
pF  
V
V
V
= 5.0 V  
= 5.0 V  
= 5.0 V  
IN  
CC  
CC  
CC  
C
Power Dissipation Capacitance  
PD  
PD  
Power Dissipation @ 50MHz with 50Thevenin Termination  
23mW/Output  
184mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
T = 25° C  
2
CC  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
FREQUENCY SPECIFICATIONS (T =–40° C to +85° C, V  
= 5.0 V ±5%)  
CC  
A
Guaranteed Minimum  
Symbol  
Parameter  
TFN100  
100  
Unit  
1
f
Maximum Operating Frequency (2X_Q Output)  
MHz  
MHz  
max  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
50  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
MOTOROLA  
6
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
MC88915TFN100 (continued)  
AC CHARACTERISTICS (T =–40° C to +85° C, V  
= 5.0V ±5%, Load = 50Terminated to V /2)  
CC CC  
A
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V  
and 0.8V  
)
CC  
Terminated to V /2  
CC  
CC  
1
t
Rise/Fall Time Into a 20pF Load, With  
Termination Specified in Note  
0.5  
1.6  
ns  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
2X_Q Output  
RISE  
FALL  
2
1
2
2
2
2
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3,  
Q4, Q5, Q/2 @ V /2  
CC  
0.5t  
0.5t  
– 0.5  
– 0.5  
– 1.5  
0.5t  
0.5t  
0.5t  
+ 0.5  
+ 0.5  
+ 1.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(Q0–Q4, Q5, Q/2)  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CC  
1
1
t
Output Pulse Width:  
2X_Q @ 1.5V  
Must Use Termination  
Specified in Note 2  
PULSE WIDTH  
(2X_Q Output)  
t
Output Pulse Width:  
40–49MHz 0.5t  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(2X_Q Output)  
2X_Q @ V /2  
50–65MHz  
66–100MHz  
0.5t  
– 1.0  
– 0.5  
0.5t  
0.5t  
+ 1.0  
+ 0.5  
CC  
CYCLE  
0.5t  
CYCLE  
CYCLE  
CYCLE  
CC  
1,3  
t
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
ns  
See Note 4 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
SYNC Feedback  
CC  
–0.30  
(With 1Mfrom RC1 to An GND)  
–1.05  
+1.25  
+3.25  
500  
1,4  
t
Output–to–Output Skew Between Out-  
puts Q0–Q4, Q/2 (Rising Edges Only)  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
(Rising) See Note  
5
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew Between Out-  
puts Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
1,4  
SKEWall  
t
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
Terminated to V /2  
CC  
5
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
6
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
6
PHZ PLZ  
,t  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
1. These specifications are not tested, they are guaranteed by statistcal characterization. See AC specification Note 1.  
2. T  
3. The T  
in this spec is 1/Frequency at which the particular output is running.  
specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
CYCLE  
PD  
4. Under equally loaded conditions and at a fixed temperature and voltage.  
5. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t minimum is  
LOCK  
CC  
with C1 = 0.01µF.  
6. The t , t , t  
LOCK  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is  
PZL PHZ PLZ  
reached.  
7
MOTOROLA  
MC88915TFN55/70/100/133/160  
MC88915TFN133  
SYNC INPUT TIMING REQUIREMENTS  
Symbol  
Parameter  
Minimum  
Maximum  
Unit  
t
,SYNC Inputs Rise/Fall Time, SYNC Inputs From 0.8 to 2.0V  
3.0  
ns  
RISE/FALL  
1
2
t
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
15.0  
100  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown  
CYCLE  
in Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) T =–40° C to +85° C, V  
= 5.0 V ± 5%  
A
CC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
4.01  
4.51  
in  
1
= –36 mA  
I
OH  
V
OL  
Maximum Low–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
0.44  
0.44  
in  
1
= 36 mA  
I
OL  
I
Maximum Input Leakage Current  
V = V  
or GND  
– 2.1 V  
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
I
CC  
CC  
2
I
Maximum I /Input  
CC  
V = V  
I
CCT  
OLD  
2.0  
3
I
Minimum Dynamic Output Current  
V
OLD  
V
OHD  
= 1.0V Max  
= 3.85V Min  
88  
–88  
1.0  
I
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V  
I
or GND  
CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
IH IL CC  
5.25  
±50  
µA  
OZ  
I
O
1. I  
and I  
OH  
are 12mA and –12mA respectively for the LOCK output.  
OL  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I  
is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
Conditions  
C
Input Capacitance  
4.5  
40  
pF  
pF  
V
V
V
= 5.0 V  
= 5.0 V  
= 5.0 V  
IN  
CC  
CC  
CC  
C
Power Dissipation Capacitance  
PD  
PD  
Power Dissipation @ 50MHz with 50Thevenin Termination  
23mW/Output  
184mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
T = 25° C  
2
CC  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
FREQUENCY SPECIFICATIONS (T =–40° C to +85° C, V  
= 5.0 V ±5%)  
CC  
A
Guaranteed Minimum  
Symbol  
Parameter  
TFN133  
133  
Unit  
1
f
Maximum Operating Frequency (2X_Q Output)  
MHz  
MHz  
max  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
66  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
MOTOROLA  
8
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
MC88915TFN133 (continued)  
AC CHARACTERISTICS (T =–40° C to +85° C, V  
= 5.0V ±5%, Load = 50Terminated to V /2)  
CC CC  
A
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V  
and 0.8V  
)
CC  
Terminated to V /2  
CC  
CC  
1
t
Rise/Fall Time Into a 20pF Load, With  
Termination Specified in Note  
0.5  
1.6  
ns  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
2X_Q Output  
RISE  
FALL  
2
1
2
2
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3,  
Q4, Q5, Q/2 @ V /2  
CC  
0.5t  
– 0.5  
– 0.5  
0.5t  
0.5t  
+ 0.5  
+ 0.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(Q0–Q4, Q5, Q/2)  
CYCLE  
CYCLE  
CC  
1
1
t
Output Pulse Width:  
2X_Q @ 1.5V  
66–133MHz 0.5t  
40–65MHz  
Must Use Termination  
Specified in Note 2  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
0.5t  
– 0.9  
0.5t  
+ 0.9  
2
2
t
Output Pulse Width:  
66–133MHz 0.5t  
– 0.5  
0.5t + 0.5  
CYCLE  
0.5t  
CYCLE  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
2X_Q @ V /2  
40–65MHz  
0.5t  
– 0.9  
+ 0.9  
CC  
CC  
1,3  
t
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
ns  
See Note 4 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
SYNC Feedback  
CC  
–1.05  
–0.25  
(With 1Mfrom RC1 to An GND)  
+1.25  
+3.25  
500  
1,4  
t
Output–to–Output Skew Between Out-  
puts Q0–Q4, Q/2 (Rising Edges Only)  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
(Rising) See Note  
5
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew Between Out-  
puts Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
1,4  
SKEWall  
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
Terminated to V /2  
CC  
5
t
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
6
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
6
PHZ PLZ  
,t  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
1. These specifications are not tested, they are guaranteed by statistcal characterization. See AC specification Note 1.  
2. T  
3. The T  
in this spec is 1/Frequency at which the particular output is running.  
specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
CYCLE  
PD  
4. Under equally loaded conditions and at a fixed temperature and voltage.  
5. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t minimum is  
LOCK  
CC  
with C1 = 0.01µF.  
6. The t , t , t  
LOCK  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is  
PZL PHZ PLZ  
reached.  
9
MOTOROLA  
MC88915TFN55/70/100/133/160  
MC88915TFN160  
SYNC INPUT TIMING REQUIREMENTS  
Symbol  
Parameter  
Minimum  
Maximum  
Unit  
t
,SYNC Inputs Rise/Fall Time, SYNC Inputs From 0.8 to 2.0V  
3.0  
ns  
RISE/FALL  
t
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
12.5  
100  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown  
CYCLE  
in Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS  
(Voltages Referenced to GND) T =0° C to +70° C, V  
= 5.0 V ± 5%  
CC  
A
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V  
– 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
4.01  
4.51  
in  
1
= –36 mA  
I
OH  
V
OL  
Maximum Low–Level Output  
Voltage  
V
= V or V  
IH IL  
4.75  
5.25  
0.44  
0.44  
in  
1
= 36 mA  
I
OL  
I
Maximum Input Leakage Current  
V = V  
or GND  
– 2.1 V  
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
I
CC  
CC  
2
I
Maximum I /Input  
CC  
V = V  
I
CCT  
OLD  
2.0  
3
I
Minimum Dynamic Output Current  
V
OLD  
V
OHD  
= 1.0V Max  
= 3.85V Min  
88  
–88  
1.0  
I
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V  
I
or GND  
CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
IH IL CC  
5.25  
±50  
µA  
OZ  
I
O
1. I  
and I  
OH  
are 12mA and –12mA respectively for the LOCK output.  
OL  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I  
is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
Conditions  
C
Input Capacitance  
4.5  
40  
pF  
pF  
V
V
V
= 5.0 V  
= 5.0 V  
= 5.0 V  
IN  
CC  
CC  
CC  
C
Power Dissipation Capacitance  
PD  
PD  
Power Dissipation @ 50MHz with 50Thevenin Termination  
15mW/Output  
120mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
T = 25° C  
2
CC  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
FREQUENCY SPECIFICATIONS (T =0° C to +70° C, V  
= 5.0 V ±5%)  
CC  
A
Guaranteed Minimum  
Symbol  
Parameter  
Maximum Operating Frequency (2X_Q Output)  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
TFN160  
160  
Unit  
1
f
MHz  
MHz  
max  
80  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
MOTOROLA  
10  
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
MC88915TFN160 (continued)  
AC CHARACTERISTICS (T =0° C to +70° C, V  
= 5.0V ±5%, Load = 50Terminated to V /2)  
CC  
A
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V  
and 0.8V  
)
Terminated to V /2  
CC  
CC  
CC  
t
Rise/Fall Time  
0.5  
1.6  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
2X_Q Output  
RISE  
FALL  
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3,  
Q4, Q5, Q/2 @ V /2  
0.5t  
– 0.5  
0.5t  
+ 0.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(Q0–Q4, Q5, Q/2)  
CYCLE  
CYCLE  
CC  
CC  
t
Output Pulse Width:  
80MHz  
100MHz  
133MHz  
160MHz  
0.5t  
0.5t  
0.5t  
– 0.7  
– 0.5  
– 0.5  
0.5t  
0.5t  
0.5t  
+ 0.7  
+ 0.5  
+ 0.5  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
CYCLE  
TBD  
CYCLE  
CYCLE  
CYCLE  
TBD  
2X_Q @ V  
CC  
1
t
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
ns  
See Note 2 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
SYNC Feedback  
CC  
133MHz  
160MHz  
–1.05  
–0.9  
–0.25  
–0.10  
t
Cycle–to–Cycle Variation  
133MHz  
160MHz  
t
t
– 300ps  
– 300ps  
t
t
+ 300ps  
+ 300ps  
CYCLE  
(2x_Q Output)  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
3
t
Output–to–Output Skew Between Out-  
500  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
(Rising) See Note 4 puts Q0–Q4, Q/2 (Rising Edges Only)  
Terminated to V /2  
CC  
3
t
Output–to–Output Skew Between Out-  
puts Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
3
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
SKEWall  
Terminated to V /2  
CC  
4
t
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
5
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
5
,t  
PHZ PLZ  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
1. T  
CYCLE  
in this spec is 1/Frequency at which the particular output is running.  
specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
2. The T  
PD  
3. Under equally loaded conditions and at a fixed temperature and voltage.  
4. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t minimum is  
LOCK LOCK  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is  
CC  
with C1 = 0.01µF.  
5. The t , t , t  
PZL PHZ PLZ  
reached.  
11  
MOTOROLA  
MC88915TFN55/70/100/133/160  
Applications Information for All Versions  
General AC Specification Notes  
2. These two specs (t  
RlSE/FALL  
and t  
Width 2X_Q  
PULSE  
output) guarantee that the MC88915T meets the 40MHz  
and 33MHz MC68040 P–Clock input specification (at  
80MHz and 66MHz, respectively). For these two specs to  
be guaranteed by Motorola, the termination scheme  
shown below in Figure 1 must be used.  
1. Several specifications can only be measured when the  
MC88915TFN55, 70 and 100 are in phase–locked  
operation. It is not possible to have the part in phase–lock  
on ATE (automated test equipment). Statistical  
characterization techniques were used to guarantee  
those specifications which cannot be measured on the  
ATE. MC88915TFN55, 70 and 100 units were fabricated  
with key transistor properties intentionally varied to  
create a 14 cell designed experimental matrix. IC  
performancewas characterized over a range of transistor  
properties (represented by the 14 cells) in excess of the  
expected process variation of the wafer fabrication area,  
to set performance limits of ATE testable specifications  
within those which are to be guaranteed by statistical  
characterization. In this way all units passing the ATE test  
will meet or exceed the non–tested specifications limits.  
3. The wiring Diagrams and explanations in Figure 5  
demonstratethe input and output frequencyrelationships  
for three possible feedback configurations. The allowable  
SYNC input range for each case is also indicated. There  
are two allowable SYNC frequency ranges, depending  
whether FREQ_SEL is high or low. Although not shown, it  
is possible to feed back the Q5 output, thus creating a  
180° phase shift between the SYNC input and the “Q”  
outputs. Table 1 below summarizes the allowable SYNC  
frequency range for each possible configuration.  
Z
O
(CLOCK TRACE)  
R
s
88915  
2X_Q  
Output  
68040  
P–Clock  
Input  
R
p
R = Z – 7  
s
o
R = 1.5 Z  
p
o
Figure 1. MC68040 P–Clock Input Termination Scheme  
FREQ_SEL  
Level  
Feedback  
Output  
Allowable SYNC Input  
Frequency Range (MHZ)  
Corresponding VCO  
Frequency Range  
Phase Relationships  
of the “Q” Outputs  
to Rising SYNC Edge  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
Q/2  
5 to (2X_Q FMAX Spec)/4  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
0°  
0°  
Any “Q” (Q0–Q4) 10 to (2X_Q FMAX Spec)/2  
Q5  
2X_Q  
Q/2  
10 to (2X_Q FMAX Spec)/2  
20 to (2X_Q FMAX Spec)  
180°  
0°  
2.5 to (2X_Q FMAX Spec)/8 20 to (2X_Q FMAX Spec)  
0°  
Any “Q” (Q0–Q4) 5 to (2X_Q FMAX Spec)/4  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAXSpec)  
20 to (2X_Q FMAXSpec)  
0°  
Q5  
5 to (2X_Q FMAX Spec)/4  
10 to (2X_Q FMAX Spec)/2  
180°  
0°  
2X_Q  
Table 1. Allowable SYNC Input Frequency Ranges for Different Feedback Configurations.  
4. A 1Mresistor tied to either Analog V  
or Analog GND  
the 14 lots described in note 1 while the part was in  
phase–lockedoperation. Theactualmeasurementswere  
made with a 10MHz SYNC input (1.0ns edge rate from  
0.8V – 2.0V) with the Q/2 output fed back. The phase  
measurements were made at 1.5V. The Q/2 output was  
CC  
as shown in Figure 2 is required to ensure no jitter is  
present on the MC88915T outputs. This technique  
causes a phase offset between the SYNC input and the  
output connected to the FEEDBACK input, measured at  
the input pins. The t  
varies with process, temperature, and voltage. The specs  
were arrived at by measuring the phase relationship for  
spec describes how this offset  
terminatedattheFEEDBACKinputwith100toV  
100to ground.  
and  
PD  
CC  
MOTOROLA  
12  
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
ANALOG VCC  
RC1  
EXTERNAL LOOP FILTER  
330  
1M  
RC1  
R2  
REFERENCE  
RESISTOR  
R2  
C1  
330  
1M  
REFERENCE  
RESISTOR  
0.1  
µ
F
0.1µF  
C1  
ANALOG GND  
ANALOG GND  
With the 1M  
measured at the input pins is:  
resistor tied in this fashion, the t specification  
PD  
With the 1M  
measured at the input pins is:  
resistor tied in this fashion, the t specification  
PD  
t
= 2.25ns  
±
1.0ns  
t
= –0.775ns ± 0.275ns  
PD  
PD  
3.0V  
3.0V  
SYNC INPUT  
SYNC INPUT  
–0.775ns OFFSET  
2.25ns OFFSET  
5.0V  
5.0V  
FEEDBACK OUTPUT  
FEEDBACK OUTPUT  
Figure 2. Depiction of the Fixed SYNC to Feedback Offset (tPD) Which is  
Present When a 1MResistor is Tied to VCC or Ground  
5.Thet  
specificationguaranteesthattherisingedges  
distributionof these outputs are provided in table 2. When  
taking the skew data, Q0 was used as a reference, so all  
measurements are relative to thisoutput. Theinformation  
in Table 2 is derived from measurements taken from the  
14 process lots described in Note 1, over the temperature  
and voltage range.  
SKEWr  
of outputs Q/2, Q0, Q1, Q2, Q3, and Q4 will always fall  
within a 500ps window within one part. However, if the  
relative position of each output within this window is not  
specified, the 500 ps window must be added to each side  
of the tPD specification limits to calculate the total  
part–to–part skew. For this reason the absolute  
(ps)  
+
(ps)  
Output  
Q0  
0
0
Q1  
–72  
–44  
–40  
–274  
–16  
–633  
40  
Q2  
276  
255  
–34  
250  
–35  
Q3  
Q4  
Q/2  
2X_Q  
Table 2. Relative Positions of Outputs Q/2, Q0–Q4, 2X_Q, Within the 500ps t  
SKEWr  
Spec Window  
13  
MOTOROLA  
MC88915TFN55/70/100/133/160  
6. Calculation of Total Output–to–Skew between  
[–1.05ns – 0.32ns] = –1.37ns is the lower t limit, and  
PD  
multiple parts (Part–to–Part skew)  
[–0.5ns + 0.32ns] = –0.18ns is the upper limit. Therefore  
the worst case skew of output Q2 between any number of  
parts is |(–1.37) – (–0.18)| = 1.19ns. Q2 has the worst  
case skew distribution of any output, so 1.2ns is the  
absolute worst case output–to–output skew between  
multiple parts.  
By combining the t  
specification and the information in  
PD  
Note 5, the worst case output–to–output skew between  
multiple 88915’s connected in parallel can be calculated.  
This calculation assumes that all parts have a common  
SYNC input clock with equal delay of that input signal to  
each part. This skew value is valid at the 88915 output  
pins only (equally loaded), it does not include PCB trace  
delays due to varying loads.  
7. Note 4 explains that the t  
PD  
specification was measured  
and is guaranteed for the configuration of the Q/2 output  
connected to the FEEDBACK pin and the SYNC input  
running at 10MHz. The fixed offset (t ) as described  
PD  
With a 1Mresistor tied to analog V  
as shown in note  
above has some dependence on the input frequency and  
at what frequency the VCO is running. The graphs of  
Figure 3 demonstrate this dependence.  
CC  
spec. limits between SYNC and the Q/2 output  
4, the t  
PD  
(connected to the FEEDBACK pin) are –1.05ns and  
–0.5ns. To calculate the skew of any given output  
between two or more parts, the absolute value of the  
distribution of that output given in table 2 must be  
The data presented in Figure 3 is from devices  
representing process extremes, and the measurements  
subtracted and added to the lower and upper t  
limits respectively. For output Q2, [276 – (–44)] = 320ps is  
the absolute value of the distribution. Therefore  
spec  
were also taken at the voltage extremes (V = 5.25V  
PD  
CC  
and 4.75V). Therefore the data in Figure 3 is a realistic  
representation of the variation of t  
.
PD  
–0.50  
–0.5  
–0.75  
–1.0  
tPD  
tPD  
SYNC to  
FEEDBACK  
(ns)  
SYNC to  
FEEDBACK  
(ns)  
–1.00  
–1.25  
–1.50  
–1.5  
–2.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5  
SYNC INPUT FREQUENCY (MHz)  
SYNC INPUT FREQUENCY (MHz)  
Figure 3a.  
Figure 3b.  
t
versus Frequency Variation for Q/2 Output Fed  
t
versus Frequency Variation for Q4 Output Fed  
PD  
PD  
Back, Including Process and Voltage Variation @ 25  
°
C
Back, Including Process and Voltage Variation @ 25  
°
C
(With 1M  
Resistor Tied to Analog VCC)  
(With 1M  
Resistor Tied to Analog V  
)
CC  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.5  
3.0  
2.5  
tPD  
SYNC to  
FEEDBACK  
(ns)  
tPD  
SYNC to  
FEEDBACK  
(ns)  
2.0  
1.5  
1.0  
0.5  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
0
5
10  
15  
20  
25  
SYNC INPUT FREQUENCY (MHz)  
SYNC INPUT FREQUENCY (MHz)  
Figure 3c.  
Figure 3d.  
t
versus Frequency Variation for Q/2 Output Fed  
t
versus Frequency Variation for Q4 Output Fed  
PD  
Back, Including Process and Voltage Variation @ 25  
(With 1M Resistor Tied to Analog GND)  
PD  
°
C
Back, Including Process and Voltage Variation @ 25  
°
C
(With 1MResistor Tied to Analog GND)  
MOTOROLA  
14  
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
8. The lock indicator pin (LOCK) will reliably indicate a  
phase–locked condition at SYNC input frequencies down  
to 10MHz. At frequencies below 10MHz, the frequency of  
correction pulses going into the phase detector form the  
SYNC andFEEDBACKpinsmaynotbesufficienttoallow  
the lock indicator circuitry to accurately predict a  
phase–locked conditition. The MC88915T is guaranteed  
to provide stable phase–locked operation down to the  
appropriate minimum input frequency given in Table 1,  
even though the LOCK pin may be LOW at frequencies  
below 10MHZ. The exact minimum frequency where the  
lock indicator functionality can be guaranteed will be  
available when the MC88915T reaches ‘MC’ status.  
SYNC INPUT  
(SYNC[1] or  
SYNC[0])  
t
SYNC INPUT  
CYCLE  
t
PD  
FEEDBACK  
INPUT  
Q/2 OUTPUT  
t
t
t
SKEWf  
SKEWf  
SKEWr  
t
SKEWR  
t
SKEWALL  
Q0 – Q4  
OUTPUTS  
t
CYCLE “Q” OUTPUTS  
Q5 OUTPUT  
2X_Q OUTPUT  
Figure 4. Output/Input Switching Waveforms and Timing Diagrams  
(These waveforms represent the hook–up configuration of Figure 5a on page 16)  
Timing Notes:  
The MC88915T aligns rising edges of the FEEDBACK input and SYNC input, therefore the SYNC input does  
not require a 50% duty cycle.  
All skew specs are measured between the V /2 crossing point of the appropriate output edges.All skews  
CC  
are specified as ‘windows’, not as a ± deviation around a center point.  
If a “Q” output is connected to the FEEDBACK input (this situation is not shown), the “Q” output frequency  
would match the SYNC input frequency, the 2X_Q output would run at twice the SYNC frequency, and the  
Q/2 output would run at half the SYNC frequency.  
15  
MOTOROLA  
MC88915TFN55/70/100/133/160  
100MHz SIGNAL  
25MHz FEEDBACK SIGNAL  
HIGH  
1:2 Input to “Q” Output Frequency Relationship  
In this application, the Q/2 output is connected to  
the FEEDBACK input. The internal PLL will line up  
the positive edges of Q/2 and SYNC, thus the Q/2  
frequency will equal the SYNC frequency. The “Q”  
outputs (Q0–Q4, Q5) will always run at 2X the Q/2  
frequency, and the 2X_Q output will run at 4X the  
Q/2 frequency.  
RST  
Q4  
2X_Q  
Q5  
FEEDBACK  
REF_SEL  
SYNC[0]  
Q/2  
Q3  
Q2  
LOW  
25MHz INPUT  
CRYSTAL  
OSCILLATOR  
MC88915T  
50MHz  
“Q”  
CLOCK  
OUTPUTS  
ANALOG V  
CC  
EXTERNAL  
LOOP  
RC1  
FILTER  
ANALOG GND  
Allowable Input Frequency Range:  
PLL_EN  
FQ_SEL  
HIGH  
Q0  
Q1  
5MHz to (2X_Q FMAX Spec)/4 (for FREQ_SEL HIGH)  
2.5MHz to (2X_Q FMAX Spec)/8 (for FREQ_SEL LOW)  
Note: If the OE/RST input is active, a pull–up or pull–down re-  
sistor isn’t necessary at the FEEDBACK pin so it won’t when  
the fed back output goes into 3–state.  
HIGH  
Figure 5a. Wiring Diagram and Frequency Relationships With Q/2 Output Feed Back  
100MHz SIGNAL  
50MHz FEEDBACK SIGNAL  
HIGH  
1:1 Input to “Q” Output Frequency Relationship  
RST  
Q5  
Q4  
2X_Q  
25MHz  
SIGNAL  
FEEDBACK  
REF_SEL  
SYNC[0]  
Q/2  
Q3  
Q2  
In this application, the Q4 output is connected to  
the FEEDBACK input. The internal PLL will line up  
the positive edges of Q4 and SYNC, thus the Q4  
frequency (and the rest of the “Q” outputs) will  
equal the SYNC frequency. The Q/2 output will al-  
LOW  
50MHZ INPUT  
CRYSTAL  
50MHz  
“Q”  
CLOCK  
MC88915T  
OSCILLATOR  
ANALOG V  
CC  
EXTERNAL  
LOOP  
FILTER  
RC1  
OUTPUTS ways run at 1/2 the “Q” frequency, and the 2X_Q  
output will run at 2X the “Q” frequency.  
ANALOG GND  
PLL_EN  
FQ_SEL  
HIGH  
Q0  
Q1  
Allowable Input Frequency Range:  
10MHz to (2X_Q FMAX Spec)/2 (for FREQ_SEL HIGH)  
5MHz to (2X_Q FMAX Spec)/4 (for FREQ_SEL LOW)  
HIGH  
Figure 5b. Wiring Diagram and Frequency Relationships With Q4 Output Feed Back  
100MHz FEEDBACK SIGNAL  
HIGH  
RST  
Q4  
2X_Q  
Q/2  
Q5  
2:1 Input to “Q” Output Frequency Relationship  
25MHz  
SIGNAL  
FEEDBACK  
REF_SEL  
SYNC[0]  
LOW  
In this application, the 2X_Q output is connected  
to the FEEDBACK input. The internal PLL will line  
up the positive edges of 2X_Q and SYNC, thus the  
2X_Q frequency will equal the SYNC frequency.  
The Q/2 output will always run at 1/4 the 2X_Q fre-  
quency, and the “Q” outputs will run at 1/2 the  
2X_Q frequency.  
100MHz INPUT  
MC88915T  
CRYSTAL  
Q3  
Q2  
50MHz  
“Q”  
CLOCK  
OUTPUTS  
OSCILLATOR  
ANALOG V  
CC  
EXTERNAL  
LOOP  
FILTER  
RC1  
ANALOG GND  
PLL_EN  
Q1  
FQ_SEL  
HIGH  
Q0  
Allowable Input Frequency Range:  
HIGH  
20MHz to (2X_Q FMAX Spec) (for FREQ_SEL HIGH)  
10MHz to (2X_Q FMAX Spec)/2 (for FREQ_SEL LOW)  
Figure 5c. Wiring Diagram and Frequency Relationships with 2X_Q Output Feed Back  
MOTOROLA  
16  
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
BOARD V  
CC  
47Ω  
8
9
ANALOG V  
CC  
1MΩ  
330  
ANALOG LOOP FILTER/VCO  
SECTION OF THE MC88915T  
28–PIN PLCC PACKAGE (NOT  
DRAWN TO SCALE)  
0.1  
µ
F HIGH  
FREQ  
10  
µF LOW  
RC1  
FREQ BYPASS  
BYPASS  
0.1µF (LOOP  
FILTER CAP)  
10 ANALOG GND  
47Ω  
A SEPARATE ANALOG POWER SUPPLY IS NOT NECESSARY AND  
SHOULDNOTBEUSED. FOLLOWINGTHESEPRESCRIBEDGUIDELINES  
IS ALL THAT IS NECESSARY TO USE THE MC88915T IN A NORMAL  
DIGITAL ENVIRONMENT.  
BOARD GND  
Figure 6. Recommended Loop Filter and Analog Isolation Scheme for the MC88915T  
Notes Concerning Loop Filter and Board Layout Issues  
1. Figure 6 shows a loop filter and analog isolation scheme  
purpose of the bypass filtering scheme shown in Figure 6  
which will be effective in most applications. The following  
guidelines should be followed to ensure stable and  
jitter–free operation:  
is to give the 88915T additional protection from the power  
supply and ground plane transients that can occur in a  
high frequency, high speed digital system.  
1a.All loop filter and analog isolation components should be  
tied as close to the package as possible. Stray current  
passing through the parasitics of long traces can cause  
undesirable voltage transients at the RC1 pin.  
1c.There are no special requirements set forth for the loop  
filter resistors (1Mand 330). The loop filter capacitor  
(0.1µF) can be a ceramic chip capacitior, the same as a  
standard bypass capacitor.  
1b.The 47resistors, the 10µF low frequency bypass  
capacitor, andthe0.1µF high frequency bypass capacitor  
form a wide bandwidth filter that will minimize the  
88915T’s sensitivity to voltage transients from the system  
1d.The 1M reference resistor injects current into the internal  
charge pump of the PLL, causing a fixed offset between  
the outputs and the SYNC input. This also prevents  
excessive jitter caused by inherent PLL dead–band. If the  
VCO (2X_Q output) is running above 40MHz, the 1MΩ  
resistor provides the correct amount of current injection  
into the charge pump (2–3µA). For the TFN55, 70 or 100,  
if the VCO is running below 40MHz, a 1.5Mreference  
resistor should be used (instead of 1M).  
digital V  
supply and ground planes. This filter will  
CC  
typically ensure that a 100mV step deviation on the digital  
supply will cause no more than a 100pS phase  
V
CC  
deviation on the 88915T outputs. A 250mV step deviation  
on V using the recommended filter values should  
CC  
cause no more than a 250pS phase deviation; if a 25µF  
bypass capacitor is used (instead of 10µF) a 250mV V  
CC  
2. In addition to the bypass capacitors used in the analog  
step should cause no more than a 100pS phase  
deviation.  
filter of Figure 6, there should be a 0.1µF bypass  
capacitorbetweeneachoftheother(digital)fourV  
pins  
CC  
and the board ground plane. This will reduce output  
switching noise caused by the 88915T outputs, in  
addition to reducing potential for noise in the ‘analog’  
section of the chip. These bypass capacitors should also  
be tied as close to the 88915T package as possible.  
If good bypass techniques are used on a board design  
near components which may cause digital V  
and  
step deviations  
CC  
ground noise, the above described V  
should not occur at the 88915T’s digital V  
CC  
supply. The  
CC  
17  
MOTOROLA  
MC88915TFN55/70/100/133/160  
CPU  
CMMU  
CPU  
CMMU  
CMMU  
CARD  
MC88915T  
PLL  
2f  
CLOCK  
@ f  
CMMU  
CMMU  
SYSTEM  
CLOCK  
SOURCE  
CPU  
CMMU  
CMMU  
CARD  
CMMU  
CPU  
MC88915T  
PLL  
2f  
DISTRIBUTE  
CLOCK @ f  
CMMU  
CMMU  
CLOCK @ 2f  
AT POINT OF USE  
MC88915T  
PLL  
MEMORY  
CONTROL  
2f  
MEMORY  
CARDS  
CLOCK @ 2f  
AT POINT OF USE  
Figure 7. Representation of a Potential Multi–Processing Application Utilizing the MC88915T  
for Frequency Multiplication and Low Board–to–Board Skew  
MC88915T System Level Testing Functionality  
3–state functionality has been added to the 100MHz version of the MC88915T to ease system board testing. Bringing the  
OE/RST pin low will put all outputs (except for LOCK) into the high impedance state. As long as the PLL_EN pin is low, the  
Q0–Q4, Q5, and the Q/2 outputs will remain reset in the low state after the OE/RST until a falling SYNC edge is seen. The 2X_Q  
output will be the inverse of the SYNC signal in this mode. If the 3–state functionality will be used, a pull–up or pull–down resistor  
must be tied to the FEEDBACK input pin to prevent it from floating when the fedback output goes into high impedance.  
With the PLL_EN pin low the selected SYNC signal is gated directly into the internal clock distribution network, bypassing  
and disabling the VCO. In this mode the outputs are directly driven by the SYNC input (per the block diagram). This mode can  
also be used for low frequency board testing.  
Note: If the outputs are put into 3–state during normal PLL operation, the loop will be broken and phase–lock will be lost. It will  
take a maximum of 10mS (tLOCK spec) to regain phase–lock after the OE/RST pin goes back high.  
MOTOROLA  
18  
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC88915TFN55/70/100/133/160  
OUTLINE DIMENSIONS  
FN SUFFIX  
PLASTIC PACKAGE  
CASE 776–02  
ISSUE D  
M
S
S
0.007 (0.180)  
T
L–M  
N
B
Y BRK  
D
–N–  
M
S
S
0.007 (0.180)  
T
L–M  
N
U
Z
–M–  
–L–  
W
D
S
S
S
0.010 (0.250)  
T
L–M  
N
X
G1  
V
28  
1
VIEW D–D  
M
S
S
S
A
0.007 (0.180)  
0.007 (0.180)  
T
L–M  
L–M  
N
M
S
S
0.007 (0.180)  
T
L–M  
N
H
Z
M
S
T
N
R
K1  
C
E
0.004 (0.100)  
SEATING  
PLANE  
G
K
–T–  
VIEW S  
J
M
S
S
0.007 (0.180)  
T
L–M  
N
F
G1  
S
S
S
0.010 (0.250)  
T
L–M  
N
VIEW S  
NOTES:  
INCHES  
MILLIMETERS  
1. DATUMS –L–, –M–, AND –N– DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM –T–, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
DIM  
A
B
C
E
F
G
H
J
K
R
U
V
W
X
Y
Z
G1  
K1  
MIN  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
0.485  
0.485  
0.165  
0.090  
0.013  
2.29  
2.79  
0.33  
0.48  
0.050 BSC  
1.27 BSC  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
–––  
0.032  
–––  
–––  
0.456  
0.456  
0.048  
0.048  
0.056  
0.020  
10  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
–––  
0.81  
–––  
–––  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
2
2
0.410  
0.040  
0.430  
–––  
10.42  
1.02  
10.92  
–––  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
19  
MOTOROLA  
MC88915TFN55/70/100/133/160  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405; Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://www.mot.com/sps/  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC88915T/D  

相关型号:

MC88915TFN70FN

88915 SERIES, PLL BASED CLOCK DRIVER, 7 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
NXP

MC88915TFN70R2

88915 SERIES, PLL BASED CLOCK DRIVER, 7 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
MOTOROLA

MC88916

LOW SKEW CMOS PLL CLOCK DRIVER WITH PROCESSOR RESET
MOTOROLA

MC88916DW

LOW SKEW CMOS PLL CLOCK DRIVER WITH PROCESSOR RESET
MOTOROLA

MC88916DW55

PLL/Frequency Synthesis Circuit, CMOS, PDSO20
MOTOROLA

MC88916DW70

88916 SERIES, PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PDSO20, PLASTIC, SOIC-20
IDT

MC88916DW70R2

PLL Based Clock Driver, 88916 Series, 5 True Output(s), 1 Inverted Output(s), CMOS, PDSO20, PLASTIC, SOIC-20
IDT

MC88916DW80

88916 SERIES, PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PDSO20, PLASTIC, SOIC-20
MOTOROLA

MC88916DW80

PLL Based Clock Driver, 88916 Series, 5 True Output(s), 1 Inverted Output(s), CMOS, PDSO20, PLASTIC, SOIC-20
IDT

MC88916DW80R2

PLL Based Clock Driver, 88916 Series, 5 True Output(s), 1 Inverted Output(s), CMOS, PDSO20, PLASTIC, SOIC-20
MOTOROLA

MC88916DW80R2

PLL Based Clock Driver, 88916 Series, 5 True Output(s), 1 Inverted Output(s), CMOS, PDSO20, PLASTIC, SOIC-20
IDT

MC88916DWR2

LOW SKEW CMOS PLL CLOCK DRIVER WITH PROCESSOR RESET
MOTOROLA