MC88915TFN160R2 [MOTOROLA]

PLL Based Clock Driver, 88915 Series, 7 True Output(s), 1 Inverted Output(s), CMOS, PQCC28, PLASTIC, LCC-28;
MC88915TFN160R2
型号: MC88915TFN160R2
厂家: MOTOROLA    MOTOROLA
描述:

PLL Based Clock Driver, 88915 Series, 7 True Output(s), 1 Inverted Output(s), CMOS, PQCC28, PLASTIC, LCC-28

文件: 总21页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M OT O R OL A  
SEMICONDUCTOR TECHNICAL DATA  
Order Number: MC88915T/D  
Rev 5, 08/2001  
M
M
C
C
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
1
1
1
1
1
5
5
5
5
5
T
T
T
T
T
F
F
F
F
F
N
N
N
N
N
1
1
1
5
7
0
3
6
5
0
0
3
0
L
C
o
w
c
S
k
D
e
r
w
v
C
M
O
S
P L L  
3 - S ta t e  
M
C
l
o
k
i
e
r
s
,
55, 70, 100, 133 and 160MHz Versions  
M
M
C
C
The MC88915T Clock Driver utilizes phase–locked loop technology to  
lock its low skew outputs’ frequency and phase onto an input reference  
clock. It is designed to provide clock distribution for high performance PC’s  
and workstations. For a 3.3V version, see the MC88LV915T data sheet.  
The PLL allows the high current, low skew outputs to lock onto a single  
clock input and distribute it with essentially zero delay to multiple  
components on a board. The PLL also allows the MC88915T to multiply a  
low frequency input clock and distribute it locally at a higher (2X) system  
frequency. Multiple 88915’s can lock onto a single reference clock, which is  
ideal for applications when a central system clock must be distributed  
synchronously to multiple boards (see Figure 7).  
LOW SKEW CMOS  
PLL CLOCK DRIVER  
Five “Q” outputs (Q0–Q4) are provided with less than 500 ps skew between their rising edges. The Q5 output is inverted (180°  
phase shift) from the “Q” outputs. The 2X_Q output runs at twice the “Q” output frequency, while the Q/2 runs at 1/2 the “Q”  
frequency.  
The VCO is designed to run optimally between 20 MHz and the 2X_Q Fmax specification. The wiring diagrams in Figure 5 detail  
the different feedback configurations which create specific input/output frequency relationships. Possible frequency ratios of the  
“Q” outputs to the SYNC input are 2:1, 1:1, and 1:2.  
The FREQ_SEL pin provides one bit programmable divide–by in the feedback path of the PLL. It selects between divide–by–1  
and divide–by–2 of the VCO before its signal reaches the internal clock distribution section of the chip (see the block diagram on  
page 2). In most applications FREQ_SEL should be held high (÷1). If a low frequency reference clock input is used, holding  
FREQ_SEL low (÷2) will allow the VCO to run in its optimal range (>20MHz and >40MHz for the TFN133 version).  
In normal phase–locked operation the PLL_EN pin is held high. Pulling the PLL_EN pin low disables the VCO and puts the  
88915 in a static “test mode”. In this mode there is no frequency limitation on the input clock, which is necessary for a low frequency  
board test environment. The second SYNC input can be used as a test clock input to further simplify board–level testing (see  
detailed description on page 11).  
Pulling the OE/RST pin low puts the clock outputs 2X_Q, Q0–Q4, Q5 and Q/2 into a high impedance state (3–state). After the  
OE/RST pin goes back high Q0–Q4, Q5 and Q/2 will be reset in the low state, with 2X_Q being the inverse of the selected SYNC  
input. Assuming PLL_EN is low, the outputs will remain reset until the 88915 sees a SYNC input pulse.  
A lock indicator output (LOCK) will go high when the loop is in steady–state phase and frequency lock. The LOCK output will go  
low if phase–lock is lost or when the PLL_EN pin is low. The LOCK output will go high no later than 10ms after the 88915 sees a  
SYNC signal and full 5V VCC  
.
Features  
Five Outputs (Q0–Q4) with Output–Output Skew < 500 ps each being phase and frequency locked to the SYNC input  
The phase variation from part–to–part between the SYNC and FEEDBACK inputs is less than 550 ps (derived from the tPD  
specification, which defines the part–to–part skew)  
Input/Output phase–locked frequency ratios of 1:2, 1:1, and 2:1 are available  
Input frequency range from 5MHz – 2X_Q FMAX spec. (10MHz – 2X_Q FMAX for the TFN133 version)  
Additional outputs available at 2X and +2 the system “Q” frequency. Also a Q (180° phase shift) output available  
All outputs have ±36 mA drive (equal high and low) at CMOS levels, and can drive either CMOS or TTL inputs. All inputs are  
TTL–level compatible. ±88mA IOL/IOH specifications guarantee 50transmission line switching on the incident edge  
Test Mode pin (PLL_EN) provided for low frequency testing. Two selectable CLOCK inputs for test or redundancy purposes.  
All outputs can go into high impedance (3–state) for board test purposes  
Lock Indicator (LOCK) accuracy indicates a phase–locked state  
Yield Surface Modeling and YSM are trademarks of Motorola, Inc.  
Motorola, Inc. 2001  
t
Pinout: 28–Lead PLCC (Top View)  
O
E
/
R
S
T
V
C
Q
5
G
N
D
Q
4
V
C C  
2
X
_
Q
C
4
3
2
1
2
8
2
7
2 6  
F
E
E
D
B
A
C
K
5
2
5
4
3
2
1
0
9
Q
G
Q
/
2
RE F_ SE L  
6
7
8
9
1
2
2
2
2
2
1
N
3
D
S YN C[ 0]  
V
(
A
N
)
V
C C  
C
C
R
C
1
Q
G
2
G
N
D
(
A
N
)
0
N
D
S
Y
N
C
[
1
]
11  
L O CK  
1
2
1
3
1
4
1
5
1
6
1
7
1 8  
G
FR EQ _S EL  
N
D
Q
0
V
C
Q
1
G
N
D
P
L
L
_
E
N
C
FN SUFFIX  
PLASTIC PLCC  
CASE 776–02  
PIN SUMMARY  
P
i
n
N
a
m
e
N
u
m
I
/O  
F
u
n
c
t
i
o
n
1
1
1
1
1
1
5
1
1
1
1
1
1
S YN C [ 0 ]  
S YN C [ 1 ]  
R E F_ S EL  
F R EQ _ SE L  
F E ED B AC K  
R C 1  
Q (0 - 4 )  
Q 5  
2 x _Q  
I n pu t  
I n pu t  
I n pu t  
I n pu t  
I n pu t  
I n pu t  
O ut p u t  
O ut p u t  
O ut p u t  
O ut p u t  
O ut p u t  
I n pu t  
R e f e re n c e c l o c k i n p u t  
R e f e re n c e c l o c k i n p u t  
C h o os e s r e f e re n c e b e t w ee n s y n c [ 0]  
D o u bl e s V C O I n t e rn a l F r e q ue n c y ( l o w )  
F e e d ba c k i n p u t t o p h a s e d e t e ct o r  
I n p u t f o r e x t e rn a l R C n e t w or k  
C l o c k o u t p ut ( l o c ke d t o s y n c )  
I n v e rs e o f c l o c k o u t p ut  
&
S
y
n
c
[
1
]
2
x
c
l
o
c
k
o
u
t
p
u
t
(
Q
)
f
r
e
q
u
e
n
c
y
(
s
y
n
c
h
r
o
n
o
u
s
)
Q
/
2
C
l
o
c
k
o
u
t
p
u
t
(
Q
)
f
r
e
q
u
e
÷
n
c
y
2
(
s
y
n
c
h
r
o
n
o
u
s
)
L OC K  
O E/ R ST  
P LL _ E N  
I n d i ca t e s p h a s e l o c k h a s b e e n a c h i ev e d ( h i g h w h e n l o c k ed )  
O u t p ut E n a bl e / A s y n c hr o n o u s r e s e t ( a c t i ve l o w )  
D i s a bl e s p h a s e- l o c k f o r l o w f r e q . t e s t i ng  
I n pu t  
11  
V
, G ND  
C C  
P o w e r a n d g r o un d p i n s ( n o t e p i n s 8 , 1 0 a r e  
 a n al o g " s u p p ly p i n s f o r i n t e rn a l P L L o n l y )  
2
MOTOROLA  
L
O
C
K
FEED BAC K  
S
S
Y
N
N
C
C
(
(
0
1
)
)
V
O
L
T
A
G
E
0
1
P HA SE/ FR EQ .  
C
H
A
R
G
E
F
P UMP / L O OP  
I LTE R  
C
O
N
T
R
O
L
L
E
D
M
U
X
D
E
T
E
C
T
O
R
O
S
C
I
L
L
ATO  
R
Y
E
X
T
ER  
N
A
L
R
1
E C  
P in )  
N
E
T
W
O
R
K
(
R
C
R E F_ SEL  
2
x
_
Q
0
1
P
L
L
_
E
N
M
U
X
Q
Q
Q
Q
Q
Q
Q
0
D
Q
Q
(
÷
1
2
)
)
C
P
1
R
R
R
R
R
R
R
M
U
X
(
÷
D
I
V
I
D
T
E
W
0
B
Y
O
1
2
3
4
5
D
Q
Q
Q
Q
Q
Q
C
P
F
R
E
Q
_
S
E
L
O
E
/
R
S
T
D
C
P
D
C
P
D
C
P
D
C
P
/
2
D
C
P
Figure 1. MC88915T Block Diagram (All Versions)  
3
MOTOROLA  
MC88915TFN55 and MC88915TFN70  
SYNC INPUT TIMING REQUIREMENTS  
Minimum  
Symbol  
,SYNC Inputs  
Parameter  
Rise/Fall Time, SYNC Inputs  
TFN70  
TFN55  
Maximum  
Unit  
t
t
3.0  
ns  
RISE/FALL  
From 0.8 to 2.0V  
1
1
2
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
28.5  
36.0  
200  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown in  
CYCLE  
Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS  
(Voltages Referenced to GND) T =–40° C to +85° C for 55MHz Version; T =0° C to +70° C for 70MHz Version; V = 5.0 V ± 5%  
A
A
CC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V – 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V – 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
4.01  
4.51  
IH  
1
I
= –36 mA  
OH  
V
I
Maximum Low–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
0.44  
0.44  
OL  
IH  
1
I
OL  
= 36 mA  
Maximum Input Leakage Current  
V = V or GND  
I
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
CC  
2
I
Maximum I /Input  
V = V – 2.1 V  
I
CCT  
OLD  
CC  
CC  
2.0  
3
I
Minimum Dynamic Output Current  
V
= 1.0V Max  
88  
–88  
1.0  
OLD  
OHD  
I
V
= 3.85V Min  
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V or GND  
I CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
5.25  
±50  
µA  
OZ  
I
IH  
IL  
O
CC  
1. I and I are 12mA and –12mA respectively for the LOCK output.  
OL  
OH  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
pF  
Conditions  
C
Input Capacitance  
Power Dissipation Capacitance  
Power Dissipation @ 50MHz with 50Thevenin Termination  
4.5  
40  
V
CC  
V
CC  
V
CC  
= 5.0 V  
IN  
C
pF  
= 5.0 V  
= 5.0 V  
PD  
PD  
23mW/Output  
184mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
2
CC  
T = 25° C  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
4
MOTOROLA  
MC88915TFN55 and MC88915TFN70 (continued)  
FREQUENCY SPECIFICATIONS (T =–40° C to +85° C, V = 5.0 V ±5%)  
A
CC  
Guaranteed Minimum  
TFN70 TFN55  
70 55  
35 27.5  
Symbol  
Parameter  
Maximum Operating Frequency (2X_Q Output)  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
Unit  
MHz  
MHz  
1
f
max  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
AC CHARACTERISTICS (T =–40° C to +85° C, V = 5.0V ±5%, Load = 50Terminated to V /2)  
A
CC  
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V and 0.8V  
)
Terminated to V /2  
CC  
CC  
CC  
1
t
Rise/Fall Time Into a 20pF Load, With Ter-  
mination Specified in Note  
0.5  
1.6  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
RISE  
FALL  
2
2X_Q Output  
1
2
2
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3, Q4,  
0.5t  
0.5t  
0.5t  
0.5t  
– 0.5  
– 0.5  
0.5t  
0.5t  
0.5t  
0.5t  
+ 0.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(Q0–Q4, Q5, Q/2)  
CYCLE  
CYCLE  
Q5, Q/2 @ V /2  
CC  
CC  
1
t
Output Pulse Width:  
2X_Q @ 1.5V  
66MHz  
50MHz  
40MHz  
+ 0.5  
Must Use Termination  
Specified in Note 2  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
– 1.0  
– 1.5  
+ 1.0  
+ 1.5  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
1
2
2
t
Output Pulse Width:  
50–65MHz  
40–49MHz  
66–70MHz  
0.5t  
0.5t  
0.5t  
– 1.0  
– 1.5  
– 0.5  
0.5t  
0.5t  
0.5t  
+ 1.0  
+ 1.5  
+ 0.5  
ns  
ns  
Into a 50Load  
PULSE WIDTH  
CYCLE  
CYCLE  
(2X_Q Output)  
2X_Q @ V /2  
Terminated to V /2  
CC  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CC  
1,3  
t
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
See Note 4 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
CC  
SYNC Feedback  
–1.05  
–0.40  
(With 1Mfrom RC1 to An GND)  
+1.25  
+3.25  
500  
1,4  
t
Output–to–Output Skew Between Outputs  
Q0–Q4, Q/2 (Rising Edges Only)  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
5
(Rising) See Note  
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew Between Outputs  
Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
SKEWall  
Terminated to V /2  
CC  
5
t
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
6
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
6
,t  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
PHZ PLZ  
1. These specifications are not tested, they are guaranteed by statistcal characterization. See AC specification Note 1.  
2. T in this spec is 1/Frequency at which the particular output is running.  
CYCLE  
3. The T specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
PD  
4. Under equally loaded conditions and at a fixed temperature and voltage.  
5. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t  
minimum is with  
CC  
LOCK  
LOCK  
C1 = 0.01µF.  
6. The t , t  
, t  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is reached.  
PZL PHZ PLZ  
5
MOTOROLA  
MC88915TFN100  
SYNC INPUT TIMING REQUIREMENTS  
Symbol  
Parameter  
Minimum  
Maximum  
Unit  
t
t
,SYNC Inputs  
Rise/Fall Time, SYNC Inputs From 0.8 to 2.0V  
3.0  
ns  
RISE/FALL  
1
2
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
20.0  
200  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown in  
CYCLE  
Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) T =–40° C to +85° C, V = 5.0 V ± 5%  
A
CC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V – 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V – 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
4.01  
4.51  
IH  
1
I
= –36 mA  
OH  
V
OL  
Maximum Low–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
0.44  
0.44  
IH  
1
I
OL  
= 36 mA  
I
Maximum Input Leakage Current  
V = V or GND  
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
I
CC  
2
I
I
Maximum I /Input  
V = V – 2.1 V  
CCT  
CC  
I
CC  
2.0  
3
Minimum Dynamic Output Current  
V
= 1.0V Max  
88  
–88  
1.0  
OLD  
OLD  
OHD  
I
V
= 3.85V Min  
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V or GND  
I CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
5.25  
±50  
µA  
OZ  
I
IH  
IL  
O
CC  
1. I and I are 12mA and –12mA respectively for the LOCK output.  
OL  
OH  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
pF  
Conditions  
C
Input Capacitance  
Power Dissipation Capacitance  
Power Dissipation @ 50MHz with 50Thevenin Termination  
4.5  
40  
V
CC  
V
CC  
V
CC  
= 5.0 V  
IN  
C
pF  
= 5.0 V  
= 5.0 V  
PD  
PD  
23mW/Output  
184mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
2
CC  
T = 25° C  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
FREQUENCY SPECIFICATIONS (T =–40° C to +85° C, V = 5.0 V ±5%)  
A
CC  
Guaranteed Minimum  
Symbol  
Parameter  
Maximum Operating Frequency (2X_Q Output)  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
TFN100  
100  
Unit  
1
f
MHz  
MHz  
max  
50  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
6
MOTOROLA  
MC88915TFN100 (continued)  
AC CHARACTERISTICS (T =–40° C to +85° C, V = 5.0V ±5%, Load = 50Terminated to V /2)  
A
CC  
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V and 0.8V  
)
Terminated to V /2  
CC  
CC  
CC  
1
t
Rise/Fall Time Into a 20pF Load, With Ter-  
mination Specified in Note  
0.5  
1.6  
ns  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
RISE  
FALL  
2
2X_Q Output  
1
2
2
2
2
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3, Q4,  
0.5t  
0.5t  
0.5t  
– 0.5  
– 0.5  
– 1.5  
0.5t  
0.5t  
0.5t  
+ 0.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(Q0–Q4, Q5, Q/2)  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
Q5, Q/2 @ V /2  
CC  
CC  
1
t
Output Pulse Width:  
2X_Q @ 1.5V  
+ 0.5  
Must Use Termination  
Specified in Note 2  
PULSE WIDTH  
(2X_Q Output)  
1
t
Output Pulse Width:  
40–49MHz  
50–65MHz  
66–100MHz  
+ 1.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(2X_Q Output)  
2X_Q @ V /2  
0.5t  
0.5t  
– 1.0  
– 0.5  
0.5t  
0.5t  
+ 1.0  
+ 0.5  
CC  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CC  
1,3  
t
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
ns  
See Note 4 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
CC  
SYNC Feedback  
–1.05  
–0.30  
(With 1Mfrom RC1 to An GND)  
+1.25  
+3.25  
500  
1,4  
t
Output–to–Output Skew Between Outputs  
Q0–Q4, Q/2 (Rising Edges Only)  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
5
(Rising) See Note  
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew Between Outputs  
Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
SKEWall  
Terminated to V /2  
CC  
5
t
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
6
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
6
,t  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
PHZ PLZ  
1. These specifications are not tested, they are guaranteed by statistcal characterization. See AC specification Note 1.  
2. T in this spec is 1/Frequency at which the particular output is running.  
CYCLE  
3. The T specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
PD  
4. Under equally loaded conditions and at a fixed temperature and voltage.  
5. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t  
minimum is with  
CC  
LOCK  
LOCK  
C1 = 0.01µF.  
6. The t , t  
, t  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is reached.  
PZL PHZ PLZ  
7
MOTOROLA  
MC88915TFN133  
SYNC INPUT TIMING REQUIREMENTS  
Symbol  
Parameter  
Minimum  
Maximum  
Unit  
t
t
,SYNC Inputs  
Rise/Fall Time, SYNC Inputs From 0.8 to 2.0V  
3.0  
ns  
RISE/FALL  
1
2
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
15.0  
100  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown in  
CYCLE  
Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) T =–40° C to +85° C, V = 5.0 V ± 5%  
A
CC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V – 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V – 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
4.01  
4.51  
IH  
1
I
= –36 mA  
OH  
V
OL  
Maximum Low–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
0.44  
0.44  
IH  
1
I
OL  
= 36 mA  
I
Maximum Input Leakage Current  
V = V or GND  
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
I
CC  
2
I
I
Maximum I /Input  
V = V – 2.1 V  
CCT  
CC  
I
CC  
2.0  
3
Minimum Dynamic Output Current  
V
= 1.0V Max  
88  
–88  
1.0  
OLD  
OLD  
OHD  
I
V
= 3.85V Min  
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V or GND  
I CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
5.25  
±50  
µA  
OZ  
I
IH  
IL  
O
CC  
1. I and I are 12mA and –12mA respectively for the LOCK output.  
OL  
OH  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
pF  
Conditions  
C
Input Capacitance  
Power Dissipation Capacitance  
Power Dissipation @ 50MHz with 50Thevenin Termination  
4.5  
40  
V
CC  
V
CC  
V
CC  
= 5.0 V  
IN  
C
pF  
= 5.0 V  
= 5.0 V  
PD  
PD  
23mW/Output  
184mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
2
CC  
T = 25° C  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
FREQUENCY SPECIFICATIONS (T =–40° C to +85° C, V = 5.0 V ±5%)  
A
CC  
Guaranteed Minimum  
Symbol  
Parameter  
Maximum Operating Frequency (2X_Q Output)  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
TFN133  
133  
Unit  
1
f
MHz  
MHz  
max  
66  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
8
MOTOROLA  
MC88915TFN133 (continued)  
AC CHARACTERISTICS (T =–40° C to +85° C, V = 5.0V ±5%, Load = 50Terminated to V /2)  
A
CC  
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V and 0.8V  
)
Terminated to V /2  
CC  
CC  
CC  
1
t
Rise/Fall Time Into a 20pF Load, With Ter-  
mination Specified in Note  
0.5  
1.6  
ns  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
RISE  
FALL  
2
2X_Q Output  
1
2
2
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3, Q4,  
0.5t  
0.5t  
– 0.5  
– 0.5  
0.5t  
0.5t  
+ 0.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(Q0–Q4, Q5, Q/2)  
CYCLE  
CYCLE  
Q5, Q/2 @ V /2  
CC  
CC  
1
t
Output Pulse Width:  
2X_Q @ 1.5V  
66–133MHz  
40–65MHz  
+ 0.5  
+ 0.9  
Must Use Termination  
Specified in Note 2  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
0.5t  
– 0.9  
0.5t  
CYCLE  
CYCLE  
1
2
2
t
Output Pulse Width:  
66–133MHz  
40–65MHz  
0.5t  
0.5t  
– 0.5  
– 0.9  
0.5t  
0.5t  
+ 0.5  
+ 0.9  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
(2X_Q Output)  
CYCLE  
CYCLE  
2X_Q @ V /2  
CC  
CYCLE  
CYCLE  
CC  
1,3  
t
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
ns  
See Note 4 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
CC  
SYNC Feedback  
–1.05  
–0.25  
(With 1Mfrom RC1 to An GND)  
+1.25  
+3.25  
500  
1,4  
t
Output–to–Output Skew Between Outputs  
Q0–Q4, Q/2 (Rising Edges Only)  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
5
(Rising) See Note  
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew Between Outputs  
Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
1,4  
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
SKEWall  
Terminated to V /2  
CC  
5
t
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
6
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
6
,t  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
PHZ PLZ  
1. These specifications are not tested, they are guaranteed by statistcal characterization. See AC specification Note 1.  
2. T in this spec is 1/Frequency at which the particular output is running.  
CYCLE  
3. The T specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
PD  
4. Under equally loaded conditions and at a fixed temperature and voltage.  
5. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t  
minimum is with  
CC  
LOCK  
LOCK  
C1 = 0.01µF.  
6. The t , t  
, t  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is reached.  
PZL PHZ PLZ  
9
MOTOROLA  
MC88915TFN160  
SYNC INPUT TIMING REQUIREMENTS  
Symbol  
Parameter  
Minimum  
Maximum  
Unit  
t ,SYNC Inputs  
RISE/FALL  
Rise/Fall Time, SYNC Inputs From 0.8 to 2.0V  
3.0  
ns  
t
, SYNC Inputs  
Input Clock Period SYNC Inputs  
Input Duty Cycle SYNC Inputs  
12.5  
100  
ns  
CYCLE  
Duty Cycle SYNC Inputs  
1. These t  
50% ±25%  
minimum values are valid when ‘Q’ output is fed back and connected to the FEEDBACK pin. This is the configuration shown in  
CYCLE  
Figure 5b.  
2. Information in Table 1 and in Note 3 of the AC specification notes describe this specification and its limits depending on what output is fed back,  
and if FREQ_SEL is high or low.  
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) T =0° C to +70° C, V = 5.0 V ± 5%  
A
CC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
Target Limit  
Unit  
V
IH  
Minimum High–Level Input  
Voltage  
V
out  
= 0.1 V or V – 0.1 V  
4.75  
5.25  
2.0  
2.0  
V
CC  
V
Maximum Low–Level Input  
Voltage  
V
= 0.1 V or V – 0.1 V  
4.75  
5.25  
0.8  
0.8  
V
V
V
IL  
out  
CC  
V
OH  
Minimum High–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
4.01  
4.51  
IH  
1
I
= –36 mA  
OH  
V
I
Maximum Low–Level Output  
Voltage  
V
in  
= V or V  
IL  
4.75  
5.25  
0.44  
0.44  
OL  
IH  
1
I
OL  
= 36 mA  
Maximum Input Leakage Current  
V = V or GND  
I
5.25  
5.25  
5.25  
5.25  
5.25  
±1.0  
µA  
mA  
mA  
mA  
mA  
in  
CC  
2
I
I
Maximum I /Input  
V = V – 2.1 V  
I
CCT  
OLD  
CC  
CC  
2.0  
3
Minimum Dynamic Output Current  
V
OLD  
V
OHD  
= 1.0V Max  
88  
–88  
1.0  
I
= 3.85V Min  
OHD  
I
Maximum Quiescent Supply  
Current (per Package)  
V = V or GND  
I CC  
CC  
4
I
Maximum 3–State Leakage Current  
V = V or V ;V = V or GND  
5.25  
±50  
µA  
OZ  
I
IH  
IL  
O
CC  
1. I and I are 12mA and –12mA respectively for the LOCK output.  
OL  
OH  
2. The PLL_EN input pin is not guaranteed to meet this specification.  
3. Maximum test duration is 2.0ms, one output loaded at a time.  
4. Specification value for I is preliminary, will be finalized upon ‘MC’ status.  
OZ  
CAPACITANCE AND POWER SPECIFICATIONS  
Symbol  
Parameter  
Typical Values  
Unit  
pF  
Conditions  
C
Input Capacitance  
Power Dissipation Capacitance  
Power Dissipation @ 50MHz with 50Thevenin Termination  
4.5  
40  
V
CC  
V
CC  
V
CC  
= 5.0 V  
IN  
C
pF  
= 5.0 V  
= 5.0 V  
PD  
PD  
15mW/Output  
120mW/Device  
mW  
1
T = 25°C  
PD  
Power Dissipation @ 50MHz with 50Parallel Termination to GND  
57mW/Output  
456mW/Device  
mW  
V
= 5.0 V  
2
CC  
T = 25° C  
NOTE: PD and PD mW/Output numbers are for a ‘Q’ output.  
1
2
FREQUENCY SPECIFICATIONS (T =0° C to +70° C, V = 5.0 V ±5%)  
A
CC  
Guaranteed Minimum  
Symbol  
Parameter  
TFN160  
160  
Unit  
1
f
Maximum Operating Frequency (2X_Q Output)  
MHz  
MHz  
max  
Maximum Operating Frequency (Q0–Q4,Q5 Output)  
80  
1. Maximum Operating Frequency is guaranteed with the part in a phase–locked condition, and all outputs loaded with 50terminated to V /2.  
CC  
10  
MOTOROLA  
MC88915TFN160 (continued)  
AC CHARACTERISTICS (T =0° C to +70° C, V = 5.0V ±5%, Load = 50Terminated to V /2)  
A
CC  
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
t
Rise/Fall Time, All Outputs  
1.0  
2.5  
ns  
Into a 50Load  
RISE/FALL  
Outputs  
(Between 0.2V and 0.8V  
)
Terminated to V /2  
CC  
CC  
CC  
t
Rise/Fall Time  
0.5  
1.6  
ns  
ns  
ns  
t
t
: 0.8V – 2.0V  
: 2.0V – 0.8V  
RISE/FALL  
RISE  
FALL  
2X_Q Output  
2
2
t
Output Pulse Width: Q0, Q1, Q2, Q3, Q4,  
0.5t  
– 0.5  
0.5t  
+ 0.5  
Into a 50Load  
Terminated to V /2  
PULSE WIDTH  
CYCLE  
CYCLE  
(Q0–Q4, Q5, Q/2)  
Q5, Q/2 @ V /2  
CC  
CC  
t
Output Pulse Width:  
2X_Q @ V  
CC  
80MHz  
100MHz  
133MHz  
160MHz  
0.5t  
0.5t  
0.5t  
– 0.7  
– 0.5  
– 0.5  
0.5t  
0.5t  
0.5t  
+ 0.7  
+ 0.5  
+ 0.5  
PULSE WIDTH  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
(2X_Q Output)  
CYCLE  
TBD  
CYCLE  
TBD  
1
t
SYNC Feedback  
SYNC Input to Feedback Delay  
(Measured at SYNC0 or 1 and  
FEEDBACK Input Pins)  
ns  
See Note 2 and  
Figure 2 for Detailed  
Explanation  
(With 1Mfrom RC1 to An V  
)
PD  
CC  
133MHz  
160MHz  
–1.05  
–0.9  
–0.25  
–0.10  
t
Cycle–to–Cycle Variation  
133MHz  
160MHz  
t
t
– 300ps  
– 300ps  
t
t
+ 300ps  
+ 300ps  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
(2x_Q Output)  
3
t
Output–to–Output Skew Between Outputs  
500  
ps  
ps  
ps  
ms  
All Outputs Into a  
Matched 50Load  
SKEWr  
(Rising) See Note 4 Q0–Q4, Q/2 (Rising Edges Only)  
Terminated to V /2  
CC  
3
t
Output–to–Output Skew Between Outputs  
Q0–Q4 (Falling Edges Only)  
500  
750  
10  
All Outputs Into a  
Matched 50Load  
SKEWf  
(Falling)  
Terminated to V /2  
CC  
3
t
Output–to–Output Skew 2X_Q, Q/2,  
Q0–Q4 Rising, Q5 Falling  
All Outputs Into a  
Matched 50Load  
SKEWall  
Terminated to V /2  
CC  
4
t
Time Required to Acquire Phase–Lock  
From Time SYNC Input Signal is  
Received  
1.0  
Also Time to LOCK  
Indicator High  
LOCK  
5
t
t
Output Enable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
3.0  
3.0  
14  
14  
ns  
ns  
Measured With the  
PLL_EN Pin Low  
PZL  
5
,t  
Output Disable Time OE/RST to 2X_Q,  
Q0–Q4, Q5, and Q/2  
Measured With the  
PLL_EN Pin Low  
PHZ PLZ  
1. T  
in this spec is 1/Frequency at which the particular output is running.  
CYCLE  
2. The T specification’s min/max values may shift closer to zero if a larger pullup resistor is used.  
PD  
3. Under equally loaded conditions and at a fixed temperature and voltage.  
4. With V fully powered–on, and an output properly connected to the FEEDBACK pin. t  
maximum is with C1 = 0.1µF, t  
minimum is with  
CC  
LOCK  
LOCK  
C1 = 0.01µF.  
5. The t , t  
, t  
minimum and maximum specifications are estimates, the final guaranteed values will be available when ‘MC’ status is reached.  
PZL PHZ PLZ  
11  
MOTOROLA  
Applications Information for All Versions  
General AC Specification Notes  
2. These two specs (tRlSE/FALL and tPULSE Width 2X_Q  
output) guarantee that the MC88915T meets the 40MHz  
and 33MHz MC68040 P–Clock input specification (at  
80MHz and 66MHz, respectively). For these two specs to  
be guaranteed by Motorola, the termination scheme  
shown below in Figure 1 must be used.  
1. Several specifications can only be measured when the  
MC88915TFN55, 70 and 100 are in phase–locked  
operation. It is not possible to have the part in phase–lock  
on ATE (automated test equipment). Statistical  
characterization techniques were used to guarantee those  
specifications which cannot be measured on the ATE.  
MC88915TFN55, 70 and 100 units were fabricated with  
key transistor properties intentionally varied to create a 14  
cell designed experimental matrix. IC performance was  
characterized over a range of transistor properties  
(represented by the 14 cells) in excess of the expected  
process variation of the wafer fabrication area, to set  
performance limits of ATE testable specifications within  
those which are to be guaranteed by statistical  
characterization. In this way all units passing the ATE test  
will meet or exceed the non–tested specifications limits.  
3. The wiring Diagrams and explanations in Figure 5  
demonstrate the input and output frequency relationships  
for three possible feedback configurations. The allowable  
SYNC input range for each case is also indicated. There  
are two allowable SYNC frequency ranges, depending  
whether FREQ_SEL is high or low. Although not shown, it  
is possible to feed back the Q5 output, thus creating a 180°  
phase shift between the SYNC input and the “Q” outputs.  
Table 1 below summarizes the allowable SYNC frequency  
range for each possible configuration.  
Z (C LO CK T RA C E )  
O
R
s
8
8
9
1
5
6
80  
4
0
2
O
X
_
p
Q
P
-
C
p
l
u
o
c
t
k
u
t
u
t
I
n
R
p
R = Z- 7  
s
o
Rp = 1.5 Zo  
Figure 1. MC68040 P–Clock Input Termination Scheme  
Table 1. Allowable SYNC Input Frequency Ranges for Different Feedback Configurations.  
FREQ_SEL  
Level  
Feedback  
Output  
Allowable SYNC Input  
Frequency Range (MHZ)  
Corresponding VCO  
Frequency Range  
Phase Relationships  
of the “Q” Outputs  
to Rising SYNC Edge  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
Q/2  
5 to (2X_Q FMAX Spec)/4  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAX Spec)  
0°  
0°  
Any “Q” (Q0–Q4) 10 to (2X_Q FMAX Spec)/2  
Q5  
2X_Q  
Q/2  
10 to (2X_Q FMAX Spec)/2  
20 to (2X_Q FMAX Spec)  
180°  
0°  
2.5 to (2X_Q FMAX Spec)/8 20 to (2X_Q FMAX Spec)  
0°  
Any “Q” (Q0–Q4) 5 to (2X_Q FMAX Spec)/4  
20 to (2X_Q FMAX Spec)  
20 to (2X_Q FMAXSpec)  
20 to (2X_Q FMAXSpec)  
0°  
Q5  
5 to (2X_Q FMAX Spec)/4  
10 to (2X_Q FMAX Spec)/2  
180°  
0°  
2X_Q  
4. A 1Mresistor tied to either Analog VCC or Analog GND as  
shown in Figure 2 is required to ensure no jitter is present  
on the MC88915T outputs. This technique causes a phase  
offset between the SYNC input and the output connected  
to the FEEDBACK input, measured at the input pins. The  
tPD spec describes how this offset varies with process,  
temperature, and voltage. The specs were arrived at by  
measuring the phase relationship for the 14 lots described  
in note 1 while the part was in phase–locked operation.  
The actual measurements were made with a 10MHz  
SYNC input (1.0ns edge rate from 0.8V – 2.0V) with the  
Q/2 output fed back. The phase measurements were  
made at 1.5V. The Q/2 output was terminated at the  
FEEDBACK input with 100to VCC and 100to ground.  
12  
MOTOROLA  
A N A LO G V C C  
R C 1  
EX T ER NA L LO O P F I LT E R  
1M  
R E F ER E N C E  
R E S I STO R  
R C 1  
R 2  
3 30 Ω  
R 2  
C 1  
3 3 0 Ω  
0 . 1 µF  
1 M Ω  
RE F E R E N C E  
R E S I STO R  
0 . 1 µF  
C 1  
A N AL O G G N D  
A N A LO G G N D  
W i t h t h e 1 M r e s i st o r t i e d i n t h i s f a s h iosnp,e c i ftichaet io nt  
m e a s ur e d a t t h e i n p u t p i n s i s :  
Wi t h t he 1M r e si s t o r t i ed i n t h is f a sh i osnp,ec i fti chaet i o nt  
m ea su re d at t h e i n pu t p i ns i s :  
P D  
P D  
t
P D  
=
2 . 2±5 n s 1 . 0n s  
t
P D  
=
- 0 . 7 7±5 n s 0 . 2 7 5n s  
3 . 0V  
3 . 0 V  
SY N C I N PU T  
S Y N C I N P U T  
- 0 . 7 75 n s O FF SE T  
2 . 25 n s O F FS E T  
5 . 0 V  
5
.
0
V
F E E D BA C K O U T P UT  
F
E
E
D
B
A
C
K
O
U
T
P
U
T
Figure 2. Depiction of the Fixed SYNC to Feedback Offset (tPD)  
Which is Present When a 1MResistor is Tied to VCC or Ground  
5. The tSKEWr specification guarantees that the rising edges  
of outputs Q/2, Q0, Q1, Q2, Q3, and Q4 will always fall  
within a 500ps window within one part. However, if the  
relative position of each output within this window is not  
specified, the 500 ps window must be added to each side  
of the tPD specification limits to calculate the total  
part–to–part skew. For this reason the absolute  
distribution of these outputs are provided in table 2. When  
taking the skew data, Q0 was used as a reference, so all  
measurements are relative to this output. The information  
in Table 2 is derived from measurements taken from the 14  
process lots described in Note 1, over the temperature and  
voltage range.  
Table 2. Relative Positions of Outputs Q/2, Q0–Q4, 2X_Q,  
Within the 500ps tSKEWr Spec Window  
(ps)  
+
(ps)  
Output  
Q0  
0
0
Q1  
–72  
–44  
–40  
–274  
–16  
–633  
40  
Q2  
276  
255  
–34  
250  
–35  
Q3  
Q4  
Q/2  
2X_Q  
13  
MOTOROLA  
6. Calculation of Total Output–to–Skew between multiple  
the lower tPD limit, and [–0.5ns + 0.32ns] = –0.18ns is the  
upper limit. Therefore the worst case skew of output Q2  
between any number of parts is |(–1.37) – (–0.18)| =  
1.19ns. Q2 has the worst case skew distribution of any  
output, so 1.2ns is the absolute worst case  
output–to–output skew between multiple parts.  
parts (Part–to–Part skew)  
By combining the tPD specification and the information in  
Note 5, the worst case output–to–output skew between  
multiple 88915’s connected in parallel can be calculated.  
This calculation assumes that all parts have a common  
SYNC input clock with equal delay of that input signal to  
each part. This skew value is valid at the 88915 output pins  
only (equally loaded), it does not include PCB trace delays  
due to varying loads.  
7. Note 4 explains that the tPD specification was measured  
and is guaranteed for the configuration of the Q/2 output  
connected to the FEEDBACK pin and the SYNC input  
running at 10MHz. The fixed offset (tPD) as described  
above has some dependence on the input frequency and  
at what frequency the VCO is running. The graphs of  
Figure 3 demonstrate this dependence.  
With a 1Mresistor tied to analog VCC as shown in note  
4, the tPD spec. limits between SYNC and the Q/2 output  
(connected to the FEEDBACK pin) are –1.05ns and  
–0.5ns. To calculate the skew of any given output between  
two or more parts, the absolute value of the distribution of  
that output given in table 2 must be subtracted and added  
to the lower and upper tPD spec limits respectively. For  
output Q2, [276 – (–44)] = 320ps is the absolute value of  
the distribution. Therefore [–1.05ns – 0.32ns] = –1.37ns is  
The data presented in Figure 3 is from devices  
representing process extremes, and the measurements  
were also taken at the voltage extremes (VCC = 5.25V and  
4.75V). Therefore the data in Figure 3 is a realistic  
representation of the variation of tPD  
.
14  
MOTOROLA  
-
0
.
5
0
-
-
0
.
.
5
0
-
-
-
-
0
.
.
.
.
7
0
2
5
5
0
5
0
1
t
P
D
tPD  
C
F EED B A C K  
S
Y
N
C
FE E DBAC K  
t o  
S
Y
N
to  
1
1
1
( ns)  
(n s )  
-
1.  
5
0
-
2
.
2
.
5
5
.
0
7
.
5
1
0
.0  
1
2
.5  
1
5.  
0
1
7
.
5
2
.5  
5
.0  
7
.
5
1
0.  
0
1
2
.
5
1
5.  
0
1
7.  
5
2
0
.
0
2
2.  
5
2
5.  
0
2
7.  
5
S
YN  
C
I
N
P
U
T
F
R
EQ  
U
E
N
C
Y
(
M
H
z
)
S
Y
N
C
I
N
P
U
T
F
R
E
Q
U
E
N
C
Y
( MHz)  
F i g ur e 3 a.  
F i g u r e 3 b .  
t
v er s u s F r eq u e n cy Va r ia t i o n fo r Q / 2 O u tp u t Fte d v e r s us F r e q u en c y Va r i a ti o n fo r Q 4 O ut put Fe d  
P D  
PD  
B ac k, I n cl u d i n g P r oc e s s a n d Vo l t a g e Va r i a°tCi o n @ B a2c5k, I n c l u di n g P r o c es s a n d Vo l ta g e Va r i a°tCio n  
@
2 5  
( W it h 1M R e si s t or Ti e d t o A n a)l o g ( Wit h 1M R e s i st o r Ti e d to A n a)l o g  
V
V
CC  
CC  
3
3
2
2
.
.
.
.
5
0
5
0
3
3
2
.5  
.0  
.5  
.0  
t PD  
C
tPD  
C
F EED B A C K  
S
Y
N
t
o
S
Y
N
to  
FE E DBAC K  
( ns)  
2
(n s )  
1
1
.
5
0
1
1
.
5
0
.
.
0 .5  
0 .5  
2
.
5
5
.
0
7
.
5
1
0
.0  
1
2
.5  
1
5
.
0
1
7
.
5
0
5
1
0
1
5
2
0
2
5
S
Y
N
C
I
N
P
U
T
F
R
E
Q
U
E
N
C
Y
(
M
H
z
)
S
Y
N
C
I
N
P
U
T
F
R
E
Q
U
E
N
C
Y
(
M
H
z
)
F
i
g
u
r
e
3
c
.
F
i
g
u
r
e
3
d
.
t
v er s u s F r eq u e n cy Va r ia t i o n fo r Q / 2 O u tp u t Fte d v e r s us F r e q u en c y Va r i a ti o n fo r Q 4 O ut put Fe d  
P D  
P
D
B
a
c
k
,
I
n
c
l
u
d
i
n
g
P
r
o
c
e
s
s
a
n
d
V
o
l
t
a
g
e
V
a
r
i
a
°
t
C
i
o
n
@
B
a
2
c
5
k
,
I
n
c
l
u
d
i
n
g
P
r
o
c
e
s
s
a
n
d
V
o
l
t
a
g
e
V
a
r
i
a
°
t
C
i
o
n
@
2 5  
( W it h 1M R e si s t or Ti e d t o A n a l og G N D ) ( Wit h 1M R e s i st o r Ti e d to A n a l og G N D )  
8. The lock indicator pin (LOCK) will reliably indicate a  
phase–locked condition at SYNC input frequencies down  
to 10MHz. At frequencies below 10MHz, the frequency of  
correction pulses going into the phase detector form the  
SYNC and FEEDBACK pins may not be sufficient to allow  
the lock indicator circuitry to accurately predict a  
phase–locked conditition. The MC88915T is guaranteed  
to provide stable phase–locked operation down to the  
appropriate minimum input frequency given in Table 1,  
even though the LOCK pin may be LOW at frequencies  
below 10MHZ. The exact minimum frequency where the  
lock indicator functionality can be guaranteed will be  
available when the MC88915T reaches ‘MC’ status.  
15  
MOTOROLA  
S
(
Y
N
C
C
I
]
N
PU T  
o r  
S 1  
SYN C [0 ])  
Y
N
[
t
S
Y
N
C
I NP UT  
C Y C L E  
t
P
D
FEED BAC K  
IN PU T  
Q
/
2
OU TPU T  
t
S
t
S
t
S K E  
K
E
W
f
K
E
Wr  
W f  
t
S K E W R  
t
S K E WA L L  
Q
O
0
U
- Q 4  
T PU T S  
t
C Y C L E  Q " O U T P U T S  
Q
5
OU TPU T  
2
X
_Q  
OU TPU T  
Figure 4. Output/Input Switching Waveforms and Timing Diagrams  
(These waveforms represent the hook–up configuration of Figure 5a on page 17)  
Timing Notes:  
The MC88915T aligns rising edges of the FEEDBACK input and SYNC input, therefore the SYNC input does  
not require a 50% duty cycle.  
All skew specs are measured between the VCC/2 crossing point of the appropriate output edges.All skews  
are specified as ‘windows’, not as a ± deviation around a center point.  
If a “Q” output is connected to the FEEDBACK input (this situation is not shown), the “Q” output frequency  
would match the SYNC input frequency, the 2X_Q output would run at twice the SYNC frequency, and the  
Q/2 output would run at half the SYNC frequency.  
16  
MOTOROLA  
1 0 0 M Hz S I G N A L  
2 5M H z F E ED B AC K S I GN AL  
H I GH  
1 :2 I n p u t to  Q " O u tp u t F r e qu e nc y R e l a ti on s hi p  
I n t h i s a p p l ic a t i o n , t h e Q / 2 o u t p u t is c o n n e c t e d t o  
t h e F E E D BA C K i n p u t. T h e i n te r n a l PL L w il l li n e u p  
t h e p o s i t iv e e d g es o f Q / 2 a n d SY N C , t h u s t h e Q / 2  
f r e q ue n c y w i l l e q u al t h e S Y N C f r e q u e n c y. Th e  Q "  
o u t p ut s ( Q 0 -Q 4 , ) Q 5w i l l a l w a ys r u n a t 2 X t h e Q / 2  
f r e q ue n c y, a n d t h e 2 X _ Q o u t pu t w il l r u n a t 4 X t h e  
Q / 2 f r e q ue n c y.  
R S T  
Q 4  
2X _ Q  
Q 5  
F E ED B AC K  
R EF _ S EL  
S YN C [ 0 ]  
Q / 2  
Q 3  
Q 2  
LOW  
2 5 MH z IN P UT  
CR YS TAL  
OS CI L L ATO R  
M C 88 9 1 5T  
5 0 M H z  
 Q "  
C L O CK  
O U T PU T S  
A NA L O G  
V
C C  
EX TER N AL  
L O OP  
FI LTE R  
R C 1  
A NA L O G G N D  
A l l o w ab l e I n p u t F r e q ue n c y R a n g e:  
P LL _ E N  
F Q _S E L  
H I GH  
Q 0  
Q 1  
5 M H z to (2 X _ Q F M A X S p( feocr) / 4 F R E Q_ S E L H I G H )  
2 . 5 M Hz to (2 X _ Q F M A X (Sf opre c)F/ 8R E Q _S E L L O W)  
N o t e : I f t h e/ R SOTE i n p u t i s a c t i v e,  
a
p u ll - u p o r p u ll - d o w n r e Ć  
H I G H  
s i s t o r i s n ' t n e c e ss a r y a t t h e F E E D BA C K p in s o it w o n ' t w h e  
t h e f e d b a c k o u t p ut g o e s i n t o 3 - s t at e .  
Figure 5a. Wiring Diagram and Frequency Relationships With Q/2 Output Feed Back  
1 0 0 M Hz S I G N A L  
5 0M H z F E ED B AC K S I GN A L  
H I GH  
1 :1 I n p u t to  Q " O u tp u t F r eq ue n c y R e l a ti on s hi p  
R
S
T
Q
5
Q 4  
2X _ Q  
2 5 M H z  
S I G N AL  
F E ED B AC K  
R EF _ S EL  
S YN C [ 0 ]  
Q / 2  
Q 3  
Q 2  
I n t h i s a p p l ic a t i o n , t h e Q 4 ou t p u t is c o n n e c t e d t o  
t h e F E E D BA C K i n p u t. T h e i n t e r n a l PL L w il l li n e u p  
t h e p o s i t iv e e d g es o f Q 4 a n d SY N C , t h u s t h e Q 4  
f r e q ue n c y ( a n d t h e r e s t o f t h e  Q " o u t p u t s ) w il l  
LOW  
5
0
M
H
Z
I
N
P
U
T
C RY STAL  
OS CI L L ATO R  
5 0 M H z  
 Q "  
M C 88 9 1 5T  
A NA L O G  
R C 1  
V
C
C
EX TER N AL  
L O OP  
FI LTE R  
C L O CK e q u al t h e S Y N C f r e q ue n c y. T h e Q / 2 o u t p u t w il l a lĆ  
O U T PU T S w a y s r u n a t 1 / 2 t h e  Q " f r e q u e n c y, a n d t h e 2 X_ Q  
o u t p ut w i l l r u n a t 2 X t h e  Q " f r e q u e n c y.  
A NA L O G G N D  
P LL _E N  
Q 1  
F Q _S E L  
H I GH  
Q 0  
A l l o w ab l e I n p u t F r e q u en c y R a n g e:  
1 0 M H z to (2 X _ Q F M A X (Sf opre c)F/ 2R E Q_ S EL H I G H )  
5 M H z to (2 X _ Q F M A X (Sf opre c)F/ 4R E Q_ S E L L O W)  
H
I
G
H
Figure 5b. Wiring Diagram and Frequency Relationships With Q4 Output Feed Back  
1 00 M H z F E ED B AC K S I GN A L  
H I GH  
2 :1 I n p u t to  Q " O u tp u t F r eq ue n c y R e l a ti on s hi p  
R S T  
Q 4  
2 X _ Q  
Q / 2  
Q 5  
I n t h i s a p p l ic a t i o n , t h e 2 X _ Q o u t p u t is c o n n e c t e d  
t o t h e F E E D BA C K i n p u t. T h e in t e r n a l PL L w il l li n e  
u p t h e p o s i t iv e e d g es o f 2 X _Q a n d SY N C , t h u s t h e  
2 X _ Q f r e q ue n c y w i l l e q u al t h e SY N C f r e q u e n c y.  
T h e Q / 2 o u t p ut w i l l a l w a ys ru n a t 1 / 4 t h e 2 X_ Q f r  
q u e nc y, a n d t h e  Q " o u t p ut s w il l r u n a t 1 / 2 t h e  
2 X _ Q f r e q ue n c y.  
2 5 M H z  
S I G N AL  
F E ED B AC K  
R EF _ S EL  
S YN C [ 0 ]  
A NA L O G  
LOW  
1 0 0 MH z IN P U T  
M
C
8
8
9
1
5
T
C RY STAL  
OS CI L L ATO R  
Q 3  
Q 2  
5 0 M H z  
 Q "  
C L O CK  
O U T PU T S  
V
C
C
EX TER N AL  
L O OP  
FI LTE R  
R C 1  
A NA L O G G N D  
A l l o w ab l e I n p u t F r e q u en c y R a n g e:  
P LL _ E N  
Q 1  
F Q _S E L  
H I GH  
Q
0
2 0 M H z to (2 X _ Q F M A X ( f oSr p e cF)R E Q _S E L H I G H )  
1 0 M H z to (2 X _ Q F M A X S p( feocr) / 2 F R E Q _ SE L L O W)  
H I G H  
Figure 5c. Wiring Diagram and Frequency Relationships with 2X_Q Output Feed Back  
17  
MOTOROLA  
B
O
A
R
D
V
C C  
4
7
8
9
A
N
A
LO  
G
V
C C  
1
M
3
3
0
A
S
N
A
L
O
G
N
L
O
O
F
O
P
F
E
I LTE R/ V CO  
C
0
.
1
µ
F
H
I
FR E  
G
Q
H
1
0µ  
F LO W  
B YPA SS  
E
C
T
I
O
T
H
M
8
8
9
1
5
T
T
R
C
1
F
R
EQ  
2 8- P I N P LC C PA CK A GE (N O  
D
B YPA SS  
0
.1µ  
F
(
L
O
O
CA P )  
P
R
A
W
N
T
O
S
C
A
L
E
)
F
I
L
T
E
R
1
0
A
N
A
L
O
G
G
N
D
4
7Ω  
A
S E PA RATE A NA LO G P O WE R S UP P LY I S NO T N EC ESS ARY AN D  
S HO UL D NO T B E US E D. FO L LO W I NG THE S E P RE SC RI BE D G U ID EL IN ES  
B
O
A
R
D
G
N
D
I S A LL THAT I S NE CE S S ARY TO US E THE MC 8 89 1 5 T IN  
DI G I TA L E NV I RO NME NT.  
A
N O RMA  
Figure 6. Recommended Loop Filter and Analog Isolation Scheme for the MC88915T  
Notes Concerning Loop Filter and Board Layout Issues  
1. Figure 6 shows a loop filter and analog isolation scheme  
88915T additional protection from the power supply and  
ground plane transients that can occur in a high frequency,  
high speed digital system.  
which will be effective in most applications. The following  
guidelines should be followed to ensure stable and  
jitter–free operation:  
1c.There are no special requirements set forth for the loop  
filter resistors (1Mand 330). The loop filter capacitor  
(0.1µF) can be a ceramic chip capacitior, the same as a  
standard bypass capacitor.  
1a.All loop filter and analog isolation components should be  
tied as close to the package as possible. Stray current  
passing through the parasitics of long traces can cause  
undesirable voltage transients at the RC1 pin.  
1d.The 1M reference resistor injects current into the internal  
charge pump of the PLL, causing a fixed offset between  
the outputs and the SYNC input. This also prevents  
excessive jitter caused by inherent PLL dead–band. If the  
VCO (2X_Q output) is running above 40MHz, the 1MΩ  
resistor provides the correct amount of current injection  
into the charge pump (2–3µA). For the TFN55, 70 or 100,  
if the VCO is running below 40MHz, a 1.5Mreference  
resistor should be used (instead of 1M).  
1b.The 47resistors, the 10µF low frequency bypass  
capacitor, and the 0.1µF high frequency bypass capacitor  
form a wide bandwidth filter that will minimize the 88915T’s  
sensitivity to voltage transients from the system digital VCC  
supply and ground planes. This filter will typically ensure  
that a 100mV step deviation on the digital VCC supply will  
cause no more than a 100pS phase deviation on the  
88915T outputs. A 250mV step deviation on VCC using the  
recommended filter values should cause no more than a  
250pS phase deviation; if a 25µF bypass capacitor is used  
(instead of 10µF) a 250mV VCC step should cause no more  
than a 100pS phase deviation.  
2. In addition to the bypass capacitors used in the analog filter  
of Figure 6, there should be a 0.1µF bypass capacitor  
between each of the other (digital) four VCC pins and the  
board ground plane. This will reduce output switching  
noise caused by the 88915T outputs, in addition to  
reducing potential for noise in the ‘analog’ section of the  
chip. These bypass capacitors should also be tied as close  
to the 88915T package as possible.  
If good bypass techniques are used on a board design  
near components which may cause digital VCC and ground  
noise, the above described VCC step deviations should not  
occur at the 88915T’s digital VCC supply. The purpose of  
the bypass filtering scheme shown in Figure 6 is to give the  
18  
MOTOROLA  
C
C
P
A
U
R
C
M
M
U
C
C
M
M
M
M
U
U
D
MC 88 9 15 T  
P
LL  
C
L
O
CK  
2
f
CP U  
@
f
C
M
M
U
CM MU  
S YS TEM  
C LO CK  
S OU RC E  
C
C
P
A
U
R
C
C
M
M
M
M
U
U
D
C
M MU  
M
C
8
8
L
9 15 T  
P
L
CP U  
2
f
D
IS  
T
R
IB  
UT  
E
C
L
O
CK  
@
f
C
M
M
U
CM MU  
C
L
O
CK  
@
2
f
AT  
P
OI  
N
T
O
F
U SE  
MC 88 9 15 T  
P LL  
M
E
M
O
R
R
O
Y
L
2
f
C
O
N
T
M
E
M
O
CA RD S  
R
Y
C
L
O
C
K
@
2 f  
AT  
P
O
I
N
T
O
F
U
S
E
Figure 7. Representation of a Potential Multi–Processing Application Utilizing the MC88915T  
for Frequency Multiplication and Low Board–to–Board Skew  
MC88915T System Level Testing Functionality  
3–state functionality has been added to the 100MHz version of the MC88915T to ease system board testing. Bringing the  
OE/RST pin low will put all outputs (except for LOCK) into the high impedance state. As long as the PLL_EN pin is low, the  
Q0–Q4, Q5, and the Q/2 outputs will remain reset in the low state after the OE/RST until a falling SYNC edge is seen. The 2X_Q  
output will be the inverse of the SYNC signal in this mode. If the 3–state functionality will be used, a pull–up or pull–down resistor  
must be tied to the FEEDBACK input pin to prevent it from floating when the fedback output goes into high impedance.  
With the PLL_EN pin low the selected SYNC signal is gated directly into the internal clock distribution network, bypassing  
and disabling the VCO. In this mode the outputs are directly driven by the SYNC input (per the block diagram). This mode can  
also be used for low frequency board testing.  
Note: If the outputs are put into 3–state during normal PLL operation, the loop will be broken and phase–lock will be lost. It will  
take a maximum of 10mS (tLOCK spec) to regain phase–lock after the OE/RST pin goes back high.  
19  
MOTOROLA  
OUTLINE DIMENSIONS  
FN SUFFIX  
PLASTIC PACKAGE  
CASE 776–02  
ISSUE D  
M
S
S
0
.
0
0
7
ꢀ(  
0.  
1
8
0)  
T
L
-
M
N
B
Y BRK  
D
–N–  
M
S
S
N
0
.
00  
7ꢀ  
(
0
.
1
8
0)  
T
L
-
M
U
Z
–M–  
–L–  
W
D
S
S
S
N
0
.
0
1
0ꢀ  
(
0
.
2
5
0)  
T
L
-M  
X
G1  
V
28  
1
VIEW D–D  
M
S
S
S
A
0
.
0
0
7
(
0
.
1
8
0
)
T
L
-
M
N
M
S
S
N
0
.0  
0
7
ꢀ(  
0.  
1
8
0)  
T
L
-M  
H
Z
M
S
0
.
0
0
7
(
0
.
1
8
0
)
T
L
-
M
N
R
K1  
C
E
0 . 00 4ꢀ ( 0. 1 0 0)  
S EAT IN G  
P LA N E  
G
K
–T–  
J
M
S
S
N
0
.
00  
7ꢀ  
(
0.  
1
8
0)  
T
L
-M  
F
VIEW S  
G1  
S
S
S
N
0
.
0
10  
(
0
.
2
5
0
)
T
L
-
Mꢀ  
VIEW S  
N
O
T
E
S
:
I
N
C
H
E
S
M
I
L
L
I
M
E
T
E
R
S
1. D ATU M S -L - , -M - , A N D -N - D E TE R MIN E D  
WH ER E TO P O F LE AD S HO U L D ER E XI TS  
PL ASTIC BO D Y AT MO LD PA R T IN G LI N E.  
2. D IM EN SIO N G 1, TR U E P OS I TI O N TO B E  
D
I
M
M
I
N
MA X  
0. 495  
0. 495  
0. 180  
0. 110  
0. 019  
MI N  
12. 32  
12. 32  
4. 20  
MA X  
12. 57  
12. 57  
4. 57  
A
B
C
0. 485  
0. 485  
0. 165  
0. 090  
0. 013  
M EASU R ED AT D ATU M -T -, S EAT IN G P LAN E .  
U
E
2. 29  
0. 33  
2. 79  
0. 48  
3
.
D
I
M
E
N
S
I
O
N
S
R
A
N
D
D O N O T I N CL U D E  
F
G
H
J
K
R
U
M OL D FL ASH . AL LO WA BLE MO LD F LAS H I S  
0. 01 0 (0 .25 0) PER S ID E .  
4. D IM EN SIO N IN G AN D TO LE R AN C I N G P ER  
AN SI Y1 4.5 M, 19 8 2.  
5. C O N TR OL LI NG D IME N SI O N : I N CH .  
6. TH E PAC KAG E TO P MAY B E S MAL LE R  
TH AN TH E PAC KAG E B OT TO M B Y U P TO  
0. 01 2 (0 .30 0) .  
D ETER M IN ED AT TH E O U TE R MO S T  
EXT RE MES O F TH E P LAS T IC B OD Y  
EXC L U SIVE O F M OLD F LAS H , T IE B AR  
BU R R S, G ATE BU R R S A N D I N TE R LE AD  
FL ASH , BU T IN C LU D I N G A N Y MI SM AT C H  
BET WEEN TH E TO P A N D B OT TO M O F T H E  
PL ASTIC BO D Y.  
0
.
0
5
0
B
S
C
1
.
2
7
B
S
C
0. 026  
0. 020  
0. 025  
0. 450  
0. 450  
0. 042  
0. 042  
0. 042  
---  
0. 032  
---  
---  
0. 456  
0. 456  
0. 048  
0. 048  
0. 056  
0. 020  
0. 66  
0. 51  
0. 64  
11. 43  
11. 43  
1. 07  
1. 07  
1. 07  
---  
0. 81  
---  
---  
11. 58  
11. 58  
1. 21  
1. 21  
1. 42  
0. 50  
D
I
M
E
N
S
I
O
N
S
R
A
N
D
U
A
R
E
V
W
X
Y
Z
2ꢀ ꢀ  
_
1
0
2ꢀ ꢀ  
10. 42  
1. 02  
10ꢀ ꢀ  
_
10. 92  
---  
_
_
G 1 0. 410  
K 1 0. 040  
0. 430  
---  
7. D IM EN SIO N  
D AM BAR PR O TR U SIO N O R I N TR U S IO N .  
D AM BAR PR O TR U SION ( S ) S HA LL N O T C A US E  
TH E D IM EN SIO N TO B E G R EAT ER T H AN  
0. 03 7 (0 .94 0) . TH E D AM BA R I N TR U S IO N ( S)  
SH AL L N O T C AU SE T H E D I MEN S IO N TO B E  
SM ALL ER TH AN 0. 025 ( 0.6 35) .  
H
D
O
E
S
N
O
T
I
N
C
L
U
D
E
T
H
E
H
H
20  
MOTOROLA  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their  
respective owners.  
EMotorola, Inc. 2001.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334  
Technical Information Center: 1–800–521–6274  
HOME PAGE: http://www.motorola.com/semiconductors/  
MC88915T/D  

相关型号:

MC88915TFN55

LOW SKEW CMOS PLL CLOCK DRIVER
MOTOROLA

MC88915TFN55

88915 SERIES, PLL BASED CLOCK DRIVER, 7 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
NXP

MC88915TFN55FN

IC 88915 SERIES, PLL BASED CLOCK DRIVER, 7 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28, Clock Driver
NXP

MC88915TFN55R2

IC,1:8 OUTPUT,CMOS,LDCC,28PIN,PLASTIC
NXP

MC88915TFN55R2

88915 SERIES, PLL BASED CLOCK DRIVER, 7 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
MOTOROLA

MC88915TFN55R2

PLL Based Clock Driver, 88915 Series, 7 True Output(s), 1 Inverted Output(s), CMOS, PQCC28, PLASTIC, LCC-28
IDT

MC88915TFN70

LOW SKEW CMOS PLL CLOCK DRIVER
MOTOROLA

MC88915TFN70FN

88915 SERIES, PLL BASED CLOCK DRIVER, 7 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
NXP

MC88915TFN70R2

88915 SERIES, PLL BASED CLOCK DRIVER, 7 TRUE OUTPUT(S), 1 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
MOTOROLA

MC88916

LOW SKEW CMOS PLL CLOCK DRIVER WITH PROCESSOR RESET
MOTOROLA

MC88916DW

LOW SKEW CMOS PLL CLOCK DRIVER WITH PROCESSOR RESET
MOTOROLA

MC88916DW55

PLL/Frequency Synthesis Circuit, CMOS, PDSO20
MOTOROLA