MC74HC4353 [MOTOROLA]

Analog Multiplexers/Demultiplexers with Address Latch; 模拟多路复用器/多路解复用器与地址锁存
MC74HC4353
型号: MC74HC4353
厂家: MOTOROLA    MOTOROLA
描述:

Analog Multiplexers/Demultiplexers with Address Latch
模拟多路复用器/多路解复用器与地址锁存

解复用器
文件: 总13页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
High–Performance Silicon–Gate CMOS  
J SUFFIX  
CERAMIC PACKAGE  
CASE 732–03  
The MC54/74HC4351, and MC54/74HC4353 utilize silicon–gate CMOS  
technology to achieve fast propagation delays, low ON resistances, and low  
OFF leakage currents. These analog multiplexers/demultiplexers control  
analog voltages that may vary across the complete power supply range  
20  
20  
1
(from V  
to V ).  
CC  
EE  
N SUFFIX  
PLASTIC PACKAGE  
CASE 738–03  
The Channel–Select inputs determine which one of the Analog Inputs/  
Outputs is to be connected, by means of an analog switch, to the Common  
Output/Input. The data at the Channel–Select inputs may be latched by  
using the active–low Latch Enable pin. When Latch Enable is high, the latch  
is transparent. When either Enable 1 (active low) or Enable 2 (active high) is  
inactive, all analog switches are turned off.  
1
DW SUFFIX  
SOIC PACKAGE  
CASE 751D–04  
20  
1
The Channel–Select and Enable inputs are compatible with standard  
CMOS outputs; with pullup resistors, they are compatible with LSTTL  
outputs.  
ORDERING INFORMATION  
These devices have been designed so that the ON resistance (R ) is  
on  
of metal–gate CMOS analog  
MC54HCXXXXJ  
MC74HCXXXXN  
MC74HCXXXXDW  
Ceramic  
Plastic  
SOIC  
more linear over input voltage than R  
switches.  
on  
For multiplexers/demultiplexers without latches, see the HC4051,  
HC4052, and HC4053.  
Fast Switching and Propagation Speeds  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
PIN ASSIGNMENT  
MC54/74HC4351  
Analog Power Supply Range (V  
CC  
– V ) = 2.0 to 12.0 V  
EE  
X4  
1
20  
V
CC  
Digital (Control) Power Supply Range (V  
Improved Linearity and Lower ON Resistance than Metal–Gate Types  
Low Noise  
In Compliance with the Requirements Defined by JEDEC Standard  
No. 7A  
Chip Complexity: HC4351 — 222 FETs or 55.5 Equivalent Gates  
HC4353 — 186 FETs or 46.5 Equivalent Gates  
– GND) = 2.0 to 6.0 V  
CC  
X6  
NC  
X
2
3
4
19  
18  
17  
X2  
X1  
X0  
X7  
X5  
5
6
7
16  
15  
14  
X3  
A
ENABLE 1  
ENABLE 2  
NC  
8
13  
12  
11  
B
C
V
9
EE  
GND  
LATCH  
ENABLE  
10  
NC = NO CONNECTION  
10/95  
Motorola, Inc. 1995  
REV 6  
MC54/74HC4351 MC54/74HC4353  
LOGIC DIAGRAM  
MC54/74HC4351  
Single–Pole, 8–Position Plus Common Off and Address Latch  
17  
18  
19  
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
FUNCTION TABLE  
MC54/74HC4351  
Control Inputs  
Enable Select  
16  
1
ANALOG  
INPUTS/OUTPUTS  
MULTIPLEXER/  
DEMULTIPLEXER  
ON  
COMMON  
OUTPUT/INPUT  
4
X
Channel  
(LE = H)*  
6
1
2
C
B
A
2
L
L
L
L
L
L
L
L
H
X
H
H
H
H
H
H
H
H
X
L
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
X
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
None  
5
L
H
H
H
H
X
X
15  
L
A
B
C
CHANNEL  
ADDRESS  
LATCH  
CHANNEL–SELECT  
INPUTS  
H
H
X
X
13  
12  
PIN 20 = V  
PIN 9 = V  
PIN 10 = GND  
CC  
EE  
None  
11  
7
LATCH ENABLE  
PINS 3, 14 = NC  
X = don’t care  
SWITCH  
ENABLES  
ENABLE 1  
ENABLE 2  
* When Latch Enable is low, the Channel  
Selection is latched and the Channel  
Address Latch does not change states.  
8
BLOCK DIAGRAM  
MC54/74HC4353  
Triple Single–Pole, Double–Position Plus Common Off and Address Latch  
PIN ASSIGNMENT  
16  
17  
X0  
X1  
18  
X
X SWITCH  
Y SWITCH  
Z SWITCH  
Y1  
1
20  
V
CC  
Y0  
NC  
Z1  
2
3
4
19  
18  
17  
Y
X
2
1
COMMON  
OUTPUT/INPUT  
Y0  
Y1  
19  
5
Y
Z
X1  
6
4
Z0  
Z1  
Z
Z0  
X0  
A
5
16  
15  
14  
13  
12  
11  
6
ENABLE 1  
ENABLE 2  
7
NC  
B
15  
13  
12  
A
CHANNEL  
ADDRESS  
LATCH  
8
CHANNEL–SELECT  
INPUTS  
B
C
PIN 20 = V  
PIN 9 = V  
PIN 10 = GND  
CC  
EE  
V
9
C
EE  
GND  
LATCH  
ENABLE  
10  
11  
7
LATCH ENABLE  
PINS 3, 14 = NC  
SWITCH  
NC = NO CONNECTION  
ENABLE 1  
ENABLE 2  
8
ENABLES  
FUNCTION TABLE  
NOTE:  
Control Inputs  
On  
Channel  
(LE = H)*  
This device allows independent control of each switch. Channel–Select  
Input A controls the X Switch, Input B controls the Y Switch, and Input C  
controls the Z Switch.  
Enable  
Select  
B
1
2
C
A
L
L
L
L
L
L
L
L
H
X
H
H
H
H
H
H
H
H
X
L
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
X
Z0  
Z0  
Z0  
Z0  
Z1  
Z1  
Z1  
Z1  
Y0  
Y0  
Y1  
Y1  
Y0  
Y0  
Y1  
Y1  
None  
None  
X0  
X1  
X0  
X1  
X0  
X1  
X0  
X1  
L
H
H
H
H
X
X
L
H
H
X
X
X = Don’t Care  
* When Latch Enable is low, the Channel Selection  
is latched and the Channel Address Latch does not  
change states.  
MOTOROLA  
2
MC54/74HC4351 MC54/74HC4353  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Unit  
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
CC  
Positive DC Supply Voltage  
(Ref. to GND)  
(Ref. to V  
– 0.5 to + 7.0  
– 0.5 to 14.0  
V
)
EE  
V
EE  
Negative DC Supply Voltage (Ref. to GND)  
Analog Input Voltage  
– 7.0 to + 0.5  
V
V
V
IS  
V
– 0.5  
EE  
to V  
+ 0.5  
CC  
cuit. For proper operation, V and  
in  
V
DC Input Voltage (Ref. to GND)  
DC Current Into or Out of Any Pin  
– 1.5 to V  
+ 1.5  
V
in  
CC  
± 25  
V
out  
should be constrained to the  
ranges indicated in the Recom-  
mended Operating Conditions.  
I
mA  
mW  
P
D
Power Dissipation in Still Air, Plastic or Ceramic DIP†  
SOIC Package†  
750  
500  
Unused digital input pins must be  
tied to an appropriate logic voltage  
level (e.g., either GND or V ).  
CC  
T
stg  
Storage Temperature  
– 65 to + 150  
C
C
Unused Analog I/O pins may be left  
open or terminated. See Applica-  
tions Information.  
T
L
Lead Temperature, 1 mm from Case for  
10 Seconds  
(Plastic DIP or SOIC Package)  
(Ceramic DIP)  
260  
300  
* Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — Plastic DIP: – 10 mW/ C from 65 to 125 C  
Ceramic DIP: – 10 mW/ C from 100 to 125 C  
SOIC Package: – 7 mW/ C from 65 to 125 C  
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Positive DC Supply Voltage  
Min  
Max  
Unit  
V
CC  
(Ref. to GND)  
(Ref. to V  
2.0  
2.0  
6.0  
12.0  
V
)
EE  
V
Negative DC Supply Voltage  
(Ref. to GND) – 6.0 GND  
V
V
EE  
V
Analog Input Voltage  
V
V
IS  
EE  
CC  
CC  
V
Digital Input Voltage (Ref. to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature, All Package Types  
GND  
V
V
in  
V
IO  
*
1.2  
V
T
– 55 + 125  
C
ns  
A
t , t  
r f  
Input Rise and Fall Time,  
Channel Select or Enable  
Inputs (Figure 9a)  
V
CC  
V
CC  
V
CC  
= 2.0 V  
= 4.5 V  
= 6.0 V  
0
0
0
1000  
500  
400  
* For voltage drops across the switch greater than 1.2 V (switch on), excessive V  
current may  
CC  
and switch input components.  
be drawn; i.e., the current out of the switch may contain both V  
CC  
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.  
DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND) V  
= GND, Except Where Noted  
Guaranteed Limit  
– 55 to  
EE  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
= Per Spec  
25 C  
Unit  
85 C  
125 C  
V
IH  
Minimum High–Level Input  
Voltage, Channel–Select or  
Enable Inputs  
R
R
2.0  
4.5  
6.0  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
V
on  
on  
V
IL  
Maximum Low–Level Input  
Voltage, Channel–Select or  
Enable Inputs  
= Per Spec  
2.0  
4.5  
6.0  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
V
I
Maximum Input Leakage  
Current, Channel–Select or  
Enable Inputs  
V
V
= V  
or GND,  
6.0  
± 0.1  
± 1.0  
± 1.0  
µA  
µA  
in  
in  
CC  
= – 6.0 V  
EE  
I
Maximum Quiescent Supply  
Current (per Package)  
Channel Select = V  
Enables = V  
or GND  
or GND  
CC  
CC  
CC  
or GND  
V
V
= V  
= 0 V  
V
EE  
V
EE  
= GND  
= – 6.0  
6.0  
6.0  
2
8
20  
80  
40  
160  
IS  
IO  
CC  
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
3
MOTOROLA  
MC54/74HC4351 MC54/74HC4353  
DC ELECTRICAL CHARACTERISTICS Analog Section  
Guaranteed Limit  
– 55 to  
V
CC  
V
V
EE  
V
Symbol  
Parameter  
Test Conditions  
25 C  
Unit  
85 C  
125 C  
R
Maximum “ON” Resistance  
V
V
= V or V  
4.5  
4.5  
6.0  
0.0  
– 4.5  
– 6.0  
190  
120  
100  
240  
150  
125  
280  
170  
140  
on  
in  
IS  
IL IH  
= V to V  
CC EE  
I
S
2.0 mA (Figures 1, 2)  
V
V
= V or V  
4.5  
4.5  
6.0  
0.0  
– 4.5  
– 6.0  
150  
100  
80  
190  
125  
100  
230  
140  
115  
in  
IS  
IL IH  
= V or V  
CC EE  
(Endpoints)  
I
S
2.0 mA (Figures 1, 2)  
R  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
= V or V  
IL  
CC  
2.0 mA  
4.5  
4.5  
6.0  
0.0  
– 4.5  
– 6.0  
30  
12  
10  
35  
15  
12  
40  
18  
14  
on  
in  
IS  
IH  
= 1/2 (V  
– V  
)
EE  
I
S
I
off  
µA  
Maximum Off–Channel Leakage  
Current, Any One Channel  
V
V
= V or V  
IL  
6.0  
– 6.0  
0.1  
0.5  
1.0  
in  
IH  
= V  
– V  
IO  
CC EE  
Switch Off (Figure 3)  
V
V
= V or V  
IL IH  
Maximum Off–Channel Leakage  
Current, Common Channel  
HC4351  
in  
= V  
– V  
IO  
CC EE  
Switch Off (Figure 4)  
6.0  
6.0  
– 6.0  
– 6.0  
0.2  
0.1  
2.0  
1.0  
4.0  
2.0  
HC4353  
I
on  
V
= V or V  
µA  
Maximum On–Channel Leakage  
Current, Channel to Channel  
HC4351  
in IL IH  
Switch to Switch = V  
(Figure 5)  
– V  
EE  
CC  
6.0  
6.0  
– 6.0  
– 6.0  
0.2  
0.1  
2.0  
1.0  
4.0  
2.0  
HC4353  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, Input t = t = 6 ns)  
L
r
f
Guaranteed Limit  
– 55 to  
V
CC  
V
Symbol  
Parameter  
25 C  
Unit  
85 C  
125 C  
t
t
t
t
,
Maximum Propagation Delay, Channel–Select to Analog Output  
(Figure 9)  
2.0  
4.5  
6.0  
370  
74  
63  
465  
93  
79  
550  
110  
94  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figure 10)  
2.0  
4.5  
6.0  
60  
12  
10  
75  
15  
13  
90  
18  
15  
ns  
ns  
ns  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Latch Enable to Analog Output  
(Figure 12)  
2.0  
4.5  
6.0  
325  
65  
55  
410  
82  
70  
485  
97  
82  
PLH  
t
PHL  
,
Maximum Propagation Delay, Enable 1 or 2 to Analog Output  
(Figure 11)  
2.0  
4.5  
6.0  
290  
58  
49  
365  
73  
62  
435  
87  
74  
PLZ  
t
PHZ  
t
t
,
Maximum Propagation Delay, Enable 1 or 2 to Analog Output  
(Figure 11)  
2.0  
4.5  
6.0  
345  
69  
59  
435  
87  
74  
515  
103  
87  
PZL  
PZH  
C
Maximum Input Capacitance  
10  
35  
10  
35  
10  
35  
pF  
pF  
in  
C
Enable 1 = V , Enable 2 = V  
IH  
Maximum Capacitance Analog I/O  
l/O  
IL  
Common O/I: HC4351  
HC4353  
130  
50  
130  
50  
130  
50  
Feedthrough  
1.0  
1.0  
1.0  
NOTES:  
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
Typical @ 25°C, V  
CC  
= 5.0 V  
C
Power Dissipation Capacitance (Per Package) (Figure 14)*  
pF  
45 (HC4351)  
45 (HC4353)  
PD  
2
* Used to determine the no–load dynamic power consumption: P = C  
D
Motorola High–Speed CMOS Data Book (DL129/D).  
V
f + I  
V . For load considerations, see Chapter 2 of the  
CC CC  
PD CC  
MOTOROLA  
4
MC54/74HC4351 MC54/74HC4353  
TIMING REQUIREMENTS (Input t = t = 6 ns)  
r
f
Guaranteed Limit  
V
CC  
V
– 55 to  
25 C  
Symbol  
Parameter  
Unit  
85 C  
125 C  
t
su  
Minimum Setup Time, Channel–Select to Latch Enable  
(Figure 12)  
2.0  
4.5  
6.0  
100  
20  
17  
125  
25  
21  
150  
30  
26  
ns  
t
Minimum Hold Time, Latch Enable to Channel Select  
(Figure 12)  
2.0  
4.5  
6.0  
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
h
t
w
Minimum Pulse Width, Latch Enable  
(Figure 12)  
2.0  
4.5  
6.0  
80  
16  
14  
100  
20  
17  
120  
24  
20  
t , t  
r f  
Maximum Input Rise and Fall Times, Channel–Select, Latch Enable,  
and Enables 1 and 2  
2.0  
4.5  
6.0  
1000  
500  
400  
1000  
500  
400  
1000  
500  
400  
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0.0 V)  
Limit*  
V
CC  
V
V
EE  
V
25 C  
54/74HC  
Symbol  
Parameter  
Test Condition  
= 1 MHz Sine Wave  
Unit  
BW  
Maximum On–Channel Bandwidth or  
Minimum Frequency Response  
(Figure 6)  
f
MHz  
in  
Adjust f Voltage to Obtain 0 dBm at V  
51 52 53  
in  
OS  
80 95 120  
80 95 120  
80 95 120  
Increase f Frequency Until dB Meter  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
in  
Reads – 3 dB  
R
= 50 , C = 10 pF  
L
L
Off–Channel Feedthrough Isolation  
(Figure 7)  
dB  
f
Sine Wave  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in IS  
f
= 10 kHz, R = 600 , C = 50 pF  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
– 50  
– 50  
– 50  
in  
L
L
f
in  
= 1.0 MHz, R = 50 , C = 10 pF  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
– 40  
– 40  
– 40  
L
L
Feedthrough Noise, Channel Select  
Input to Common O/I  
(Figure 8)  
mV  
PP  
V
1 MHz Square Wave  
in  
(t = t = 6 ns)  
r
f
Adjust R at Setup so that I = 0 A  
L
S
Enable = GND  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
25  
105  
135  
R
= 600 , C = 50 pF  
L
L
R
= 10 k, C = 10 pF  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
35  
145  
190  
L
L
Crosstalk Between Any Two Switches  
(Figure 13)  
(Test does not apply to HC4351)  
dB  
f
Sine Wave  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in IS  
f
in  
= 10 kHz, R = 600 , C = 50 pF  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
– 50  
– 50  
– 50  
L
L
f
in  
= 1 MHz, R = 50 , C = 10 pF  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
– 60  
– 60  
– 60  
L
L
THD  
Total Harmonic Distortion  
(Figure 15)  
f
= 1 kHz, R = 10 k, C = 50 pF  
%
in  
L
L
THD = THD  
– THD  
Measured  
Source  
V
V
= 4.0 V  
= 8.0 V  
sine wave  
2.25  
4.50  
6.00  
– 2.25  
– 4.50  
– 6.00  
0.10  
0.08  
0.05  
IS  
IS  
PP  
PP  
PP  
sine wave  
sine wave  
V
IS  
= 11.0 V  
* Limits not tested. Determined by design and verified by qualification.  
5
MOTOROLA  
MC54/74HC4351 MC54/74HC4353  
250  
200  
100  
80  
125°C  
25°C  
125°C  
150  
100  
60  
40  
25°C  
55°C  
55°C  
50  
20  
0
0.25 0.50  
0.75  
1.0  
1.25  
1.5  
1.75  
2.0  
2.25  
0
0.5  
1.0  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
, INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
EE  
Figure 1a. Typical On Resistance, V  
– V  
EE  
= 2.0 V  
Figure 1b. Typical On Resistance, V  
– V = 4.5 V  
EE  
CC  
CC  
105  
90  
75  
60  
45  
30  
15  
75  
60  
125°C  
125°C  
25°C  
25°C  
45  
30  
55°C  
55°C  
15  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
EE  
9.0  
V
, INPUT VOLTAGE (VOLTS), REFERENCED TO V  
V
, INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS  
EE  
IS  
Figure 1c. Typical On Resistance, V  
– V  
EE  
= 6.0 V  
Figure 1d. Typical On Resistance, V  
– V = 9.0 V  
EE  
CC  
CC  
PLOTTER  
70  
60  
50  
40  
30  
20  
10  
125°C  
PROGRAMMABLE  
MINI COMPUTER  
DC ANALYZER  
POWER  
SUPPLY  
25°C  
+
V
CC  
55°C  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0  
V
EE  
GND  
V
, INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS  
EE  
Figure 1e. Typical On Resistance, V  
CC  
– V  
EE  
= 12.0 V  
Figure 2. On Resistance Test Set–Up  
MOTOROLA  
6
MC54/74HC4351 MC54/74HC4353  
V
V
CC  
CC  
V
CC  
V
CC  
20  
20  
V
V
V
V
EE  
EE  
ANALOG I/O  
ANALOG I/O  
OFF  
OFF  
OFF  
OFF  
A
A
CC  
CC  
COMMON O/I  
NC  
COMMON O/I  
7
8
7
8
V
V
IH  
IH  
9
9
10  
10  
V
V
EE  
EE  
Figure 3. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set–Up  
Figure 4. Maximum Off Channel Leakage Current,  
Common Channel, Test Set–Up  
V
V
OS  
V
V
CC  
20  
CC  
V
CC  
20  
0.1  
µ
F
A
dB  
METER  
f
ON  
ON  
in  
N/C  
R
C *  
L
COMMON O/I  
L
OFF  
EE  
CC  
V
CC  
ANALOG I/O  
V
7
8
9
10  
7
8
9
V
V
IL  
IH  
10  
V
EE  
V
EE  
*Includes all probe and jig capacitance.  
Figure 5. Maximum On Channel Leakage Current,  
Channel to Channel, Test Set–Up  
Figure 6. Maximum On Channel Bandwidth,  
Test Set–Up  
V
V
OS  
V
CC  
V
IS  
CC  
20  
20  
0.1 µF  
dB  
METER  
R
L
f
in  
OFF  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
TEST  
POINT  
ANALOG I/O  
R
L
C *  
R
L
L
R
L
L
R
L
7
8
9
10  
V
CC  
7
8
9
10  
V
CC  
V
1 MHz  
11  
in  
t = t = 6 ns  
V
r
f
EE  
V
GND  
V
CC  
EE  
CHANNEL SELECT  
*Includes all probe and jig capacitance.  
*Includes all probe and jig capacitance.  
Figure 7. Off Channel Feedthrough Isolation,  
Test Set–Up  
Figure 8. Feedthrough Noise, Channel Select to  
Common Out, Test Set–Up  
7
MOTOROLA  
MC54/74HC4351 MC54/74HC4353  
V
CC  
V
CC  
20  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
TEST  
POINT  
ANALOG I/O  
t
t
f
r
L
V
CC  
V
CC  
90%  
50%  
10%  
CHANNEL SELECT  
7
8
GND  
9
10  
t
t
PHL  
PLH  
50%  
ANALOG OUT  
CHANNEL SELECT  
*Includes all probe and jig capacitance.  
Figure 9a. Propagation Delays, Channel Select  
to Analog Out  
Figure 9b. Propagation Delay, Test Set–Up Channel  
Select to Analog Out  
V
CC  
20  
COMMON O/I  
ANALOG I/O  
TEST  
POINT  
ON  
ANALOG  
IN  
V
CC  
C *  
L
V
CC  
50%  
7
8
GND  
t
t
PHL  
9
PLH  
10  
ANALOG  
OUT  
50%  
*Includes all probe and jig capacitance.  
Figure 10b. Propagation Delay, Test Set–Up  
Analog In to Analog Out  
Figure 10a. Propagation Delays, Analog In to  
Analog Out  
1
2
POSITION  
POSITION  
WHEN TESTING t  
PHZ  
AND t  
PZH  
WHEN TESTING t  
PLZ  
AND t  
PZL  
1
2
V
CC  
20  
V
V
CC  
CC  
1 k  
ENABLE  
50%  
1
2
GND  
ANALOG I/O  
TEST  
POINT  
ON/OFF  
t
t
PLZ  
PZL  
HIGH  
C *  
L
ANALOG  
OUT  
IMPEDANCE  
50%  
7
8
9
10  
10%  
90%  
V
V
OL  
ENABLE  
t
t
PHZ  
PZH  
OH  
ANALOG  
OUT  
50%  
HIGH  
IMPEDANCE  
Figure 11a. Propagation Delay, Enable 1 or 2  
to Analog Out  
Figure 11b. Propagation Delay, Test Set–Up  
Enable to Analog Out  
MOTOROLA  
8
MC54/74HC4351 MC54/74HC4353  
V
CC  
V
20  
CC  
V
CC  
CHANNEL  
SELECT  
50%  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
TEST  
POINT  
ANALOG I/O  
GND  
t
t
h
su  
L
V
t
t
f
CC  
r
V
CC  
90%  
50%  
7
8
9
10  
LATCH  
ENABLE 2  
10%  
GND  
11  
t
w
LATCH ENABLE  
COMMON O/I  
50%  
CHANNEL SELECT  
t
t
,
PLH  
*Includes all probe and jig capacitance.  
PHL  
Figure 12a. Propagation Delay, Latch Enable to  
Analog Out  
Figure 12b. Propagation Delay, Test Set–Up  
Latch Enable to Analog Out  
V
V
V
CC  
IS  
CC  
A
V
CC  
20  
R
V
20  
L
OS  
f
ON  
in  
ON/OFF  
OFF/ON  
0.1  
CC  
µF  
dB  
METER  
NC  
ANALOG I/O  
COMMON O/I  
OFF  
V
CC  
V
V
EE  
R
L
R
C *  
R
C *  
L
7
8
L
L
L
V
7
CC  
8
9
9
10  
11  
10  
V
EE  
CHANNEL SELECT  
*Includes all probe and jig capacitance.  
Figure 13. Crosstalk Between Any Two  
Switches, Test Set–Up  
Figure 14. Power Dissipation Capacitance,  
Test Set-Up  
0
10  
20  
30  
40  
FUNDAMENTAL FREQUENCY  
V
IS  
V
CC  
V
OS  
20  
0.1 µF  
TO  
f
ON  
DISTORTION  
METER  
in  
R
C *  
L
L
50  
60  
70  
80  
V
DEVICE  
CC  
7
8
9
10  
SOURCE  
90  
V
EE  
1.0  
2.0  
3.125  
*Includes all probe and jig capacitance.  
FREQUENCY (kHz)  
Figure 15a. Total Harmonic Distortion, Test Set-Up  
Figure 15b. Plot, Harmonic Distortion  
9
MOTOROLA  
MC54/74HC4351 MC54/74HC4353  
ever, tying unused analog inputs and outputs to V  
CC  
or GND  
APPLICATIONS INFORMATION  
through a low value resistor helps minimize crosstalk and  
feedthrough noise that may be picked up by an unused  
switch.  
Although used here, balanced supplies are not a require-  
ment. The only constraints on the power supplies are that:  
The Channel Select and Enable control pins should be at  
V
or GND logic levels. V being recognized as a logic  
CC  
CC  
high and GND being recognized as a logic low. In this  
example:  
V
= + 5 V = logic high  
V
– GND = 2 to 6 volts  
CC  
CC  
– GND = 0 to – 6 volts  
GND = 0 V = logic low  
V
EE  
The maximum analog voltage swings are determined by  
V
– V  
= 2 to 12 volts  
GND  
When voltage transients above V and/or below V  
CC  
EE  
the supply voltages V  
voltage should not exceed V . Similarly, the negative peak  
analog voltage should not go below V . In this example, the  
and V . The positive peak analog  
CC  
EE  
and V  
EE  
CC  
are  
EE  
EE  
CC  
anticipated on the analog channels, external Germanium or  
Schottky diodes (D ) are recommended as shown in  
Figure 17. These diodes should be able to absorb the maxi-  
mum anticipated current surges during clipping.  
difference between V  
and V  
is ten volts. Therefore, us-  
EE  
CC  
ing the configuration in Figure 16, a maximum analog signal  
of ten volts peak–to–peak can be controlled. Unused analog  
inputs/outputs may be left floating (i.e., not connected). How-  
x
V
V
CC  
EE  
CC  
+5 V  
V
CC  
20  
ON/OFF  
D
D
D
20  
x
x
+ 5 V  
– 5 V  
+ 5 V  
– 5 V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
D
x
x
+5 V  
V
V
EE  
7
8
9
10  
15  
13  
12  
11  
TO EXTERNAL CMOS  
CIRCUITRY  
9
10  
0 TO 5 V DIGITAL  
SIGNALS  
–5 V  
V
EE  
Figure 16. Application Example  
Figure 17. External Germanium or  
Schottky Clipping Diodes  
+ 5 V  
20  
+ 5 V  
20  
ON/OFF  
+ 5 V  
+ 5 V  
+ 5 V  
+ 5 V  
ANALOG  
SIGNAL  
ANALOG  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON/OFF  
SIGNAL  
V
V
V
V
EE  
EE  
EE  
+ 5 V  
EE  
*
+ 5 V  
V
V
R
R
R
R
CC  
V
V
7
15  
CC  
7
8
9
10  
15  
8
13  
12  
11  
LSTTL/NMOS  
CIRCUITRY  
LSTTL/NMOS  
CIRCUITRY  
13  
12  
11  
9
10  
HCT  
BUFFER  
* 2 k  
R
10 k  
EE  
EE  
a. Using Pull–Up Resistors  
b. Using HCT Interface  
Figure 18. Interfacing LSTTL/NMOS to CMOS Inputs  
MOTOROLA  
10  
MC54/74HC4351 MC54/74HC4353  
FUNCTION DIAGRAM HC4351  
LATCH &  
LEVEL SHIFTER  
15  
13  
12  
17  
X0  
A
B
C
X1  
X2  
X3  
X4  
LATCH &  
LEVEL SHIFTER  
LATCH &  
LEVEL SHIFTER  
6
X5  
LATCH 11  
ENABLE  
7
2
ENABLE 1  
X6  
LEVEL SHIFTER  
8
ENABLE 2  
5
X7  
4
X
FUNCTION DIAGRAM HC4353  
LATCH &  
LEVEL SHIFTER  
15  
A
17  
X1  
16  
X0  
18  
X
13  
B
LATCH &  
LEVEL SHIFTER  
1
Y1  
2
Y0  
19  
Y
12  
C
LATCH &  
LEVEL SHIFTER  
4
Z1  
6
Z0  
LATCH 11  
ENABLE  
5
Z
7
ENABLE 1  
LEVEL SHIFTER  
8
ENABLE 2  
11  
MOTOROLA  
MC54/74HC4351 MC54/74HC4353  
OUTLINE DIMENSIONS  
J SUFFIX  
CERAMIC PACKAGE  
CASE 732–03  
ISSUE E  
NOTES:  
1. LEADS WITHIN 0.25 (0.010) DIAMETER, TRUE  
POSITION AT SEATING PLANE, AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
3. DIMENSIONS A AND B INCLUDE MENISCUS.  
B
C
MILLIMETERS  
INCHES  
A
DIM  
A
B
C
D
F
MIN  
23.88  
6.60  
3.81  
0.38  
1.40  
MAX  
25.15  
7.49  
5.08  
0.56  
1.65  
MIN  
MAX  
0.990  
0.295  
0.200  
0.022  
0.065  
0.940  
0.260  
0.150  
0.015  
0.055  
L
F
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.51  
0.20  
3.18  
1.27  
0.30  
4.06  
0.020  
0.008  
0.125  
0.050  
0.012  
0.160  
N
J
7.62 BSC  
0.300 BSC  
H
K
M
G
M
N
0
15  
0
15  
D
0.25  
1.02  
0.010  
0.040  
SEATING  
PLANE  
N SUFFIX  
PLASTIC PACKAGE  
CASE 738–03  
ISSUE E  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
20  
1
11  
10  
B
L
C
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
MIN  
MAX  
1.070  
0.260  
0.180  
0.022  
MIN  
25.66  
6.10  
3.81  
0.39  
MAX  
27.17  
6.60  
4.57  
0.55  
1.010  
0.240  
0.150  
0.015  
–T–  
SEATING  
PLANE  
K
E
0.050 BSC  
1.27 BSC  
M
0.050  
0.070  
1.27  
1.77  
F
G
J
K
L
N
E
0.100 BSC  
2.54 BSC  
0.008  
0.110  
0.015  
0.140  
0.21  
2.80  
0.38  
3.55  
G
F
J 20 PL  
0.300 BSC  
7.62 BSC  
D 20 PL  
0.25 (0.010)  
M
M
0.25 (0.010)  
T B  
M
N
0
15  
0
15  
0.020  
0.040  
0.51  
1.01  
M
M
T
A
DW SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751D–04  
ISSUE E  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
20  
11  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
10X P  
–B–  
M
M
0.010 (0.25)  
B
1
10  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
MILLIMETERS  
INCHES  
20X D  
DIM  
A
B
C
D
MIN  
12.65  
7.40  
2.35  
0.35  
0.50  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
MOTOROLA  
12  
MC54/74HC4351 MC54/74HC4353  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
CODELINE  
MC54/74HC4351/D  

相关型号:

MC74HC4353DW

Analog Multipexers/Demultiplexers with Address Latch
MOTOROLA

MC74HC4353DWD

Single-Ended Multiplexer, 3 Func, 2 Channel, CMOS, PDSO20
MOTOROLA

MC74HC4353DWDS

Single-Ended Multiplexer, 3 Func, 2 Channel, CMOS, PDSO20
MOTOROLA

MC74HC4353JS

Single-Ended Multiplexer, 3 Func, 2 Channel, CMOS, CDIP20
MOTOROLA

MC74HC4353N

Analog Multipexers/Demultiplexers with Address Latch
MOTOROLA

MC74HC4353ND

Single-Ended Multiplexer, 3 Func, 2 Channel, CMOS, PDIP20
MOTOROLA

MC74HC4353NDS

Single-Ended Multiplexer, 3 Func, 2 Channel, CMOS, PDIP20
MOTOROLA

MC74HC4353NS

Single-Ended Multiplexer, 3 Func, 2 Channel, CMOS, PDIP20
MOTOROLA

MC74HC4511

BCD-to-Seven-Segment Latch/Decoder/Display Driver
MOTOROLA

MC74HC4511D

BCD-to-Seven-Segment Latch/Decoder/Display Driver
MOTOROLA

MC74HC4511DD

Seven Segment Decoder/Driver, HC/UH Series, True Output, CMOS, PDSO16, SOIC-16
MOTOROLA

MC74HC4511DDR2

HC/UH SERIES, SEVEN SEGMENT DECODER/DRIVER, TRUE OUTPUT, PDSO16, SOIC-16
MOTOROLA