MC33997 [MOTOROLA]

Switching Power Supply with Linear Regulators; 开关电源与线性稳压器
MC33997
型号: MC33997
厂家: MOTOROLA    MOTOROLA
描述:

Switching Power Supply with Linear Regulators
开关电源与线性稳压器

稳压器 开关
文件: 总20页 (文件大小:456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
MOTOROLA  
Document order number: MC33997/D  
Rev 3.0, 03/2003  
SEMICONDUCTOR TECHNICAL DATA  
Advance Information  
33997  
Switching Power Supply with Linear  
Regulators  
The 33997 is a medium-power, multi-output power supply integrated circuit  
that is capable of operating over a wide input voltage range, from 6.0 V up to  
26.5 V with 40 V transient capability. It incorporates a sensorless current  
mode control step-down switching controller regulating directly to 5.0 V. The  
3.3 V linear regulator uses an external pass transistor to reduce the 33997  
power dissipation. The 33997 also provides a 3.3 V linear standby regulator  
and two 5.0 V sensor supply outputs protected by internal low-resistance  
LDMOS transistors.  
POWER SUPPLY  
INTEGRATED CIRCUIT  
There are two separate enable pins for the main and sensor supply outputs  
and standard supervisory functions such as resets with power-up reset delay.  
The 33997 provides proper power supply sequencing for advanced  
microprocessor architectures such as the Motorola MPC5xx and 683xx  
microprocessor families.  
DW SUFFIX  
24-LEAD SOICW  
CASE 751E  
Features  
• Operating Voltage Range 6.0 V up to 26.5 V (40 V transient)  
• Step-Down Switching Regulator Output VDDH = 5.0 V @ 1400 mA (total)  
• Linear Regulator with External Pass Transistor VDDL = 3.3 V @ 400 mA  
• Low-Power Standby Linear Regulator VKAM = 3.3 V @ 10 mA  
ORDERING INFORMATION  
Temperature  
Device  
MC33997DW/R2  
Package  
• Two 5.0 V @ 200 mA (typical) Sensor Supplies VREF Protected Against  
Range (T )  
A
Short-to-Battery and Short-to-Ground with Retry Capability  
-40°C to 125°C  
24 SOICW  
• Undervoltage Shutdown on the VDDL, VDDH Outputs with Retry Capability  
• Reset Signals  
• Power-Up Delay  
• Enable Pins for Main Supplies (EN) and Sensor Supplies (SNSEN)  
• Power Sequencing for Advanced Microprocessor Architectures  
• SOIC-24WB Package  
33997 Simplified Application Diagram  
This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
For More Information On This Product,  
© Motorola, Inc. 2003  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
33997  
V
V
PWR  
SW  
5.0 V  
Drive  
I-lim  
Ramp  
Soft  
FBKB  
Logic  
&
Start  
Enb  
Latch  
V
SUM  
Osc  
V
KA_V  
bg  
PWR  
V
DDH  
Retry  
Bandgap  
DRVL  
FBL  
V
bg  
3.3V  
Linear  
Enb  
Voltage  
Reference  
Snsenb  
Regulator  
Driver  
V
REF1  
3.3 V  
3.3 V  
Reg.  
V
5.0 V  
REF1  
REF2  
Enb  
V
3.3V  
Standby  
Reg.  
V
KAM  
Retry  
POR  
bg  
Snsenb  
Snsenb  
Enb  
V
Enable  
Control  
REF2  
Reg.  
PWROK  
V
5.0 V  
VKAMOK  
PwrOK  
VkamOK  
Charge  
Pump  
C
SNSEN  
EN  
GND  
RES  
Figure 1. 33997 Simplified Block Diagram  
33997  
2
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VKAMOK  
V
KAM  
2
KA_V  
EN  
PWR  
3
C
PWR  
SNSEN  
V
GND  
GND  
GND  
GND  
RES  
4
V
REF1  
5
GND  
GND  
GND  
GND  
6
7
8
9
V
V
V
FBL  
SW  
REF2  
DDH  
10  
11  
12  
PWROK  
FBKB  
V
DRVL  
SUM  
PIN FUNCTION DESCRIPTION  
Pin  
Pin Name  
Description  
1
VKAMOK  
Keep-Alive Output Monitoring. This pin is an "open-drain" output that will be used with a discrete pull-up resistor  
to V . When the supply voltage to the 33997 is disconnected or lost, the VKAMOK signal goes low.  
KAM  
2
KA_V  
PWR  
Keep Alive Power Supply Pin. This supply pin is used in modules that have both direct battery connections and  
ignition switch activated connections.  
3
4
C
Reservoir Capacitor. This pin is tied to an external "reservoir capacitor" for the internal charge pump.  
RES  
V
Power Supply Pin. Main power input to the IC. This pin is directly connected to the switching regulator power  
MOSFET. In automotive applications this pin must be protected against reverse battery conditions by an  
external diode.  
PWR  
5–8  
9
GND  
Ground of the integrated circuit.  
V
Internal P-Channel Power MOSFET Drain. V  
is the "switching node" of the voltage buck converter. This pin  
SW  
SW  
is connected to the V  
pin by an integrated p-channel MOSFET.  
PWR  
10  
PWROK  
FBKB  
Power OK Reset Pin. This pin is an "open-drain" output that will be used with a discrete pull-up resistor to  
, V , or V . When either V or V output voltage goes out of the regulation limits this pin is  
pulled down.  
V
KAM DDH  
DDL  
DDH  
DDL  
11  
12  
13  
Step-Down Switching Regulator Feedback Pin. The FBKB pin is the V  
regulator.  
feedback signal for the switching  
DDH  
V
Error Amplifier "Summing Node". The V  
pin is connected to the inverting input of the error amplifier. This  
SUM  
SUM  
node is also the "common" point of the integrated feedback resistor divider.  
DRVL  
FBL  
Drive for V (3.3 V) Regulator. The DRVL pin drives the base of an external NPN pass transistor for the  
DDL  
V
linear post regulator. The collector of the VDDL pass transistor is connected to V  
. An example of a  
DDH  
DDL  
suitable pass transistor is BCP68.  
14  
15  
Feedback for V (3.3 V) Regulator. The FBL pin is the voltage feedback sense signal from the V  
(3.3 V)  
DDL  
DDL  
linear post regulator.  
V
V
is an input supply pin providing power for the buffered sensor supplies and the drive circuitry for the 3.3 V  
DDH  
DDH  
linear power regulator. The V  
pin is supplied from the switching regulator output, capable of providing 5.0 V  
DDH  
@ 1400 mA total output current.  
16  
V
Sensor Supply #2 Output. The V  
pin is sensor supply output #2.  
REF2  
REF2  
17–20  
21  
GND  
Ground of the integrated circuit.  
Sensor Supply #1 Output. The V  
V
pin is sensor supply output #1.  
REF1  
REF1  
33997  
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
3
Freescale Semiconductor, Inc.  
PIN FUNCTION DESCRIPTION (continued)  
Pin  
Pin Name  
Description  
22  
SNSEN  
Sensor Supply Enable Input. The SNSEN pin is an input, which enables the V  
and V  
supplies. It  
REF1  
REF2  
allows the control module hardware/software to shut down the sensor supplies.  
23  
24  
EN  
Enable Input. The EN pin is an input, which enables the main switching regulator and all other functions. When  
this pin is low, the power supply is in a low quiescent state.  
V
Keep-Alive (standby) 3.3 V Regulator Output. This is a 3.3 V low quiescent, low dropout regulator for Keep  
Alive memory.  
KAM  
33997  
4
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MAXIMUM RATINGS  
All voltages are with respect to ground unless otherwise noted.  
Rating  
Symbol  
Value  
Unit  
V
-0.3 to 45  
V
Main Supply Voltage  
PWR  
KA_V  
PWR  
-0.3 to 45  
-0.5 to 45  
-0.3 to 6.0  
V
V
V
V
Keep-Alive Supply Voltage  
Switching Node  
V
SW  
V
5.0 V Input Power  
Sensor Supply  
DDH  
V
-0.3 to 18  
-0.3 to 18  
REF1  
V
REF2  
V
-0.3 to 6.0  
V
V
Keep-Alive Supply Voltage  
KAM  
EN  
-0.3 to 6.0  
-0.3 to 6.0  
-0.3 to 6.0  
-0.3 to 6.0  
Maximum Voltage at Logic I/O Pins  
SNSEN  
PWROK  
VKAMOK  
C
-0.3 to 18  
-0.3 to 6.0  
-0.3 to 6.0  
-0.3 to 6.0  
V
V
V
V
Charge Pump Reservoir Capacitor Voltage  
Error Amplifier Summing Node  
RES  
V
SUM  
FBKB  
DRVL  
Switching Regulator Output Feedback  
V
V
Base Drive  
Feedback  
DDL  
DDL  
FBL  
-0.3 to 6.0  
V
V
ESD Voltage  
V
±500  
±100  
Human Body Model (all pins) (Note 1)  
Machine Model (all pins) (Note 2)  
ESD1  
V
ESD2  
PD  
800  
60  
mW  
°C/W  
°C/W  
°C  
Power Dissipation (TA = 25°C) (Note 3)  
RθJ-A  
RθJ-B  
TA  
Thermal Resistance, Junction to Ambient (Note 4), (Note 5)  
Thermal Resistance, Junction to Board (Note 6)  
Operational Package Temperature [Ambient Temperature] (Note 7)  
Operational Junction Temperature  
20  
-40 to 125  
-40 to 150  
-55 to 150  
260  
TJ  
°C  
TSTG  
TS  
°C  
Storage Temperature  
°C  
Lead Soldering Temperature (Note 8)  
Notes  
1. ESD1 testing is performed in accordance with the Human Body Model (C  
=100 pF, R  
=1500 ).  
ZAP  
ZAP  
2. ESD2 testing is performed in accordance with the Machine Model (C  
3. Maximum power dissipation at indicated junction temperature.  
=200 pF, R  
=0 )  
ZAP  
ZAP  
4. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
5. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
6. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface  
of the board near the package.  
7. The limiting factor is junction temperature, taking into account the power dissipation, thermal resistance, and heat sinking.  
8. Lead soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause malfunction or permanent damage to the device.  
33997  
5
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
STATIC ELECTRICAL CHARACTERISTICS  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
GENERAL  
V
Supply Voltage Range  
V
6.0  
18  
18  
26.5  
Normal Operating Voltage Range (Note 9)  
Extended Operating Voltage Range (Note 9)  
PWR(N)  
V
PWR(E)  
V
40  
V
Maximum Transient Voltage - Load Dump (Note 10)  
PWR(LD)  
IVPWR  
mA  
V
Supply Current  
PWR  
25  
150  
EN = 5.0 V, V  
= 14 V, No Loads  
PWR  
IQ_VPWR  
µA  
mA  
µA  
V
Quiescent Supply Current  
= 12 V  
PWR  
5.0  
0.5  
50  
15  
3.0  
350  
EN = 0 V, V  
PWR  
IKAVPWR  
KA_V  
Supply Current,  
PWR  
EN = 5.0 V, KA_V  
= 14 V, No Load on V  
KAM  
PWR  
IQ_KAVPWR  
KA_V  
Quiescent Supply Current  
PWR  
EN = 0 V, KA_V  
= 12 V  
PWR  
BUCK REGULATOR VDDH  
V
V
V
Buck Converter Output Voltage  
DDH  
4.9  
4.9  
-20  
5.1  
5.1  
30  
I
VDDH = 200 mA to 1.4 A, V  
= KA_V  
= 14 V  
PWR  
PWR  
V
Buck Converter Output Voltage  
DDH  
I
VDDH = 1.4 A, V  
= KA_V  
= 6.0 V  
PWR  
PWR  
RegLnVDDH  
RegLdVDDH  
mV  
V
V
Line Regulation  
DDH  
V
= KA_V  
= 10 V to 14 V, IVDDH = 200 mA  
PWR  
PWR  
mV  
Load Regulation  
DDH  
-20  
-20  
20  
20  
V
V
= KA_V  
= KA_V  
= 14 V, IVDDH = 200 mA to 1.4 A  
= 6.0 V, IVDDH = 200 mA to 1.4 A  
PWR  
PWR  
PWR  
PWR  
R
V
Active Discharge Resistance  
HDisch  
DDH  
1.0  
15  
V
= KA_V  
= 14 V, EN = 0 V, IVDDH = 10 mA  
PWR  
PWR  
P-CHANNEL MOSFET  
BVDSS  
IscSW1  
45  
V
A
Drain-Source Breakdown Voltage—Not Tested (Note 11)  
Drain-Source Current Limit—Not Tested (Note 11)  
Notes  
-7.0  
9.  
V
is fully functional when the 33997 is operating at higher battery voltages, but these parameters are not tested. The test condition as are:  
DDH  
a) V  
b) V  
must be between 4.9 V and 5.1 V (200 mA to 1.4 A) for V  
must be between 4.8 V and 5.5 V (200 mA to 1.4 A) for V  
= 14 V to 18 V.  
= 18 V to 26.5 V.  
DDH  
DDH  
PWR  
PWR  
10. Part can survive, but no parameters are guaranteed.  
11. Guaranteed by design but not production tested.  
33997  
6
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
STATIC ELECTRICAL CHARACTERISTICS (continued)  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LINEAR REGULATOR VDDL  
V
V
V
V
V
Output Voltage  
DDL  
DDL  
3.15  
-70  
3.45  
70  
V
= KA_V  
= 14 V, IVDDL = 200 mA  
PWR  
PWR  
RegLnVDDL  
RegLdVDDL  
IDRVL  
mV  
mV  
Line Regulation  
DDL  
V
= 4.8 V to 5.2 V, IVDDL = 400 mA  
DDH  
Load Regulation  
DDL  
-70  
70  
V
= KA_V  
= 14 V, IVDDL = 10 mA to 400 mA  
= 14 V, VDRVL = 1.0 V  
PWR  
PWR  
mA  
DRVL Output Current  
5.0  
1.0  
11  
25  
10  
V
= KA_V  
PWR  
PWR  
R
V
V
Active Discharge Resistance  
LDisch  
DDL  
V
= KA_V  
= 14 V, EN = 0 V, IFBL = 10 mA  
PWR  
PWR  
R
to V  
Active Clamp Resistance  
DDL  
CLAMP  
DDH  
0.6  
10  
V
= KA_V  
= 14 V, EN = 0 V, IVDDH = 50 mA, V  
= 0 V  
FBKB  
PWR  
PWR  
CVDDL  
68  
µF  
V
V
Output Capacitor Capacitance (Note 12)  
Output Capacitor ESR (Note 12)  
DDL  
DDL  
ESRVDDL  
0.125  
KEEP-ALIVE (STANDBY) REGULATOR VKAM  
V
V
V
V
Output Voltage  
KAM  
KAM  
3.0  
3.6  
IVKAM = 5.0 mA, VPWR = KA_V  
= 18 V, EN = 5.0 V  
PWR  
V
V
Output Voltage, EN = 0 V (Standby Mode)  
KAM  
KAM  
3.0  
3.0  
3.0  
2.0  
3.6  
3.6  
3.6  
3.5  
V
V
V
V
= KA_V  
= KA_V  
= KA_V  
= 26 V, IVKAM = 0.5 mA  
= 18 V, IVKAM = 5.0 mA  
= 5.0 V, IVKAM = 10.0 mA  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
= 0 V, KA_V  
= 3.5 V, IVKAM = 5.0 mA  
PWR  
RegLnVKAM  
RegLdVKAM  
RegVKAM  
mV  
mV  
mV  
V
V
Line Regulation, EN = 0 V (Standby Mode)  
KAM  
-20  
0
20  
100  
20  
V
= KA_V  
= 5.0 V to 18 V, IVKAM = 2.0 mA  
PWR  
PWR  
Load Regulation, EN = 0 V (Standby Mode)  
KAM  
V
= KA_V  
= 14 V, IVKAM = 1.0 mA to 10 mA  
PWR  
PWR  
Differential Voltage V  
- V  
DDL  
KAM  
-20  
EN = 5.0 V, IVKAM = 5.0 mA, V  
= KA_V  
= 14 V, IVDDL = 200 mA  
PWR  
PWR  
CVKAM  
4.7  
1.4  
µF  
V
V
Output Capacitor Capacitance (Note 12)  
Output Capacitor ESR (Note 12)  
KAM  
KAM  
ESRVKAM  
Notes  
12. Recommended value.  
33997  
7
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
STATIC ELECTRICAL CHARACTERISTICS (continued)  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
RDS(on)  
RDS(on)  
RDS(on)  
ISC_Bat  
Min  
Typ  
Max  
Unit  
mΩ  
mΩ  
mΩ  
mA  
mA  
nF  
SENSOR SUPPLIES VREF1, VREF2  
V
V
V
V
V
On-Resistance, TA = -40°C  
REF  
280  
350  
455  
900  
IVREF = 200 mA, IVDDH = 200 mA, V  
= KA_V  
= KA_V  
= KA_V  
= 14 V, EN = 5.0 V  
= 14 V, EN = 5.0 V  
= 14 V, EN = 5.0 V  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
On-Resistance, TA = +25°C  
REF  
IVREF = 200 mA, IVDDH = 200 mA, V  
On-Resistance, TA = +125°C  
REF  
IVREF = 200 mA, IVDDH = 200 mA, V  
Short-to-Battery Detect Current  
REF  
500  
V
= KA_V  
= 14 V, EN = 5.0 V, SNSEN = 5.0 V  
PWR  
PWR  
ISC_Gnd  
Short-to-Ground Detect Current  
REF  
500  
33  
900  
39  
V
= KA_V  
= 14 V, EN = 5.0 V, SNSEN = 5.0 V  
PWR  
PWR  
CVREF  
Maximum Output Capacitance (Total) (Note 13)  
SUPERVISORY CIRCUITS  
VFBL(thL)  
VDDH(thL)  
VDDH(thH)  
V
PWROK Undervoltage Threshold on V  
, FBL Ramps Down  
DDL  
2.6  
4.5  
3.1  
4.8  
5.7  
V
= KA_V  
= 14 V, IVDDH = 200 mA  
PWR  
PWR  
V
PWROK Undervoltage Threshold on V  
DDH  
V
= KA_V  
= 14 V, IVDDH = 200 mA  
PWR  
PWR  
V
V
Overvoltage Threshold  
DDH  
5.12  
V
= KA_V  
= 10 V, IVDDH = 200 mA  
PWR  
PWR  
RDS(on)  
VKAM(thL)  
VPWRok(th)  
V
V
PWROK Open Drain On-Resistance  
200  
1.9  
5.0  
V
= KA_V  
= 14 V, EN = 5 V, IPwrOK = 5.0 mA  
= 14 V, IVDDH = 200 mA  
PWR  
PWR  
PWR  
VKAMOK Threshold,  
= KA_V  
0.9  
4.0  
V
PWR  
VKAMOK Threshold on V  
, V  
Ramps Up  
PWR PWR  
KA_V  
= 14 V, IVDDH = 200 mA  
PWR  
RDS(on)  
VKAMOK Open Drain On-Resistance  
= KA_V = 14 V, EN = 0 V, IVKAMOK = 10 mA  
50  
200  
V
PWR  
PWR  
VIH  
IPD  
1.0  
2.0  
V
Enable Input Voltage Threshold (Pin EN)  
500  
1200  
nA  
Enable Pull-Down Current (Pin EN), EN = 1.0 V V  
to VIL(min)  
DDH  
VIH  
IPD  
1.0  
2.0  
V
Sensor Enable Input Voltage Threshold (Pin SNSEN)  
Sensor Enable Pull-Down Current (Pin SNSEN)  
nA  
500  
1200  
SNSEN = 1.0 V V  
to VIL(min)  
DDH  
Notes  
13. Recommended value.  
33997  
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
8
Freescale Semiconductor, Inc.  
STATIC ELECTRICAL CHARACTERISTICS (continued)  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
CHARGE PUMP CRES  
VCRES  
V
Charge Pump Voltage  
12  
12  
15  
15  
V
V
= KA_V  
= KA_V  
= 14 V, IVDDH = 200 mA, ICP = 0 µA  
= 14 V, IVDDH = 200 mA, ICP = 10 µA  
PWR  
PWR  
PWR  
PWR  
33997  
9
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
BUCK REGULATOR VDDH  
fSW  
tSS  
750  
kHz  
ms  
Switching Frequency (Note 14)  
Soft Start Duration (see Figure 2)  
= KA_V = 6.0 V  
5.0  
15  
V
PWR  
PWR  
CHARGE PUMP CRES  
tCRES  
ms  
ms  
Charge Pump Current Ramp-Up Time  
1.0  
1.0  
20  
10  
V
= KA_V  
= 14 V, CRES = 22 nF, VCP = 1.0 V to 11 V  
PWR  
PWR  
tCRES  
Charge Pump Ramp-Up Time  
= KA_V = 7.0 V, CRES = 22 nF, VCP = 7.0 V to 10 V  
V
PWR  
PWR  
SENSOR SUPPLIES VREF1, VREF2  
tDet  
µs  
V
Overcurrent Detection Time (see Figure 3)  
REF  
V
Load RL = 5.0 to GND, V  
= 5.1 V, V  
= KA_V  
= KA_V  
= 10 V,  
= 10 V,  
REF  
DDH  
PWR  
PWR  
PWR  
0.5  
5.0  
2.0  
20  
EN = 5.0 V, SNSEN = 5.0 V  
tRet  
ms  
V
Retry Timer Delay (see Figure 3)  
REF  
V
Load RL = 5.0 to GND, V  
DDH  
= 5.1 V, V  
REF  
PWR  
EN = 5.0 V, SNSEN = 5.0 V  
SUPERVISORY CIRCUITS  
tD(PWROK)  
tD(VKAMOK)  
tD(VPWR)  
5.0  
10  
15  
30  
10  
ms  
ms  
ms  
PWROK Delay Time (Power-On Reset) (see Figure 4)  
VKAMOK Delay Time (see Figure 5)  
1.0  
V
Power-Up Delay Time (see Figure 6)  
DDH  
tFault  
1.0  
10  
ms  
Fault-Off Timer Delay Time (see Figure 7)  
Notes  
14. Guaranteed by design but not production tested.  
33997  
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
10  
Freescale Semiconductor, Inc.  
Timing Diagrams  
6.0  
0
5.0  
0
2.5V  
t
SS  
5.0  
0
4.8V  
TIME  
Figure 2. Soft-Start Time  
14  
0
5.0  
0
t
Det  
4.0V  
5.0  
2.0V  
2.0V  
0
t
Ret  
3.3  
0
TIME  
Figure 3. VREF Retry Timer  
14  
0
5.0  
0
5.0  
4.6V  
t
D(PWROK)  
0
3.3  
0
TIME  
Figure 4. PWROK Delay Timer (Power-On Reset)  
33997  
11  
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timing Diagrams (continued)  
6.0  
0
V
= 0V  
PWR  
5.0  
0
3.3  
1.25V  
t
D(VKAMOK)  
0
3.3  
0
TIME  
Figure 5. VKAMOK Delay Time  
18  
0
5.0  
0
18  
t
D(VPWR)  
0
5.0  
2.0V  
0
TIME  
Figure 6. VDDH Power-Up Delay Time  
14  
0
5.0  
0
3.3  
0
5.0  
4.8V  
4.8V  
1.0V  
1.0V  
0
t
t
Fault  
Fault  
3.3  
0
TIME  
Figure 7. Fault-Off Timer Delay Time  
33997  
12  
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SYSTEM/APPLICATION INFORMATION  
INTRODUCTION  
The 33997 multi-output power supply integrated circuit is  
the integrated circuit. The 33997 also provides a 3.3 V linear  
standby regulator and two 5.0 V sensor supply outputs  
protected by internal low-resistance LDMOS transistors  
against short-to-battery and short-to-ground.  
capable of operating from 6.0 V up to 26.5 V with 40 V transient  
capability. It incorporates a step-down switching controller  
regulating directly to 5.0 V. The 3.3 V linear regulator uses an  
external pass transistor, thus reducing the power dissipation of  
FUNCTIONAL PIN DESCRIPTION  
above 17 V are considered “double faults” and neither one of  
the VREF outputs is protected against such conditions.  
Switching Regulator V  
DDH  
The switching regulator is a high-frequency (750 kHz),  
conventional buck converter with integrated high-side p-  
channel power MOSFET. Its output voltage is regulated to  
provide 5.0 V with ±2% accuracy and it is intended to directly  
power the digital and analog circuits of the Electronic Control  
Module (ECM). The switching regulator output is rated for  
1400 mA total output current. This current can be used by the  
Depending on the VDDH capacitor value and its ESR value,  
the severity of the short may disrupt the VDDH operation.  
Keep-Alive (Standby) Regulator V  
KAM  
The Keep-Alive Regulator VKAM (keep-alive memory) is  
linear regulator VDDL and sensor supplies VREF1 and VREF2  
.
intended to provide power for “key off” functions such as  
nonvolatile SRAM, “KeyOff" timers and controls, KeySwitch  
monitor circuits, and perhaps a CAN/SCP monitor and wake-  
up function. It may also power other low-current circuits  
required during a “KeyOff” condition. The regulated voltage is  
nominally 3.3 V. A severe fault condition on the VKAM output is  
The 33997 switching controller utilizes "Sensorless Current  
Mode Control" to achieve good line rejection and stabilize the  
feedback loop. A soft-start feature is incorporated into the  
33997. When the device is enabled, the switching regulator  
output voltage VDDH ramps up to about half of full scale and  
then takes 16 steps up to the nominal regulation voltage level  
signaled by pulling the VKAMOK signal low.  
(5.0 V nominal).  
V
Keep-Alive Operation (Standby, Power-Down  
KAM  
3.3 V Linear Regulator V  
DDL  
Mode)  
The 3.3 V linear post-regulator is powered from the 5.0 V  
switching regulator output (VDDH). A discrete pass transistor is  
When the EN pin is pulled low, the power supply is forced  
into a low-current standby mode. In order to reduce current  
drawn by the VPWR and KA_VPWR pins, all power supply  
functions are disabled except for the VKAM and Enable (EN)  
used to the power path for the VDDL regulator. This  
arrangement minimizes the power dissipation off the controller  
IC. The FBL pin is the feedback input of the regulator control  
loop and the DRVL pin the external NPN pass transistor base  
drive. Power up, power down, and fault management are  
coordinated with the 5.0 V switching regulator.  
pins. The latter pin is monitored for the "wake-up" signal. The  
switching transistor gate is actively disabled and the VDDL and  
VDDH pins are actively pulled low.  
Power-Up Delay Timers  
Sensor Supplies V  
and V  
REF2  
REF1  
Two Power-Up Delay timers are integrated into the control  
section of the integrated circuit. One timer monitors the input  
voltage at the VPWR input pin (see Figure 3), and the other  
The sensor supplies are implemented using a protected  
switch to the main 5.0 V (switching regulator) output. The  
33997 integrated circuit provides two low-resistance LDMOS  
power MOSFETs connected to the switching regulator output  
(VDDH). These switches have short-to-battery and short-to-  
ground protection integrated into the IC. When a severe fault  
conditions is detected, the affected sensor output is turned off  
and the sensor Retry Timer starts to time out. After the Retry  
Timer expires, the sensor supply tries to power up again.  
Sensor supplies VREF can be disabled by pulling the Sensor  
monitors the input voltage at the KA_VPWR input pin. In both  
cases, sufficient supply voltage must be present long enough  
for the timers to “time out” before the switching regulator can be  
enabled.  
Fault-Off Timer  
If the VDDL output voltage does not reach its valid range at  
the end of soft-start period, or if the VDDH or VDDL output  
voltage gets below its PWROK threshold level, the Fault-Off  
Timer shuts the switching regulator off until the timer “times  
out” and the switching regulator retries to power up again (see  
Figure 7 for Fault-Off Timer operation details).  
Enable SNSEN pin low (see Figure 7 for the VREF Retry Timer  
operation).  
Notes: Severe fault conditions on the VREF1 and VREF2  
outputs, like hard shorts to either ground or battery, may disrupt  
the operation of the main regulator VDDH. Shorts to battery  
33997  
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
13  
Freescale Semiconductor, Inc.  
Power-On Reset Timer  
(VDDH or VDDL) are below their regulation windows. If both  
regulator outputs are above their respective lower thresholds,  
and the Power-On Reset Timer has expired, the output driver is  
turned off and this pin is at high-impedance state (see  
Figure 6).  
This timer starts to time out at the end of the soft-start period  
if the VDDH and VDDL outputs are in the valid regulation range.  
If the timer “times out”, then the open-drain PWROK signal is  
released, indicating that “power is ON”.  
The VKAMOK signal indicates a severe fault condition on  
the keep-alive regulator output VKAM. The VKAM output voltage  
Supervisory Circuits PWROK and VKAMOK  
is compared to the internal bandgap reference voltage. When  
The 33997 has two voltage monitoring open-drain outputs,  
the PWROK and the VKAMOK pins. PWROK is "active high".  
This output is pulled low when either of the regulator outputs  
the VKAM falls below the bandgap reference voltage level, the  
VKAMOK signal is pulled low.  
33997  
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
14  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
APPLICATIONS  
33997  
V
= 5.0V  
Lf1  
L1  
DDH  
10uH  
15uH  
V
VSW  
@ 1400mA total  
PWR  
4
9
R3  
C3  
68uF  
C4  
Cf1  
Cf2  
C1  
C2  
2.2R  
D1  
100nF  
10 uF  
1.0uF 100uF  
1.0uF  
Drive  
I-lim  
C8  
390pF  
Optional  
Snubber  
Ramp  
Soft  
FBKB  
11  
SUM  
12  
Logic  
&
Start  
Enb  
Latch  
V
Dp1  
Osc  
Cc1  
Rc1  
3.6k  
2. 2nF  
V
KA_V  
bg  
PWR  
2
V
DDH  
Dp2  
15  
Retry  
Bandgap  
DRVL  
V
bg  
3. 3V  
Linear  
Enb  
Q1  
Voltage  
13  
FBL  
Reference  
Snsenb  
V
= 3.3V  
DDL  
Regulator  
Driver  
V
REF1  
@ 400mA  
Reg.  
14  
C5  
100nF  
C6  
V
REF1  
21  
68uF  
Enb  
V
Cs1  
V
= 3.3V  
KAM  
@ 10mA  
V
3.3V  
Standby  
Reg.  
KAM  
33nF  
Retry  
POR  
bg  
24  
C7  
4.7uF  
R1  
R2  
Snsenb  
10k  
10k  
Snsenb  
Enb  
V
Enable  
Control  
REF2  
Reg.  
PWROK  
10  
V
REF2  
16  
VKAMOK  
1
Cs2  
PwrOK  
VkamOK  
Charge  
Pump  
33nF  
C
3
SNSEN 22 EN 23  
5-8 GND  
17-20  
RES  
C9  
22nF  
Note The V  
total output current is 1.4 A. This includes the current used by the linear regulator V  
and buffered outputs V  
and V  
.
REF2  
DDH  
DDL  
REF1  
Figure 8. 33997 Application Circuit Schematic Diagram  
Table 1. Recommended Components  
Designator  
Cf1  
Value/Rating  
10 µF/50 V  
1.0 µF/50 V  
100 µF/50 V  
68 µF/10 V  
68 µF/10 V  
4.7 µF/10 V  
100 nF/16 V  
390 pF/50 V  
22 nF/25 V  
Description/Part No.  
Aluminum Electrolytic/UUB1H100MNR  
Ceramic X7R/C1812C105K5RACTR  
Aluminum Electrolytic/UUH1V101MNR  
Tantalum/T494D686M010AS  
Tantalum/T494D686M010AS  
Tantalum/T494A475M010AS  
Ceramic X7R  
Manufacturer (Note 16)  
Nichicon  
Cf2, C2  
C1  
Kemet  
Nichicon  
C3 (Note 15)  
C6  
Kemet  
Kemet  
C7  
Kemet  
C4, C5  
C8 (Optional)  
C9  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Ceramic X7R  
Ceramic X7R  
Notes  
15. It is possible to use ceramic capacitors in the switcher output, e.g. C3 = 2 x 22 µF/6.3 V X7R ceramic. In this case the compensation resistor  
has to be changed to Rc1 = 200 to stabilize the switching regulator operation.  
16. Motorola does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or  
tables. While Motorola offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
33997  
15  
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
(Note 17)  
Designator  
Cs1, Cs2  
Cc1  
Value/Rating  
33 nF/25 V  
2.2 nF/16 V  
10 kΩ  
Description/Part No.  
Ceramic X7R  
Manufacturer
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Ceramic X7R  
R1, R2  
R3 (Optional)  
Rc1  
Resistor 0805, 5%  
Resistor 0805, 5%  
Resistor 0805, 5%  
2.2 Ω  
3.6 kΩ  
Lf1  
10 µH  
CDRH127-100M  
or SLF10145-100M2R5  
Sumida  
TDK  
L1  
15 µH  
CDRH127-150MC  
or SLF10145-150M2R2  
Sumida  
TDK  
Q1  
D1  
1.0 A/20 V  
2.0 A/50 V  
3.0 A/200 V  
27 V  
Bipolar Transistor/BCP68T1  
Schottky Diode/SS25  
ON Semiconductor  
General Semiconductor  
ON Semiconductor  
Dp1  
Dp2  
Diode/MURS320  
Transient Voltage Suppressor/SM5A27  
General Semiconductor  
Notes  
17. Motorola does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or  
tables. While Motorola offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
33997  
16  
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
PACKAGE DIMENSIONS  
DW SUFFIX  
24-LEAD SOIC WIDE BODY  
PLASTIC PACKAGE  
CASE 751E-04  
ISSUE E  
-A-  
NOTES:  
24  
13  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
-B- 12X P  
M
M
0.010 (0.25)  
B
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
12  
24X D  
J
MILLIMETERS  
INCHES  
M
S
S
0.010 (0.25)  
T A  
B
DIM MIN  
MAX  
15.54  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.612  
0.299  
0.104  
0.019  
0.035  
A
B
C
D
F
15.25  
7.40  
2.35  
0.35  
0.41  
0.601  
0.292  
0.093  
0.014  
0.016  
F
R X 45  
°
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0
0.32  
0.29  
8
0.009  
0.005  
0
0.013  
0.011  
8
C
K
-T-  
SEATING  
°
°
°
°
M
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
PLANE  
22X G  
33997  
17  
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
NOTES  
33997  
18  
MOTOROLA ANALOG INTEGRATED CIRCUIT DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
NOTES  
33997  
19  
MOTOROLA ANALOG INTEGRATED CIRFCoUIrTMDEoVrICeEIDnAfToArmation On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee  
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product  
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license  
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their  
respective owners.  
© Motorola, Inc. 2003  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center  
3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573, Japan  
81-3-3440-3569  
Motorola Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre  
2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
HOME PAGE: http://motorola.com/semiconductors  
MC33997/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MC33997DW

Switching Power Supply with Linear Regulators
MOTOROLA

MC33997DW/R2

Switching Power Supply with Linear Regulators
MOTOROLA

MC33997DWR2

Switching Power Supply with Linear Regulators
FREESCALE

MC33998

Switching Power Supply with Linear Regulators
FREESCALE

MC33998D

Switching Power Supply with Linear Regulators
FREESCALE

MC33998DW

Switching Power Supply with Linear Regulators
FREESCALE

MC33998DW

7A SWITCHING REGULATOR, PDSO24, PLASTIC, SOIC-24
MOTOROLA

MC33998DW/R2

Switching Power Supply with Linear Regulators
FREESCALE

MC33998DWR2

7A SWITCHING REGULATOR, PDSO24, PLASTIC, SOIC-24
MOTOROLA

MC33998R2

Switching Power Supply with Linear Regulators
FREESCALE

MC33998_06

Switching Power Supply with Linear Regulators
FREESCALE

MC33999

16-Output Switch with SPI and PWM Control
MOTOROLA