MC33998_06 [FREESCALE]

Switching Power Supply with Linear Regulators; 开关电源与线性稳压器
MC33998_06
型号: MC33998_06
厂家: Freescale    Freescale
描述:

Switching Power Supply with Linear Regulators
开关电源与线性稳压器

稳压器 开关
文件: 总20页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33998  
Rev. 2.0, 8/2006  
Freescale Semiconductor  
Technical Data  
Switching Power Supply with  
Linear Regulators  
33998  
The 33998 is a medium-power, multi-output power supply  
integrated circuit that is capable of operating over a wide input  
voltage range, from 6.0 V up to 26.5 V with 40 V transient capability.  
It incorporates a sensorless current mode control step-down  
switching controller regulating directly to 5.0 V. The 2.6 V linear  
regulator uses an external pass transistor to reduce the 33998 power  
dissipation. The 33998 also provides a 2.6 V linear standby regulator  
and two 5.0 V sensor supply outputs protected by internal low-  
resistance LDMOS transistors.  
SWITCHING REGULATOR  
There are two separate enable pins for the main and sensor supply  
outputs and standard supervisory functions such as resets with  
power-up reset delay.  
DW SUFFIX  
EG SUFFIX (PB-FREE)  
98ASB42344B  
The 33998 provides proper power supply sequencing for  
advanced microprocessor architectures such as the MPC5xx and  
683xx microprocessor families.  
24-PIN SOICW  
ORDERING INFORMATION  
Features  
• Operating Voltage Range 6.0 V up to 26.5 V (40 V transient)  
• Step-Down Switching Regulator Output VDDH = 5.0 V @  
1400 mA (total)  
• Linear Regulator with External Pass Transistor VDDL = 2.6 V @  
400 mA  
Temperature  
Package  
Device  
Range (T )  
A
MC33998DW/R2  
MCZ33998EG/R2  
-40°C to 125°C  
24 SOICW  
• Low-Power Standby Linear Regulator VKAM = 2.6 V @ 10 mA  
• Two 5.0 V @ 200 mA (typical) Sensor Supplies VREF Protected  
Against Short-to-Battery and Short-to-Ground with Retry Capability  
• Undervoltage Shutdown on the VDDL, VDDH Outputs with Retry Capability  
• Reset Signals  
• Power-Up Delay  
• Enable Pins for Main Supplies (EN) and Sensor Supplies (SNSEN)  
• Power Sequencing for Advanced Microprocessor Architectures  
• Pb-Free Packaging Designated by Suffix Code EG  
33998  
KA_VPWR  
V
DDH  
VSW  
5.0 V  
VPWR  
VDDH  
MCU  
VREF1  
VREF2  
5.0 V  
5.0 V  
DRVL  
FBL  
V
DDL  
2.6 V  
V
KAM  
VKAM  
2.6 V  
EN  
SNSEN  
PWROK  
VKAMOK  
GND  
Figure 1. 33998 Simplified Application Diagram  
Freescale Semiconductor, Inc. reserves the right to change the detail specifications, as  
may be required, to permit improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2007. All rights reserved.  
INTERNAL BLOCK DIAGRAM  
INTERNAL BLOCK DIAGRAM  
33998  
VPWR  
VSW  
5.0 V  
Drive  
I-lim  
Ramp  
Soft  
Start  
FBKB  
Logic  
&
Enb  
Latch  
VSUM  
Osc  
V
KA_VPWR  
bg  
VDDH  
Retry  
Bandgap  
Voltage  
Reference  
DRVL  
FBL  
V
bg  
2.6V  
Enb  
Linear  
Regulator  
Driver  
Snsenb  
V
2.6 V  
2.6 V  
REF1  
Reg.  
VREF1  
5.0 V  
Enb  
V
2.6V  
Standby  
Reg.  
VKAM  
Retry  
POR  
bg  
Snsenb  
Snsenb  
Enb  
V
Enable  
Co nt ro l  
REF2  
PWROK  
VKAMOK  
Reg.  
VREF2  
5.0 V  
PwrOK  
VkamOK  
Charge  
Pump  
CRES  
SNSEN  
EN  
PGND  
Figure 2. 33998 Simplified Internal Block Diagram  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
PIN CONNECTIONS  
PIN CONNECTIONS  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VKAMOK  
KA_VPWR  
CRES  
VPWR  
GND  
VKAM  
EN  
2
3
SNSEN  
VREF1  
GND  
4
5
6
GND  
GND  
7
GND  
GND  
8
GND  
GND  
9
VSW  
VREF2  
VDDH  
FBL  
10  
11  
12  
PWROK  
FBKB  
VSUM  
DRVL  
Figure 3. 33998 Pin Connections  
Definition  
Table 1. Pin Definitions  
Pin  
Pin Number  
Name  
Keep-Alive Output Monitoring. This pin is an "open-drain" output that will be used with a discrete pull-up  
resistor to VKAM. When the supply voltage to the 33998 is disconnected or lost, the VKAMOK signal goes  
low.  
1
2
VKAMOK  
Keep Alive Power Supply Pin. This supply pin is used in modules that have both direct battery connections  
and ignition switch activated connections.  
KA_VPWR  
Reservoir Capacitor. This pin is tied to an external "reservoir capacitor" for the internal charge pump.  
3
4
CRES  
VPWR  
Power Supply Pin. Main power input to the IC. This pin is directly connected to the switching regulator  
power MOSFET. In automotive applications this pin must be protected against reverse battery conditions  
by an external diode.  
Ground of the integrated circuit.  
5–8  
9
GND  
VSW  
Internal P-Channel Power MOSFET Drain. VSW is the "switching node" of the voltage buck converter. This  
pin is connected to the VPWR pin by an integrated p-channel MOSFET.  
Power OK Reset Pin. This pin is an "open-drain" output that will be used with a discrete pull-up resistor to  
VKAM, VDDH, or VDDL. When either VDDH or VDDL output voltage goes out of the regulation limits this  
pin is pulled down.  
10  
PWROK  
Step-Down Switching Regulator Feedback Pin. The FBKB pin is the VDDH feedback signal for the  
switching regulator.  
11  
12  
13  
FBKB  
VSUM  
DRVL  
Error Amplifier "Summing Node". The VSUM pin is connected to the inverting input of the error amplifier.  
This node is also the "common" point of the integrated feedback resistor divider.  
Drive for VDDL (2.6 V) Regulator. The DRVL pin drives the base of an external NPN pass transistor for the  
VDDL linear post regulator. The collector of the VDDL pass transistor is connected to VDDH. An example  
of a suitable pass transistor is BCP68.  
Feedback for VDDL (2.6 V) Regulator. The FBL pin is the voltage feedback sense signal from the VDDL  
(2.6 V) linear post regulator.  
14  
15  
FBL  
VDDH is an input supply pin providing power for the buffered sensor supplies and the drive circuitry for the  
2.6 V linear power regulator. The VDDH pin is supplied from the switching regulator output, capable of  
providing 5.0 V @ 1400 mA total output current.  
VDDH  
Sensor Supply #2 Output. The VREF2 pin is sensor supply output #2.  
Ground of the integrated circuit.  
16  
17–20  
21  
VREF2  
GND  
Sensor Supply #1 Output. The VREF1 pin is sensor supply output #1.  
VREF1  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
PIN CONNECTIONS  
Table 1. Pin Definitions (continued)  
Pin  
Pin Number  
Definition  
Name  
Sensor Supply Enable Input. The SNSEN pin is an input, which enables the VREF1 and VREF2 supplies.  
It allows the control module hardware/software to shut down the sensor supplies.  
22  
23  
24  
SNSEN  
EN  
Enable Input. The EN pin is an input, which enables the main switching regulator and all other functions.  
When this pin is low, the power supply is in a low quiescent state.  
Keep-Alive (standby) 2.6 V Regulator Output. This is a 2.6 V low quiescent, low dropout regulator for Keep  
Alive memory.  
VKAM  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 2. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted.  
Rating  
Symbol  
Value  
Unit  
Main Supply Voltage  
Keep-Alive Supply Voltage  
Switching Node  
V
-0.3 to 45  
-0.3 to 45  
-0.5 to 45  
-0.3 to 6.0  
V
V
V
V
V
PWR  
KA_V  
PWR  
V
SW  
5.0 V Input Power  
Sensor Supply  
V
DDH  
V
V
-0.3 to 18  
-0.3 to 18  
REF1  
REF2  
Keep-Alive Supply Voltage  
V
-0.3 to 6.0  
V
V
KAM  
Maximum Voltage at Logic I/O Pins  
EN  
-0.3 to 6.0  
-0.3 to 6.0  
-0.3 to 6.0  
-0.3 to 6.0  
SNSEN  
PWROK  
VKAMOK  
Charge Pump Reservoir Capacitor Voltage  
Error Amplifier Summing Node  
Switching Regulator Output Feedback  
VDDL Base Drive  
C
-0.3 to 18  
-0.3 to 6.0  
-0.3 to 6.0  
-0.3 to 6.0  
-0.3 to 6.0  
V
V
V
V
V
V
RES  
V
SUM  
FBKB  
DRVL  
FBL  
VDDL Feedback  
ESD Voltage  
Human Body Model (all pins) (1)  
Machine Model (all pins) (1)  
V
±500  
±100  
ESD1  
V
ESD2  
PD  
Power Dissipation (TA = 25°C) (2)  
800  
60  
mW  
°C/W  
°C/W  
°C  
Thermal Resistance, Junction to Ambient (3)  
Thermal Resistance, Junction to Board (5)  
,
(4)  
RθJA  
RθJB  
TA  
20  
Operational Package Temperature [Ambient Temperature] (6)  
-40 to 125  
Notes  
1. ESD1 testing is performed in accordance with the Human Body Model (C  
=100 pF, R  
=1500 ). ESD2 testing is performed in  
ZAP  
ZAP  
accordance with the Machine Model (C  
=200 pF, R  
=0 )  
ZAP  
ZAP  
2. Maximum power dissipation at indicated junction temperature.  
3. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
4. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
5. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top  
surface of the board near the package.  
6. The limiting factor is junction temperature, taking into account the power dissipation, thermal resistance, and heat sinking.  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 2. Maximum Ratings (continued)  
All voltages are with respect to ground unless otherwise noted.  
Rating  
Symbol  
Value  
Unit  
Operational Junction Temperature  
TJ  
-40 to 150  
-55 to 150  
Note 8  
°C  
Storage Temperature  
TSTG  
TPPRT  
°C  
°C  
Peak Package Reflow Temperature During Reflow (7)  
,
(8)  
7. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause malfunction or permanent damage to the device.  
8. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL),  
Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e.  
MC33xxxD enter 33xxx), and review parametrics.  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
GENERAL  
Supply Voltage Range  
V
Normal Operating Voltage Range (9)  
Extended Operating Voltage Range (9)  
V
6.0  
18  
18  
PWR(N)  
V
26.5  
PWR(E)  
Maximum Transient Voltage - Load Dump (10)  
VPWR Supply Current  
V
40  
V
PWR(LD)  
IVPWR  
mA  
EN = 5.0 V, V  
= 14 V, No Loads  
25  
150  
PWR  
VPWR Quiescent Supply Current  
EN = 0 V, V = 12 V  
IQVPWR  
IKAVPWR  
IQKAVPWR  
µA  
mA  
µA  
5.0  
0.5  
50  
15  
3.0  
350  
PWR  
KA_VPWR Supply Current,  
EN = 5.0 V, KA_V = 14 V, No Load on V  
PWR  
KAM  
KA_VPWR Quiescent Supply Current  
EN = 0 V, KA_V = 12 V  
PWR  
BUCK REGULATOR (VDDH)  
Buck Converter Output Voltage  
IVDDH = 200 mA to 1.4 A, V  
V
V
V
V
DDH  
= KA_V  
= 14 V  
PWR  
4.9  
4.9  
-20  
5.1  
5.1  
30  
PWR  
Buck Converter Output Voltage  
IVDDH = 1.4 A, V = KA_V  
DDH  
= 6.0 V  
PWR  
PWR  
VDDH Line Regulation  
= KA_V  
REGLNVDDH  
REGLDVDDH  
mV  
mV  
V
= 10 V to 14 V, IVDDH = 200 mA  
PWR  
PWR  
VDDH Load Regulation  
V
V
= KA_V  
= KA_V  
= 14 V, IVDDH = 200 mA to 1.4 A  
= 6.0 V, IVDDH = 200 mA to 1.4 A  
-20  
-20  
20  
20  
PWR  
PWR  
PWR  
PWR  
VDDH Active Discharge Resistance  
= KA_V = 14 V, EN = 0 V, IVDDH = 10 mA  
R
HDISCH  
V
1.0  
15  
PWR  
PWR  
P-CHANNEL MOSFET  
Drain-Source Breakdown Voltage—Not Tested (11)  
Drain-Source Current Limit—Not Tested (11)  
Notes  
BVDSS  
45  
V
A
ISCSW1  
-7.0  
9. VDDH is fully functional when the 33998 is operating at higher battery voltages, but these parameters are not tested. The test condition  
as are:  
a) V  
must be between 4.9 V and 5.1 V (200 mA to 1.4 A) for V  
= 14 V to 18 V.  
DDH  
DDH  
PWR  
PWR  
b) V  
must be between 4.8 V and 5.5 V (200 mA to 1.4 A) for V  
= 18 V to 26.5 V.  
10. Part can survive, but no parameters are guaranteed.  
11. Guaranteed by design but not production tested.  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LINEAR REGULATOR (VDDL)  
VDDL Output Voltage  
= KA_V  
V
V
mV  
mV  
mA  
DDL  
V
= 14 V, IVDDL = 200 mA  
PWR  
2.5  
-30  
-70  
5.0  
1.0  
0.6  
2.6  
2.7  
30  
70  
25  
10  
10  
PWR  
VDDL Line Regulation  
= 4.8 V to 5.2 V, IVDDL = 400 mA  
REGLNVDDL  
REGLDVDDL  
IDRVL  
V
DDH  
VDDL Load Regulation  
= KA_V  
V
= 14 V, IVDDL = 10 mA to 400 mA  
= 14 V, VDRVL = 1.0 V  
PWR  
PWR  
PWR  
DRVL Output Current  
= KA_V  
V
11  
PWR  
VDDL Active Discharge Resistance  
= KA_V = 14 V, EN = 0 V, IFBL = 10 mA  
R
LDISCH  
V
PWR  
PWR  
VDDH to VDDL Active Clamp Resistance  
= KA_V = 14 V, EN = 0 V, IVDDH = 50 mA, V = 0 V  
FBKB  
R
CLAMP  
V
PWR  
PWR  
VDDL Output Capacitor Capacitance (12)  
VDDL Output Capacitor ESR (12)  
CVDDL  
68  
µF  
ESRVDDL  
0.125  
KEEP-ALIVE (STANDBY) REGULATOR (VKAM)  
VKAM Output Voltage  
V
V
V
V
KAM  
IVKAM = 5.0 mA, VPWR = KA_V  
= 18 V, EN = 5.0 V  
2.5  
2.7  
PWR  
VKAM Output Voltage, EN = 0 V (Standby Mode)  
KAM  
V
V
V
V
= KA_V  
= KA_V  
= KA_V  
= 26 V, IVKAM = 0.5 mA  
= 18 V, IVKAM = 5.0 mA  
= 5.0 V, IVKAM = 10.0 mA  
2.5  
2.5  
2.5  
2.0  
2.7  
2.7  
2.7  
2.7  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
= 0 V, KA_V  
= 3.5 V, IVKAM = 5.0 mA  
PWR  
VKAM Line Regulation, EN = 0 V (Standby Mode)  
= KA_V = 5.0 V to 18 V, IVKAM = 2.0 mA  
REGLNVKAM  
REGLDDVKAM  
REGVKAM  
mV  
mV  
mV  
V
-20  
0
20  
100  
60  
PWR  
PWR  
VKAM Load Regulation, EN = 0 V (Standby Mode)  
V
= KA_V  
= 14 V, IVKAM = 1.0 mA to 10 mA  
PWR  
PWR  
Differential Voltage V  
- V  
KAM  
DDL  
EN = 5.0 V, IVKAM = 5.0 mA, V  
= KA_V  
= 14 V, IVDDL = 200 mA  
PWR  
-20  
PWR  
VKAM Output Capacitor Capacitance (12)  
VKAM Output Capacitor ESR (12)  
CVKAM  
4.7  
1.4  
µF  
ESRVKAM  
Notes  
12. Recommended value.  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
SENSOR SUPPLIES (VREF1, VREF2)  
Symbol  
Min  
Typ  
Max  
Unit  
VREF On-Resistance, TA = -40°C  
IVREF = 200 mA, IVDDH = 200 mA, V  
RDS(ON)  
RDS(ON)  
RDS(ON)  
ISC_BAT  
ISC_GND  
CVREF  
mΩ  
mΩ  
mΩ  
mA  
mA  
nF  
= KA_V  
= KA_V  
= KA_V  
= 14 V, EN = 5.0 V  
= 14 V, EN = 5.0 V  
= 14 V, EN = 5.0 V  
280  
350  
455  
900  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VREF On-Resistance, TA = +25°C  
IVREF = 200 mA, IVDDH = 200 mA, V  
VREF On-Resistance, TA = +125°C  
IVREF = 200 mA, IVDDH = 200 mA, V  
VREF Short-to-Battery Detect Current  
V
= KA_V  
= 14 V, EN = 5.0 V, SNSEN = 5.0 V  
PWR  
500  
PWR  
VREF Short-to-Ground Detect Current  
= KA_V = 14 V, EN = 5.0 V, SNSEN = 5.0 V  
V
500  
33  
900  
39  
PWR  
PWR  
Maximum Output Capacitance (Total) (13)  
SUPERVISORY CIRCUITS (VPWR)  
PWROK Undervoltage Threshold on V  
, FBL Ramps Down  
VFBL(THL)  
VDDH(THL)  
VDDH(THH)  
RDS(ON)  
V
V
V
V
V
DDL  
V
= KA_V  
= 14 V, IVDDH = 200 mA  
PWR  
2.1  
4.5  
5.12  
2.4  
2.5  
4.8  
5.7  
200  
2.5  
5.0  
200  
PWR  
PWROK Undervoltage Threshold on V  
DDH  
V
= KA_V  
= 14 V, IVDDH = 200 mA  
PWR  
PWR  
VDDH Overvoltage Threshold  
= KA_V = 10 V, IVDDH = 200 mA  
V
PWR  
PWR  
PWROK Open Drain On-Resistance  
V
= KA_V  
= 14 V, EN = 5 V, IPwrOK = 5.0 mA  
= 14 V, IVDDH = 200 mA  
PWR  
PWR  
PWR  
VKAMOK Threshold,  
= KA_V  
VKAM(THL)  
VPWROK(TH)  
RDS(ON)  
V
2.1  
4.0  
50  
2.4  
PWR  
VKAMOK Threshold on V  
, V  
Ramps Up  
PWR PWR  
KA_V  
= 14 V, IVDDH = 200 mA  
PWR  
VKAMOK Open Drain On-Resistance  
= KA_V = 14 V, EN = 0 V, IVKAMOK = 10 mA  
V
PWR  
PWR  
Enable Input Voltage Threshold (Pin EN)  
VIH  
IPD  
VIH  
IPD  
1.0  
500  
1.0  
2.0  
1200  
2.0  
V
nA  
V
Enable Pull-Down Current (Pin EN), EN = 1.0 V V  
to VIL(MIN)  
DDH  
Sensor Enable Input Voltage Threshold (Pin SNSEN)  
Sensor Enable Pull-Down Current (Pin SNSEN)  
nA  
SNSEN = 1.0 V V  
to VIL(MIN)  
500  
1200  
DDH  
Notes  
13. Recommended value.  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C, using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
CHARGE PUMP (CRES)  
VCRES  
V
Charge Pump Voltage  
12  
12  
15  
15  
V
V
= KA_V  
= KA_V  
= 14 V, IVDDH = 200 mA, ICP = 0 µA  
= 14 V, IVDDH = 200 mA, ICP = 10 µA  
PWR  
PWR  
PWR  
PWR  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Table 4. DYNAMIC ELECTRICAL CHARACTERISTICS  
Characteristics noted under conditions 9.0 V VPWR 16 V, -40°C TJ = TA 125°C using the typical application circuit (see  
Figure 8) unless otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal  
conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
BUCK REGULATOR (VDDH)  
Switching Frequency (14)  
fSW  
tSS  
750  
kHz  
ms  
Soft Start Duration (see Figure 2)  
= KA_V = 6.0 V  
V
5.0  
15  
PWR  
PWR  
CHARGE PUMP (CRES)  
Charge Pump Current Ramp-Up Time  
tCRES  
ms  
ms  
V
= KA_V  
= 14 V, CRES = 22 nF, VCP = 1.0 V to 11 V  
PWR  
1.0  
1.0  
20  
10  
PWR  
Charge Pump Ramp-Up Time  
= KA_V = 7.0 V, CRES = 22 nF, VCP = 7.0 V to 10 V  
tCRES  
V
PWR  
PWR  
SENSOR SUPPLIES (VREF1, VREF2)  
VREF Overcurrent Detection Time (see Figure 3)  
tDET  
µs  
V
Load RL = 5.0 to GND, V  
= 5.1 V, V  
= KA_V  
= KA_V  
= 10 V,  
= 10 V,  
REF  
DDH  
PWR  
PWR  
PWR  
EN = 5.0 V, SNSEN = 5.0 V  
VREF Retry Timer Delay (see Figure 3)  
Load RL = 5.0 to GND, V  
0.5  
5.0  
2.0  
20  
tRET  
ms  
V
= 5.1 V, V  
REF  
DDH  
PWR  
EN = 5.0 V, SNSEN = 5.0 V  
SUPERVISORY CIRCUITS (VPWR)  
PWROK Delay Time (Power-On Reset) (see Figure 4)  
VKAMOK Delay Time (see Figure 5)  
tD(PWROK)  
tD(VKAMOK)  
tD(VPWR)  
tFAULT  
5.0  
10  
15  
30  
10  
10  
ms  
ms  
ms  
ms  
VDDH Power-Up Delay Time (see Figure 6)  
Fault-Off Timer Delay Time (see Figure 7)  
1.0  
1.0  
Notes  
14. Guaranteed by design but not production tested.  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TIMING DIAGRAMS  
6.0  
0
5.0  
0
2.5V  
t
SS  
5.0  
0
4.8V  
TIME  
Figure 4. Soft-Start Time  
14  
0
5.0  
0
t
Det  
4.8V  
5.0  
2.0V  
2.0V  
0
t
Ret  
2.6  
0
TIME  
Figure 5. VREF Retry Timer  
14  
0
5.0  
0
5.0  
4.6V  
t
D(PWROK)  
0
2.6  
0
TIME  
Figure 6. PWROK Delay Timer (Power-On Reset)  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
6.0  
0
V
= 0V  
PWR  
5.0  
0
2.6  
2.4V  
t
D(VKAMOK)  
0
2.6  
0
TIME  
Figure 7. VKAMOK Delay Time  
18  
0
5.0  
0
18  
t
D(VPWR)  
0
5.0  
2.0V  
0
TIME  
Figure 8. VDDH Power-Up Delay Time  
14  
0
5.0  
0
2.6  
0
5.0  
4.7V  
4.7V  
1.0V  
1.0V  
0
t
t
Fault  
Fault  
2.6  
0
TIME  
Figure 9. Fault-Off Timer Delay Time  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
The 33998 multi-output power supply integrated circuit is  
capable of operating from 6.0 V up to 26.5 V with 40 V  
transient capability. It incorporates a step-down switching  
controller regulating directly to 5.0 V. The 2.6 V linear  
regulator uses an external pass transistor, thus reducing the  
power dissipation of the integrated circuit. The 33998 also  
provides a 2.6 V linear standby regulator and two 5.0 V  
sensor supply outputs protected by internal low-resistance  
LDMOS transistors against short-to-battery and short-to-  
ground.  
FUNCTIONAL PIN DESCRIPTION  
battery above 17 V are considered “double faults” and neither  
one of the VREF outputs is protected against such  
conditions.  
SWITCHING REGULATOR (VDDH)  
The switching regulator is a high-frequency (750 kHz),  
conventional buck converter with integrated high-side p-  
channel power MOSFET. Its output voltage is regulated to  
provide 5.0 V with ±2% accuracy and it is intended to directly  
power the digital and analog circuits of the Electronic Control  
Module (ECM). The switching regulator output is rated for  
1400 mA total output current. This current can be used by the  
linear regulator VDDL and sensor supplies VREF1 and  
VREF2. The 33998 switching controller utilizes "Sensorless  
Current Mode Control" to achieve good line rejection and  
stabilize the feedback loop. A soft-start feature is  
Depending on the VDDH capacitor value and its ESR  
value, the severity of the short may disrupt the VDDH  
operation.  
KEEP-ALIVE REGULATOR, STANDBY (VKAM)  
The Keep-Alive Regulator VKAM (keep-alive memory) is  
intended to provide power for “key off” functions such as  
nonvolatile SRAM, “KeyOff" timers and controls, KeySwitch  
monitor circuits, and perhaps a CAN/SCP monitor and wake-  
up function. It may also power other low-current circuits  
required during a “KeyOff” condition. The regulated voltage is  
nominally 2.6 V. A severe fault condition on the VKAM output  
is signaled by pulling the VKAMOK signal low.  
incorporated into the 33998. When the device is enabled, the  
switching regulator output voltage VDDH ramps up to about  
half of full scale and then takes 16 steps up to the nominal  
regulation voltage level (5.0 V nominal).  
2.6 V LINEAR REGULATOR (VDDL)  
KEEP-ALIVE OPERATION, STANDBY, POWER-  
DOWN MODE (VKAM)  
The 2.6 V linear post-regulator is powered from the 5.0 V  
switching regulator output (VDDH). A discrete pass transistor  
is used to the power path for the VDDL regulator. This  
arrangement minimizes the power dissipation off the  
controller IC. The FBL pin is the feedback input of the  
regulator control loop and the DRVL pin the external NPN  
pass transistor base drive. Power up, power down, and fault  
management are coordinated with the 5.0 V switching  
regulator.  
When the EN pin is pulled low, the power supply is forced  
into a low-current standby mode. In order to reduce current  
drawn by the VPWR and KA_VPWR pins, all power supply  
functions are disabled except for the VKAM and Enable (EN)  
pins. The latter pin is monitored for the "wake-up" signal. The  
switching transistor gate is actively disabled and the VDDL  
and VDDH pins are actively pulled low.  
POWER-UP DELAY TIMERS  
SENSOR SUPPLIES (VREF1) AND (VREF2)  
Two Power-Up Delay timers are integrated into the control  
section of the integrated circuit. One timer monitors the input  
voltage at the VPWR input pin (see Figure 3), and the other  
monitors the input voltage at the KA_VPWR input pin. In both  
cases, sufficient supply voltage must be present long enough  
for the timers to “time out” before the switching regulator can  
be enabled.  
The sensor supplies are implemented using a protected  
switch to the main 5.0 V (switching regulator) output. The  
33998 integrated circuit provides two low-resistance LDMOS  
power MOSFETs connected to the switching regulator output  
(VDDH). These switches have short-to-battery and short-to-  
ground protection integrated into the IC. When a severe fault  
conditions is detected, the affected sensor output is turned off  
and the sensor Retry Timer starts to time out. After the Retry  
Timer expires, the sensor supply tries to power up again.  
Sensor supplies VREF can be disabled by pulling the Sensor  
Enable SNSEN pin low (see Figure 7 for the VREF Retry  
Timer operation).  
FAULT-OFF TIMER  
If the VDDL output voltage does not reach its valid range  
at the end of soft-start period, or if the VDDH or VDDL output  
voltage gets below its PWROK threshold level, the Fault-Off  
Timer shuts the switching regulator off until the timer “times  
out” and the switching regulator retries to power up again  
(see Figure 7 for Fault-Off Timer operation details).  
Notes: Severe fault conditions on the VREF1 and VREF2  
outputs, like hard shorts to either ground or battery, may  
disrupt the operation of the main regulator VDDH. Shorts to  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
(VDDH or VDDL) are below their regulation windows. If both  
regulator outputs are above their respective lower thresholds,  
and the Power-On Reset Timer has expired, the output driver  
is turned off and this pin is at high-impedance state (see  
Figure 6).  
POWER-ON RESET TIMER  
This timer starts to time out at the end of the soft-start  
period if the VDDH and VDDL outputs are in the valid  
regulation range. If the timer “times out”, then the open-drain  
PWROK signal is released, indicating that “power is ON”.  
The VKAMOK signal indicates a severe fault condition on  
the keep-alive regulator output VKAM. The VKAM output  
voltage is compared to the internal bandgap reference  
voltage. When the VKAM falls below the bandgap reference  
voltage level, the VKAMOK signal is pulled low.  
SUPERVISORY CIRCUITS (PWROK) AND  
(VKAMOK)  
The 33998 has two voltage monitoring open-drain outputs,  
the PWROK and the VKAMOK pins. PWROK is "active high".  
This output is pulled low when either of the regulator outputs  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
TYPICAL APPLICATIONS  
FUNCTIONAL PIN DESCRIPTION  
TYPICAL APPLICATIONS  
33998  
V
=5.0V  
Lf1  
10uH  
L1  
15uH  
DDH  
@ 1400mA total  
VPWR  
VSW  
4
9
R3  
C3  
68uF  
Cf1  
10uF  
Cf2  
1.0uF 100uF  
C1  
C4  
100nF  
C2  
2.2R  
D1  
Drive  
1.0uF  
I-lim  
C8  
390pF  
Optional  
Snubber  
Ramp  
Soft  
Start  
FBKB  
Logic  
&
Enb  
11  
Latch  
VSUM  
Dp1  
Osc  
12  
Cc 1  
Rc1  
2.2nF 3.6k  
V
KA_VPWR  
2
bg  
VDDH  
15  
Dp2  
Retry  
Bandgap  
Voltage  
Reference  
DRVL  
V
bg  
2.6V  
Enb  
Q1  
Linear  
Regulator  
Driver  
13  
FBL  
Snsenb  
V
=2.6V  
V
DDL  
REF1  
@ 400mA  
Reg.  
14  
C5  
100nF  
C6  
68uF  
VREF1  
21  
Enb  
V
Cs1  
V
= 2.6V  
VKAM  
24  
2.6V  
Standby  
Reg.  
KAM  
33nF  
Retry  
POR  
@ 10mA  
bg  
C7  
4.7uF  
R1  
R2  
10k 10k  
Snsenb  
Snsenb  
Enb  
V
Enable  
Control  
REF2  
Reg.  
PWROK  
10  
VKAMOK  
VREF2  
16  
1
Cs2  
PwrOK  
VkamOK  
Charge  
Pump  
33nF  
CRES  
3
SNSEN 22 EN 23  
5-8 GND  
17-20  
C9  
22nF  
Note The VDDH total output current is 1.4 A. This includes the current used by the linear regulator VDDL and buffered outputs VREF1 and  
VREF2.  
Figure 10. 33998 Application Circuit Schematic Diagram  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
TYPICAL APPLICATIONS  
FUNCTIONAL PIN DESCRIPTION  
Table 5. Recommended Components  
Designator  
Value/Rating  
Description/Part No.  
Manufacturer (16)  
Cf1  
Cf2, C2  
C1  
10 µF/50 V  
1.0 µF/50 V  
100 µF/50 V  
68 µF/10 V  
68 µF/10 V  
4.7 µF/10 V  
100 nF/16 V  
390 pF/50 V  
22 nF/25 V  
33 nF/25 V  
2.2 nF/16 V  
10 kΩ  
Aluminum Electrolytic/UUB1H100MNR  
Ceramic X7R/C1812C105K5RACTR  
Aluminum Electrolytic/UUH1V101MNR  
Tantalum/T494D686M010AS  
Tantalum/T494D686M010AS  
Tantalum/T494A475M010AS  
Ceramic X7R  
Nichicon  
Kemet  
Nichicon  
C3 (15)  
C6  
Kemet  
Kemet  
C7  
Kemet  
C4, C5  
C8 (Optional)  
C9  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Any Manufacturer  
Ceramic X7R  
Ceramic X7R  
Cs1, Cs2  
Cc1  
Ceramic X7R  
Ceramic X7R  
R1, R2  
R3 (Optional)  
Rc1  
Resistor 0805, 5%  
2.2 Ω  
Resistor 0805, 5%  
3.6 kΩ  
Resistor 0805, 5%  
Lf1  
10 µH  
CDRH127-100M  
Sumida  
TDK  
or SLF10145-100M2R5  
L1  
15 µH  
CDRH127-150MC  
Sumida  
TDK  
or SLF10145-150M2R2  
Q1  
D1  
1.0 A/20 V  
2.0 A/50 V  
3.0 A/200 V  
27 V  
Bipolar Transistor/BCP68T1  
Schottky Diode/SS25  
ON Semiconductor  
General Semiconductor  
ON Semiconductor  
Dp1  
Dp2  
Diode/MURS320  
Transient Voltage Suppressor/SM5A27  
General Semiconductor  
Notes  
15. It is possible to use ceramic capacitors in the switcher output, e.g. C3 = 2 x 22 µF/6.3 V X7R ceramic. In this case the compensation  
resistor has to be changed to Rc1 = 200 to stabilize the switching regulator operation.  
16. Freescale Semiconductor does not assume liability, endorse, or warrant components from external manufacturers that are referenced in  
circuit drawings or tables. While Freescale Semiconductor offers component recommendations in this configuration, it is the customer’s  
responsibility to validate their application.  
17. Freescale Semiconductor does not assume liability, endorse, or warrant components from external manufacturers that are referenced in  
circuit drawings or tables. While Freescale Semiconductor offers component recommendations in this configuration, it is the customer’s  
responsibility to validate their application.  
33998  
Analog Integrated Circuit Device Data  
17  
Freescale Semiconductor  
PACKAGING  
PACKAGE DIMENSIONS  
PACKAGING  
PACKAGE DIMENSIONS  
For the most current package revision, visit www.freescale.com and perform a keyword search using the “98A” listed below.  
DWB SUFFIX  
EG SUFFIX (PB-FREE)  
24 PIN SOIC WIDE BODY  
PLASTIC PACKAGE  
98ASB42344B  
ISSUE F  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
REVISION HISTORY  
REVISION HISTORY  
Revision  
Date  
Description of Changes  
Implemented Revision History page  
Converted to Freescale format  
Update to the prevailing form and style  
Removed MC33998EG/R2, and replaced with MCZ33998EG/R2 in the Ordering Information block  
Removed Peak Package Reflow Temperature During Reflow (solder reflow) parameter from  
Maximum Ratings on page 5. Added note with instructions from www.freescale.com.  
8/2006  
2.0  
33998  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
For information on Freescale’s Environmental Products program, go to http://  
www.freescale.com/epp.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Denver, Colorado 80217  
© Freescale Semiconductor, Inc., 2007. All rights reserved.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC33998  
Rev. 2.0  
8/2006  

相关型号:

MC33999

16-Output Switch with SPI and PWM Control
MOTOROLA

MC33999

16-Output Switch with SPI and PWM Control
FREESCALE

MC33999EK

1.2A SIPO BASED PRPHL DRVR, PDSO54, 0.65 MM PITCH, LEAD FREE, PLASTIC, SOIC-54
NXP

MC33999EK/R2

16-Output Switch with SPI and PWM Control
FREESCALE

MC33999EKR2

1.2A SIPO BASED PRPHL DRVR, PDSO54, 0.65 MM PITCH, LEAD FREE, PLASTIC, SOIC-54
NXP

MC3399DW

AUTOMOTIVE HALF-AMP HIGH-SIDE SWITCH
MOTOROLA

MC3399DWR2

Buffer/Inverter Based Peripheral Driver, 2.5A, BIMOS, PDSO16, PLASTIC, SOIC-16
MOTOROLA

MC3399T

AUTOMOTIVE HALF-AMP HIGH-SIDE SWITCH
MOTOROLA

MC33AR6000AXWS

SPECIALTY ANALOG CIRCUIT
NXP

MC33FS4500CAE

Interface Circuit
NXP

MC33FS4502LAE

Interface Circuit
NXP

MC33FS4503CAE

Interface Circuit
NXP