M68HC08 [MOTOROLA]

Microcontrollers; 微控制器
M68HC08
型号: M68HC08
厂家: MOTOROLA    MOTOROLA
描述:

Microcontrollers
微控制器

微控制器
文件: 总230页 (文件大小:2528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908QY4  
MC68HC908QT4  
MC68HC908QY2  
MC68HC908QT2  
MC68HC908QY1  
MC68HC908QT1  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908QY4/D  
9/2002  
WWW.MOTOROLA.COM/SEMICONDUCTORS  
MC68HC908QY4  
MC68HC908QT4  
MC68HC908QY2  
MC68HC908QT2  
MC68HC908QY1  
MC68HC908QT1  
Data Sheet  
To provide the most up-to-date information, the revision of our  
documents on the World Wide Web will be the most current. Your printed  
copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://motorola.com/semiconductors  
The following revision history table summarizes changes contained in  
this document. For your convenience, the page number designators  
have been linked to the appropriate location.  
Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
© Motorola, Inc., 2002  
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1  
MOTOROLA  
3
Revision History  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
September,  
2002  
N/A  
Initial release  
N/A  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
4
MOTOROLA  
Data Sheet — MC68HC908QY4  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .25  
Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .43  
Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . .45  
Section 5. Configuration Register (CONFIG) . . . . . . . . .55  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .59  
Section 7. System Integration Module (SIM) . . . . . . . . .75  
Section 8. Oscillator Module (OSC). . . . . . . . . . . . . . . .101  
Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . .113  
Section 10. Timer Interface Module (TIM) . . . . . . . . . . .129  
Section 11. Analog-to-Digital Converter (ADC) . . . . . .151  
Section 12. Input/Output (I/O) Ports . . . . . . . . . . . . . . .161  
Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . .171  
Section 14. Keyboard Interrupt Module (KBI). . . . . . . .177  
Section 15. Computer Operating Properly (COP) . . . .189  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
List of Sections  
5
List of Sections  
Section 16. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . .195  
Section 17. Break Module (BREAK) . . . . . . . . . . . . . . .201  
Section 18. Electrical Specifications. . . . . . . . . . . . . . .211  
Section 19. Mechanical Specifications . . . . . . . . . . . . .223  
Section 20. Ordering Information . . . . . . . . . . . . . . . . .227  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
List of Sections MOTOROLA  
6
Data Sheet MC68HC908QY4  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Section 2. Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .33  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Table of Contents  
7
Table of Contents  
Section 4. FLASH Memory (FLASH)  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .48  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .49  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .53  
4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Section 5. Configuration Register (CONFIG)  
5.1  
5.2  
5.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
Table of Contents MOTOROLA  
8
Table of Contents  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Section 7. System Integration Module (SIM)  
7.1  
7.2  
7.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79  
7.4  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .79  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .80  
7.4.1  
7.4.2  
7.4.3  
7.5  
7.5.1  
7.5.2  
7.5.2.1  
7.5.2.2  
7.5.2.3  
7.5.2.4  
7.5.2.5  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .80  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .81  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Computer Operating Properly (COP) Reset. . . . . . . . . . .83  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84  
7.6  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .85  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .85  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .85  
7.6.1  
7.6.2  
7.6.3  
7.7  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
7.7.1  
7.7.1.1  
7.7.1.2  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Table of Contents  
9
Table of Contents  
7.7.2  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . . .92  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . .93  
7.7.2.1  
7.7.2.2  
7.7.2.3  
7.7.3  
7.7.4  
7.7.5  
7.8  
7.8.1  
7.8.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
7.9  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . .96  
Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . . .98  
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7.9.1  
7.9.2  
7.9.3  
Section 8. Oscillator Module (OSC)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
8.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Internal Oscillator Trimming. . . . . . . . . . . . . . . . . . . . . .103  
Internal to External Clock Switching. . . . . . . . . . . . . . . .104  
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
8.4.1  
8.4.1.1  
8.4.1.2  
8.4.2  
8.4.3  
8.4.4  
8.5  
8.5.1  
8.5.2  
Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .107  
Crystal Amplifier Output Pin  
(OSC2/PTA4/BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . .108  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .108  
XTAL Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . .108  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109  
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
10 Table of Contents MOTOROLA  
Table of Contents  
8.5.7  
8.5.8  
Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . .109  
Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . .109  
8.6  
8.6.1  
8.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
8.7  
8.8  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .110  
CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
8.9  
8.9.1  
8.9.2  
Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . .112  
Section 9. Monitor ROM (MON)  
9.1  
9.2  
9.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
9.5  
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
Section 10. Timer Interface Module (TIM)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Table of Contents  
11  
Table of Contents  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .134  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .135  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .136  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .137  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .140  
10.9 Input/Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . .141  
10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .144  
10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .145  
10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Section 11. Analog-to-Digital Converter (ADC)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
12 Table of Contents MOTOROLA  
Table of Contents  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
11.7 Input/Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .157  
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .159  
Section 12. Input/Output (I/O) Ports  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . .164  
12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . .166  
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . .168  
12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . .169  
Section 13. External Interrupt (IRQ)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
13.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
13.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .175  
13.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .175  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Table of Contents  
13  
Table of Contents  
Section 14. Keyboard Interrupt Module (KBI)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . .182  
14.4.3 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .184  
14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . .185  
14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
14.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
14.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .187  
Section 15. Computer Operating Properly (COP)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .192  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .193  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
14 Table of Contents MOTOROLA  
Table of Contents  
Section 16. Low-Voltage Inhibit (LVI)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
16.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .198  
16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .198  
16.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198  
16.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
16.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
Section 17. Break Module (BREAK)  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
17.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .204  
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204  
17.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .204  
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204  
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
17.5.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .205  
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .206  
17.5.3 Break Auxiliary Register. . . . . . . . . . . . . . . . . . . . . . . . . . .207  
17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Table of Contents  
15  
Table of Contents  
Section 18. Electrical Specifications  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .212  
18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .213  
18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
18.6 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .214  
18.7 5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
18.8 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .216  
18.9 3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .217  
18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .219  
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . .221  
18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
Section 19. Mechanical Specifications  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
19.3 8-Pin Plastic Dual In-Line Package (Case #626) . . . . . . . . . .224  
19.4 8-Pin Small Outline Integrated Circuit Package  
(Case #968). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
19.5 16-Pin Plastic Dual In-Line Package (Case #648D). . . . . . . .225  
19.6 16-Pin Small Outline Integrated Circuit Package  
(Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
19.7 16-Pin Thin Shrink Small Outline Package  
(Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
16 Table of Contents MOTOROLA  
Table of Contents  
Section 20. Ordering Information  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
20.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Table of Contents  
17  
Table of Contents  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
18  
Table of Contents  
MOTOROLA  
Data Sheet MC68HC908QY4  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
MCU Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2-1  
2-2  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .36  
4-1  
4-2  
4-3  
4-4  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .47  
FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . .52  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .53  
FLASH Block Protect Start Address. . . . . . . . . . . . . . . . . . . . .53  
5-1  
5-2  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .56  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .57  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .63  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA List of Figures 19  
List of Figures  
Figure  
Title  
Page  
7-10 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
7-11 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . .89  
7-12 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . .91  
7-13 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . .91  
7-14 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . .92  
7-15 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
7-16 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . .94  
7-17 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . .94  
7-18 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
7-19 Stop Mode Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . .96  
7-20 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . .96  
7-21 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . .98  
7-22 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . .99  
8-1  
8-2  
8-3  
8-4  
XTAL Oscillator External Connections . . . . . . . . . . . . . . . . . .106  
RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . .107  
Oscillator Status Register (OSCSTAT). . . . . . . . . . . . . . . . . .111  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . .112  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
Monitor Mode Circuit (External Clock, No High Voltage) . . . .116  
Monitor Mode Circuit (Internal Clock, No High Voltage). . . . .116  
Monitor Mode Circuit (External Clock, with High Voltage) . . .117  
Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .119  
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . .127  
9-10 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .128  
10-1 TIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
10-2 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .132  
10-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .136  
10-4 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . .141  
10-5 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . .144  
10-6 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . .144  
10-7 TIM Channel Status and Control Registers (TSC0:TSC1) . . .145  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
20 List of Figures MOTOROLA  
List of Figures  
Figure  
Title  
Page  
10-8 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
10-9 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . .149  
11-1 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .152  
11-2 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
11-3 ADC Status and Control Register (ADSCR). . . . . . . . . . . . . .157  
11-4 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
11-5 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . .159  
12-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .162  
12-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .163  
12-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .164  
12-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
12-5 Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . .166  
12-6 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12-7 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .168  
12-8 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
12-9 Port B Input Pullup Enable Register (PTBPUE) . . . . . . . . . . .169  
13-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .172  
13-2 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .173  
13-3 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .176  
14-1 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
14-2 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . .179  
14-3 Keyboard Status and Control Register (KBSCR) . . . . . . . . . .183  
14-4 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . .184  
14-5 Auto Wake-up Interrupt Request Generation Logic . . . . . . . .185  
15-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
15-2 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .192  
16-1 LVI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .196  
16-2 LVI Status Register (LVISR). . . . . . . . . . . . . . . . . . . . . . . . . .199  
17-1 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .203  
17-2 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .203  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
List of Figures  
21  
List of Figures  
Figure  
Title  
Page  
17-3 Break Status and Control Register (BRKSCR). . . . . . . . . . . .205  
17-4 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .206  
17-5 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .206  
17-6 Break Auxiliary Register (BRKAR) . . . . . . . . . . . . . . . . . . . . .207  
17-7 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . .208  
17-8 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .209  
18-1 RC versus Frequency (5 Volts @ 25°C). . . . . . . . . . . . . . . . .216  
18-2 RC versus Frequency (3 Volts @ 25°C). . . . . . . . . . . . . . . . .219  
18-3 Typical Operating IDD, with All Modules Turned On (25°C) . .220  
18-4 Typical Wait Mode IDD, with ADC Turned On (25°C) . . . . . . .220  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
22 List of Figures MOTOROLA  
Data Sheet MC68HC908QY4  
List of Tables  
Table  
Title  
Page  
1-1  
1-2  
1-3  
Summary of Device Variations . . . . . . . . . . . . . . . . . . . . . . . . .25  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Function Priority in Shared Pins . . . . . . . . . . . . . . . . . . . . . . . .32  
2-1  
4-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Examples of Protect Start Address. . . . . . . . . . . . . . . . . . . . . .54  
6-1  
6-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
7-1  
7-2  
7-3  
7-4  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
8-1  
8-2  
OSC2 Pin Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Oscillator Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
Monitor Mode Signal Requirements and Options. . . . . . . . . .117  
Mode Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . .121  
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .123  
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .124  
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .124  
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .125  
READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .126  
RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .126  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA List of Tables 23  
List of Tables  
Table  
Title  
Page  
10-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
10-3 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .147  
11-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
11-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
12-1 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12-2 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
12-3 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
16-1 LVIOUT Bit Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
20-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
24 List of Tables MOTOROLA  
Data Sheet MC68HC908QY4  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
1.2 Introduction  
The MC68HC908QY4 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08  
Family is a Complex Instruction Set Computer (CISC) with a Von  
Neumann architecture. All MCUs in the family use the enhanced  
M68HC08 central processor unit (CPU08) and are available with a  
variety of modules, memory sizes and types, and package types.  
Table 1-1. Summary0.o4 f Device Variations  
FLASH  
Memory Size  
Analog-to-Digital  
Converter  
Pin  
Count  
Device  
MC68HC908QT1  
MC68HC908QT2  
MC68HC908QT4  
MC68HC908QY1  
MC68HC908QY2  
MC68HC908QY4  
1536 bytes  
1536 bytes  
4096 bytes  
1536 bytes  
1536 bytes  
4096 bytes  
8 pins  
8 pins  
4 ch, 8 bit  
4 ch, 8 bit  
8 pins  
16 pins  
16 pins  
16 pins  
4 ch, 8 bit  
4 ch, 8 bit  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA General Description 25  
General Description  
1.3 Features  
Features include:  
High-performance M68HC08 CPU core  
Fully upward-compatible object code with M68HC05 Family  
5-V and 3-V operating voltages (VDD)  
8-MHz internal bus operation at 5 V, 4-MHz at 3 V  
Trimmable internal oscillator  
3.2 MHz internal bus operation  
8-bit trim capability  
± 25% untrimmed  
± 5% trimmed  
Auto wake-up from STOP capability  
Configuration (CONFIG) register for MCU configuration options,  
including:  
Low-voltage inhibit (LVI) trip point  
In-system FLASH programming  
FLASH security(1)  
On-chip in-application programmable FLASH memory (with  
internal program/erase voltage generation)  
MC68HC908QY4 and MC68HC908QT4 4096 bytes  
MC68HC908QY2, MC68HC908QY1, MC68HC908QT2, and  
MC68HC908QT1 1536 bytes  
128 bytes of on-chip random-access memory (RAM)  
2-channel, 16-bit timer interface module (TIM)  
4-channel, 8-bit analog-to-digital converter (ADC) on  
MC68HC908QY2, MC68HC908QY4, MC68HC908QT2, and  
MC68HC908QT4  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
26 General Description MOTOROLA  
General Description  
Features  
5 or 13 bidirectional input/output (I/O) lines and one input only:  
Six shared with keyboard interrupt function and ADC  
Two shared with timer channels  
One shared with external interrupt (IRQ)  
Eight extra I/O lines on 16-pin package only  
High current sink/source capability on all port pins  
Selectable pullups on all ports, selectable on an individual bit  
basis  
Three-state ability on all port pins  
6-bit keyboard interrupt with wakeup feature (KBI)  
Low-voltage inhibit (LVI) module features:  
Software selectable trip point in CONFIG register  
System protection features:  
Computer operating properly (COP) watchdog  
Low-voltage detection with reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
External asynchronous interrupt pin with internal pullup (IRQ)  
shared with general-purpose input pin  
Master asynchronous reset pin (RST) shared with  
general-purpose input/output (I/O) pin  
Power-on reset  
Internal pullups on IRQ and RST to reduce external components  
Memory mapped I/O registers  
Power saving stop and wait modes  
MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 are  
available in these packages:  
16-pin plastic dual in-line package (PDIP)  
16-pin small outline integrated circuit (SOIC) package  
16-pin thin shrink small outline package (TSSOP)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
General Description  
27  
General Description  
MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are  
available in these packages:  
8-pin PDIP  
8-pin SOIC  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908QY4.  
1.5 Pin Assignments  
The MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are  
available in 8-pin packages and the MC68HC908QY4,  
MC68HC908QY2, and MC68HC908QY1 in 16-pin packages.  
Figure 1-2 shows the pin assignment for these packages.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
28  
General Description  
MOTOROLA  
N O N - D I S C L O S U R E  
A G R E E M E N T  
R E Q U I R E D  
PTB[0:7]  
V
DD  
PTB  
POWER SUPPLY  
V
SS  
DDRB  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2  
CLOCK  
GENERATOR  
CPU CONTROL  
ALU  
68HC08 CPU  
PTA3/RST/KBI3  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SYSTEM INTEGRATION  
MODULE  
ACCUMULATOR  
INDEX REGISTER  
CPU REGISTERS  
SINGLE INTERRUPT  
MODULE  
STACK POINTER  
BREAK  
MODULE  
PROGRAM COUNTER  
POWER-ON RESET  
MODULE  
CONDITION CODE REGISTER  
V 1 1 H I N Z C  
16-BIT  
TIMER MODULE  
MC68HC908QY4 AND MC68HC908QT4: 4096 BYTES  
MC68HC908QY2, MC68HC908QY1, MC68HC908QT2,  
AND MC68HC908QT1: 1536 BYTES  
USER FLASH  
128 BYTES RAM  
COP  
MODULE  
MONITOR ROM  
RST, IRQ: Pins have internal (about 30K Ohms) pull up  
PTA[0:5]: High current sink and source capability  
PTA[0:5]: Pins have programmable keyboard interrupt and pull up  
PTB[0:7]: Not available on 8-pin devices MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4  
Figure 1-1. Block Diagram  
General Description  
V
V
VDD  
V
SS  
SS  
1
2
3
4
8
7
6
5
DD  
PTA5/OSC1/KBI5  
PTA4/OSC2/KBI4  
1
2
3
4
8
7
6
5
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTA0/AD0/TCH0/KBI0  
PTA0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2  
PTA1/TCH1/KBI1  
PTA2/IRQ/KBI2  
PTA3/RST/KBI3  
PTA3/RST/KBI3  
8-PIN ASSIGNMENT  
MC68HC908QT1 PDIP/SOIC  
8-PIN ASSIGNMENT  
MC68HC908QT2 AND MC68HC908QT4 PDIP/SOIC  
VDD  
PTB7  
PTB6  
V
V
SS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD  
SS  
PTB7  
PTB6  
PTB0  
PTB0  
PTB1  
PTB1  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTA0/AD0/TCH0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA5/OSC1/KBI5  
PTA4/OSC2/KBI4  
PTA0/TCH0/KBI0  
PTA1/TCH1/KBI1  
PTB2  
PTB5  
PTB4  
PTB2  
PTB5  
PTB4  
PTB3  
PTB3  
PTA2/IRQ/KBI2  
PTA2/IRQ/KBI2  
PTA3/RST/KBI3  
PTA3/RST/KBI3  
16-PIN ASSIGNMENT  
MC68HC908QY1 PDIP/SOIC  
16-PIN ASSIGNMENT  
MC68HC908QY2 AND MC68HC908QY4 PDIP/SOIC  
16  
15  
14  
13  
12  
11  
10  
9
PTA1/AD1/TCH1/KBI1  
16  
15  
14  
13  
12  
11  
10  
9
PTA0/AD0/TCH0/KBI0  
PTB1  
PTA1/TCH1/KBI1  
PTB2  
1
2
3
4
5
6
7
8
PTA0/TCH0/KBI0  
PTB1  
1
2
3
4
5
6
7
8
PTB2  
PTB0  
PTB0  
PTB3  
PTB3  
V
PTA2/IRQ/KBI2  
V
PTA2/IRQ/KBI2  
SS  
SS  
V
V
PTA3/RST/KBI3  
PTB4  
PTA3/RST/KBI3  
PTB4  
DD  
DD  
PTB7  
PTB6  
PTB7  
PTB6  
PTB5  
PTB5  
PTA5/OSC1/AD3/KBI5  
PTA5/OSC1/KBI5  
PTA4/OSC2/AD2/KBI4  
PTA4/OSC2/KBI4  
16-PIN ASSIGNMENT  
MC68HC908QY1 TSSOP  
16-PIN ASSIGNMENT  
MC68HC908QY2 AND MC68HC908QY4 TSSOP  
Figure 1-2. MCU Pin Assignments  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
30 General Description MOTOROLA  
General Description  
Pin Functions  
1.6 Pin Functions  
Table 1-2 provides a description of the pin functions.  
Table 1-2. Pin Functions  
Pin  
Name  
Description  
Input/Output  
V
Power supply  
Power  
DD  
SS  
V
Power supply ground  
Power  
Input/Output  
Input  
PTA0 General purpose I/O port  
AD0 A/D channel 0 input  
PTA0  
PTA1  
TCH0 Timer Channel 0 I/O  
Input/Output  
Input  
KBI0 Keyboard interrupt input 0  
PTA1 General purpose I/O port  
AD1 A/D channel 1 input  
Input/Output  
Input  
TCH1 Timer Channel 1 I/O  
Input/Output  
Input  
KBI1 Keyboard interrupt input 1  
PTA2 General purpose input-only port  
IRQ External interrupt with programmable pullup and Schmitt trigger input  
KBI2 Keyboard interrupt input 2  
PTA3 General purpose I/O port  
RST Reset input, active low with internal pullup and Schmitt trigger  
KBI3 Keyboard interrupt input 3  
PTA4 General purpose I/O port  
Input  
PTA2  
PTA3  
Input  
Input  
Input/Output  
Input  
Input  
Input/Output  
OSC2 XTAL oscillator output (XTAL option only)  
Output  
Output  
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)  
PTA4  
AD2 A/D channel 2 input  
Input  
Input  
KBI4 Keyboard interrupt input 4  
PTA5 General purpose I/O port  
OSC1 XTAL, RC, or external oscillator input  
AD3 A/D channel 3 input  
Input/Output  
Input  
PTA5  
Input  
KBI5 Keyboard interrupt input 5  
8 general-purpose I/O ports.  
Input  
(1)  
Input/Output  
PTB[0:7]  
1. The PTB pins are not available on the 8-pin packages.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA General Description 31  
General Description  
1.7 Pin Function Priority  
Table 1-3 is meant to resolve the priority if multiple functions are enabled  
on a single pin.  
NOTE: Upon reset all pins come up as input ports regardless of the priority table.  
Table 1-3. Function Priority in Shared Pins  
Pin Name  
PTA[0]  
PTA[1]  
PTA[2]  
PTA[3]  
PTA[4]  
PTA[5]  
Highest-to-Lowest Priority Sequence  
AD0 TCH0 KBI[0] PTA[0]  
AD1 TCH1 KBI[1] PTA[1]  
IRQ KBI[2] PTA[2]  
RST KBI[3] PTA[3]  
OSC2 AD2 KBI[4] PTA[4]  
OSC1 AD3 KBI[5] PTA[5]  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
32 General Description MOTOROLA  
Data Sheet MC68HC908QY4  
Section 2. Memory  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .33  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.2 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory  
space. The memory map, shown in Figure 2-1, includes:  
4096 bytes of user FLASH for MC68HC908QT4 and  
MC68HC908QY4  
1536 bytes of user FLASH for MC68HC908QT2,  
MC68HC908QT1, MC68HC908QY2, and MC68HC908QY1  
128 bytes of random access memory (RAM)  
48 bytes of user-defined vectors, located in FLASH  
416 bytes of monitor read-only memory (ROM)  
1536 bytes of FLASH program and erase routines, located in  
ROM  
2.3 Unimplemented Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU  
operation. In Figure 2-1 and in register figures in this document,  
unimplemented locations are shaded.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Memory  
33  
Memory  
$0000  
$003F  
I/O REGISTERS  
64 BYTES  
$0040  
$007F  
RESERVED  
64 BYTES  
$0080  
$00FF  
RAM  
128 BYTES  
$0100  
$27FF  
$0100  
$27FF  
UNIMPLEMENTED  
9984 BYTES  
UNIMPLEMENTED  
9984 BYTES  
$2800  
$2DFF  
$2800  
$2DFF  
AUXILIARY ROM  
1536 BYTES  
AUXILIARY ROM  
1536 BYTES  
$2E00  
$EDFF  
$2E00  
UNIMPLEMENTED  
49152 BYTES  
UNIMPLEMENTED  
51712 BYTES  
$F7FF  
$EE00  
$FDFF  
FLASH MEMORY  
MC68HC908QT4 AND MC68HC908QY4  
4096 BYTES  
$F800  
$FDFF  
FLASH MEMORY  
1536 BYTES  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (SRSR)  
MC68HC908QT1, MC68HC908QT2,  
MC68HC908QY1, and MC68HC908QY2  
Memory Map  
BREAK AUXILIARY REGISTER (BRKAR)  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED FOR FLASH TEST CONTROL REGISTER (FLTCR)  
FLASH CONTROL REGISTER (FLCR)  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
LVISR  
$FE0D  
$FE0F  
RESERVED FOR FLASH TEST  
3 BYTES  
$FE10  
MONITOR ROM 416 BYTES  
$FFAF  
$FFB0  
$FFBD  
FLASH  
14 BYTES  
$FFBE  
$FFBF  
$FFC0  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
RESERVED FLASH  
INTERNAL OSCILLATOR TRIM VALUE  
$FFC1  
RESERVED FLASH  
$FFC2  
$FFCF  
FLASH  
14 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
Figure 2-1. Memory Map  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
34 Memory MOTOROLA  
Memory  
Reserved Memory Locations  
2.4 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU  
operation. In Figure 2-1 and in register figures in this document,  
reserved locations are marked with the word Reserved or with the  
letter R.  
2.5 Input/Output (I/O) Section  
Addresses $0000$003F, shown in Figure 2-2, contain most of the  
control, status, and data registers. Additional I/O registers have these  
addresses:  
$FE00 Break status register, BSR  
$FE01 Reset status register, SRSR  
$FE02 Break auxiliary register, BRKAR  
$FE03 Break flag control register, BFCR  
$FE04 Interrupt status register 1, INT1  
$FE05 Interrupt status register 2, INT2  
$FE06 Interrupt status register 3, INT3  
$FE07 Reserved  
$FE08 FLASH control register, FLCR  
$FE09 Break address register high, BRKH  
$FE0A Break address register low, BRKL  
$FE0B Break status and control register, BRKSCR  
$FE0C LVI status register, LVISR  
$FE0D Reserved  
$FFBE FLASH block protect register, FLBPR  
$FFC0 Internal OSC trim value Optional  
$FFFF COP control register, COPCTL  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Memory  
35  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
PTA0  
U
Read:  
0
AWUL  
PTA2  
Port A Data Register  
PTA5  
U
PTA4  
U
PTA3  
U
PTA1  
U
$0000  
(PTA) Write:  
See page 163.  
Reset:  
Read:  
U
0
U
Port B Data Register  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
$0001  
$0002  
$0003  
(PTB) Write:  
See page 167.  
Reset:  
Read:  
Unaffected by reset  
Unimplemented  
Unimplemented  
0
0
0
Data Direction Register A  
(DDRA) Write:  
DDRA5  
DDRA4  
DDRA3  
DDRA1  
DDRA0  
$0004  
$0005  
See page 164.  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB) Write:  
See page 168.  
Reset:  
Read:  
Unimplemented  
Unimplemented  
$0006  
$000A  
0
0
Port A Input Pullup Enable  
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000B  
$000C  
Register (PTAPUE) Write:  
See page 166.  
Reset:  
0
0
0
0
0
0
Read:  
Port B Input Pullup Enable  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Register (PTBPUE) Write:  
See page 169.  
Reset:  
0
0
0
0
0
0
0
0
Unimplemented  
Unimplemented  
$000D  
$0019  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 6)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
36 Memory MOTOROLA  
Memory  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
IMASKK MODEK  
$001A Control Register (KBSCR) Write:  
See page 183.  
Reset:  
0
0
0
AWUIE  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
KBIE2  
0
$001B Enable Register (KBIER) Write:  
See page 184.  
Reset:  
0
$001C  
$001D  
$001E  
Unimplemented  
Read:  
0
0
0
0
0
0
0
IRQF1  
0
0
ACK1  
0
IRQ Status and Control  
IMASK1 MODE1  
Register (INTSCR) Write:  
See page 176.  
Reset:  
0
R
0
0
R
0
0
Read:  
Configuration Register 2  
IRQPUD IRQEN  
OSCOPT1 OSCOPT0  
R
0
RSTEN  
(1)  
(CONFIG2) Write:  
See page 56.  
(2)  
Reset:  
0
0
0
0
0
1. One-time writable register after each reset.  
2. RSTEN reset to logic 0 by a power-on reset (POR) only.  
Read:  
Configuration Register 1  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
STOP  
0
COPD  
0
(1)  
$001F  
(CONFIG1) Write:  
See page 57.  
(2)  
Reset:  
0
0
0
0
0
0
1. One-time writable register after each reset.  
2. LVI5OR3 reset to logic 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
Register (TSC) Write:  
TRST  
0
See page 141.  
Reset:  
0
0
1
0
0
0
0
Read: Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
TIM Counter Register High  
(TCNTH) Write:  
See page 144.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM Counter Register  
Low (TCNTL) Write:  
See page 144.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 6)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Memory 37  
Memory  
Addr.  
Register Name  
Bit 7  
Bit 15  
1
6
Bit 14  
1
5
Bit 13  
1
4
Bit 12  
1
3
Bit 11  
1
2
Bit 10  
1
1
Bit 9  
1
Bit 0  
Read:  
TIM Counter Modulo  
Bit 8  
$0023 Register High (TMODH) Write:  
See page 144.  
Reset:  
1
Bit 0  
1
Read:  
TIM Counter Modulo  
Register Low (TMODL) Write:  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
$0024  
See page 144.  
Reset:  
1
Read: CH0F  
TIM Channel 0 Status and  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
$0025 Control Register (TSC0) Write:  
0
0
See page 145.  
Reset:  
Read:  
TIM Channel 0  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
$0026  
$0027  
Register High (TCH0H) Write:  
See page 149.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Register Low (TCH0L) Write:  
Bit 7  
Bit 6  
Bit 5  
0
Bit 2  
Bit 1  
Bit 0  
See page 149.  
Reset:  
Read: CH1F  
TIM Channel 1 Status and  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
$0028 Control Register (TSC1) Write:  
0
0
See page 145.  
Reset:  
0
0
Read:  
TIM Channel 1  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
$0029  
$002A  
Register High (TCH1H) Write:  
See page 149.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 1  
Register Low (TCH1L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 149.  
Reset:  
Unimplemented  
Unimplemented  
$002B  
$0035  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 6)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
38 Memory MOTOROLA  
Memory  
Input/Output (I/O) Section  
Addr.  
$0036  
$0037  
Register Name  
Bit 7  
R
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
ECGON  
0
Bit 0  
Read:  
ECGST  
Oscillator Status Register  
(OSCSTAT) Write:  
See page 111.  
Reset:  
0
0
Unimplemented Read:  
Oscillator Trim Register Read:  
TRIM7  
1
TRIM6  
0
TRIM5  
0
TRIM4  
0
TRIM3  
0
TRIM2  
0
TRIM1  
0
TRIM0  
0
(OSCTRIM)  
See page 112.  
$0038  
Write:  
Reset:  
Unimplemented  
$0039  
$003B  
Unimplemented  
Read: COCO  
ADC Status and Control  
AIEN  
0
ADCO  
0
CH4  
1
CH3  
1
CH2  
1
CH1  
1
CH0  
1
$003C  
$003D  
Register (ADSCR) Write:  
See page 157.  
Reset:  
0
Unimplemented  
Read:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
0
AD1  
0
AD0  
0
ADC Data Register  
$003E  
$003F  
$FE00  
(ADR) Write:  
See page 159.  
Reset:  
Indeterminate after reset  
Read:  
0
0
ADC Input Clock Register  
ADIV2  
ADIV1  
ADIV0  
(ADICLK) Write:  
See page 159.  
Reset:  
Read:  
0
0
0
0
0
0
0
SBSW  
See note 1  
0
0
Break Status Register  
R
R
R
R
R
R
R
(BSR) Write:  
See page 208.  
Reset:  
1. Writing a logic 0 clears SBSW.  
Read: POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
0
LVI  
0
0
0
SIM Reset Status Register  
(SRSR) Write:  
See page 96.  
$FE01  
POR:  
1
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 6)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Memory 39  
Memory  
Addr.  
Register Name  
Break Auxiliary  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
0
0
BDCOP  
$FE02  
Register (BRKAR) Write:  
See page 207.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Break Flag Control  
BCFE  
R
R
R
R
R
R
R
$FE03  
Register (BFCR) Write:  
See page 209.  
Reset:  
0
0
Read:  
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
R
0
0
R
0
0
R
Interrupt Status Register 1  
$FE04  
$FE05  
(INT1) Write:  
R
0
See page 176.  
Reset:  
0
Read:  
IF14  
R
0
0
0
0
0
0
0
0
Interrupt Status Register 2  
(INT2) Write:  
R
0
R
0
R
0
R
0
R
0
R
0
R
See page 176.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
$FE06  
$FE07  
(INT3) Write:  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
See page 176.  
Reset:  
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
0
MASS  
0
ERASE  
0
PGM  
0
$FE08  
$FE09  
$FE0A  
$FE0B  
(FLCR) Write:  
See page 47.  
Reset:  
Read:  
0
Bit 15  
0
0
Bit 14  
0
0
Bit 13  
0
0
Bit 12  
0
Break Address High  
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Register (BRKH) Write:  
See page 206.  
Reset:  
Read:  
Break Address low  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register (BRKL) Write:  
See page 206.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
Register (BRKSCR) Write:  
See page 205.  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 6)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
40 Memory MOTOROLA  
Memory  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: LVIOUT  
0
0
0
0
0
0
R
LVI Status Register  
$FE0C  
(LVISR) Write:  
See page 199.  
Reset:  
0
0
0
0
0
0
0
0
Reserved for FLASHTest  
R
R
R
R
R
R
R
R
$FE0D  
$FE0F  
Reserved for FLASHTest  
Unimplemented  
R
R
R
R
R
R
R
R
$FFB0  
$FFBD  
Unimplemented  
Read:  
0
0
FLASH Block Protect  
BPR7  
0
BPR6  
0
BPR5  
0
BPR4  
0
BPR3  
0
BPR2  
0
BPR1  
0
$FFBE  
$FFBF  
Register (FLBPR) Write:  
See page 53.  
Reset:  
Unimplemented  
Read:  
TRIM7  
TRIM6  
TRIM5  
TRIM4  
TRIM3  
TRIM2  
TRIM1  
TRIM0  
Internal Oscillator Trim  
$FFC0  
$FFC1  
Write:  
Value (Optional)  
Reset:  
1
0
0
0
0
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Unimplemented  
Unimplemented  
$FFC2  
$FFCF  
Read:  
LOW BYTE OF RESET VECTOR  
WRITING CLEARS COP COUNTER (ANY VALUE)  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 192.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 6)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Memory 41  
Memory  
.
Table 2-1. Vector Addresses  
Vector Priority Vector Address  
Vector  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
ADC conversion complete vector (high)  
ADC conversion complete vector (low)  
Keyboard vector (high)  
Lowest  
IF15  
IF14  
Keyboard vector (low)  
IF13  
Not used  
IF6  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
TIM overflow vector (high)  
TIM overflow vector (low)  
TIM Channel 1 vector (high)  
TIM Channel 1 vector (low)  
TIM Channel 0 vector (high)  
TIM Channel 0 vector (low)  
Not used  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IRQ vector (high)  
IRQ vector (low)  
SWI vector (high)  
SWI vector (low)  
Reset vector (high)  
Highest  
Reset vector (low)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
42 Memory MOTOROLA  
Data Sheet MC68HC908QY4  
Section 3. Random-Access Memory (RAM)  
3.1 Contents  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
3.2 Introduction  
This section describes the 128 bytes of random-access memory (RAM).  
3.3 Functional Description  
Addresses $0080$00FF are RAM locations. The location of the stack  
RAM is programmable. The 16-bit stack pointer allows the stack to be  
anywhere in the 64-Kbyte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Before processing an interrupt, the central processor unit (CPU) uses  
five bytes of the stack to save the contents of the CPU registers.  
NOTE: For M6805, M146805, and M68HC05 compatibility, the H register is not  
stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Random-Access Memory (RAM)  
43  
Random-Access Memory (RAM)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
44  
Random-Access Memory (RAM)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 4. FLASH Memory (FLASH)  
4.1 Contents  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .48  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .49  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .53  
4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
4.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
The FLASH memory can be read, programmed, and erased from a  
single external supply. The program and erase operations are enabled  
through the use of an internal charge pump.  
MC68HC908QY4 and MC68HC908QT4: 4096 bytes user FLASH  
from $EE00$FDFF  
MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 and  
MC68HC908QT1: 1536 bytes user FLASH from $F800$FDFF  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA FLASH Memory (FLASH) 45  
FLASH Memory (FLASH)  
4.3 Functional Description  
The FLASH memory consists of an array of 4096 or 1536 bytes with an  
additional 48 bytes for user vectors. The minimum size of FLASH  
memory that can be erased is 64 bytes; and the maximum size of FLASH  
memory that can be programmed in a program cycle is 32 bytes (a row).  
Program and erase operations are facilitated through control bits in the  
FLASH control register (FLCR). Details for these operations appear later  
in this section. The address ranges for the user memory and vectors are:  
$EE00 $FDFF; user memory, 4096 bytes: MC68HC908QY4 and  
MC68HC908QT4  
$F800 $FDFF; user memory, 1536 bytes: MC68HC908QY2,  
MC68HC908QT2, MC68HC908QY1 and MC68HC908QT1  
$FFD0 $FFFF; user interrupt vectors, 48 bytes.  
NOTE: An erased bit reads as logic 1 and a programmed bit reads as logic 0.  
A security feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
46  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Control Register  
4.4 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address: $FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
Figure 4-1. FLASH Control Register (FLCR)  
HVEN High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the  
memory for either program or erase operation. It can only be set if  
either PGM =1 or ERASE =1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation.  
1 = Mass Erase operation selected  
0 = Mass Erase operation unselected  
ERASE Erase Control Bit  
This read/write bit configures the memory for erase operation.  
ERASE is interlocked with the PGM bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
FLASH Memory (FLASH)  
47  
FLASH Memory (FLASH)  
4.5 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page  
consists of 64 consecutive bytes starting from addresses $XX00,  
$XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also  
forms a page. Any FLASH memory page can be erased alone.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control  
register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of  
the block to be erased.  
4. Wait for a time, tnvs (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 1 ms or 4 ms).  
7. Clear the ERASE bit.  
8. Wait for a time, tnvh (minimum 5 µs).  
9. Clear the HVEN bit.  
10. After time, trcv (typical 1 µs), the memory can be accessed in read  
mode again.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
In applications that need up to 10,000 program/erase cycles, use the  
4 ms page erase specification to get improved long-term reliability. Any  
application can use this 4 ms page erase specification. However, in  
applications where a FLASH location will be erased and reprogrammed  
less than 1000 times, and speed is important, use the 1 ms page erase  
specification to get a lower minimum erase time.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
48  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Mass Erase Operation  
4.6 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory to read  
as logic 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control  
register.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH  
memory address range.  
4. Wait for a time, tnvs (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 4 ms).  
7. Clear the ERASE and MASS bits.  
NOTE: Mass erase is disabled whenever any block is protected (FLBPR does  
not equal $FF).  
8. Wait for a time, tnvh1 (minimum 100 µs).  
9. Clear the HVEN bit.  
10. After time, trcv (typical 1 µs), the memory can be accessed in read  
mode again.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
4.7 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 32 consecutive bytes starting from addresses $XX00,  
$XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the  
following step-by-step procedure to program a row of FLASH memory  
Figure 4-2 shows a flowchart of the programming algorithm.  
NOTE: Only bytes which are currently $FF may be programmed.  
1. When in monitor mode, with security sequence failed (see 9.5 Security), write to the FLASH  
block protect register instead of any FLASH address.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
FLASH Memory (FLASH)  
49  
FLASH Memory (FLASH)  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH location within the address range  
desired.  
4. Wait for a time, tnvs (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tpgs (minimum 5 µs).  
7. Write data to the FLASH address being programmed(1).  
8. Wait for time, tPROG (minimum 30 µs).  
9. Repeat step 7 and 8 until all desired bytes within the row are  
programmed.  
10. Clear the PGM bit(1).  
11. Wait for time, tnvh (minimum 5 µs).  
12. Clear the HVEN bit.  
13. After time, trcv (typical 1 µs), the memory can be accessed in read  
mode again.  
NOTE: The COP register at location $FFFF should not be written between steps  
5-12, when the HVEN bit is set. Since this register is located at a valid  
FLASH address, unpredictable behavior may occur if this location is  
written while HVEN is set.  
This program sequence is repeated throughout the memory until all data  
is programmed.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum, see 18.14  
Memory Characteristics.  
1. The time between each FLASH address change, or the time between the last FLASH address  
programmed to clearing PGM bit, must not exceed the maximum programming time, t  
maximum.  
PROG  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
50 FLASH Memory (FLASH) MOTOROLA  
FLASH Memory (FLASH)  
FLASH Protection  
4.8 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made to protect  
blocks of memory from unintentional erase or program operations due to  
system malfunction. This protection is done by use of a FLASH block  
protect register (FLBPR). The FLBPR determines the range of the  
FLASH memory which is to be protected. The range of the protected  
area starts from a location defined by FLBPR and ends to the bottom of  
the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either ERASE or PROGRAM operations.  
NOTE: In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit.  
When the FLBPR is programmed with all 0 s, the entire memory is  
protected from being programmed and erased. When all the bits are  
erased (all 1s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of  
memory. The address ranges are shown in 4.9 FLASH Block Protect  
Register. Once the FLBPR is programmed with a value other than $FF,  
any erase or program of the FLBPR or the protected block of FLASH  
memory is prohibited. Mass erase is disabled whenever any block is  
protected (FLBPR does not equal $FF). The FLBPR itself can be erased  
or programmed only with an external voltage, VTST, present on the IRQ  
pin. This voltage also allows entry from reset into the monitor mode.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
FLASH Memory (FLASH)  
51  
FLASH Memory (FLASH)  
Algorithm for Programming  
a Row (32 Bytes) of FLASH Memory  
1
2
3
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tnvs  
SET HVEN BIT  
WAIT FOR A TIME, tpgs  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
Y
9
PROGRAMMING  
THIS ROW?  
N
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tnvh  
CLEAR HVEN BIT  
11  
12  
13  
NOTES:  
The time between each FLASH address change (step 6 to step 9),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 6 to step 9)  
WAIT FOR A TIME, trcv  
END OF PROGRAMMING  
must not exceed the maximum programming  
time, t  
max.  
PROG  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 4-2. FLASH Programming Flowchart  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
52 FLASH Memory (FLASH) MOTOROLA  
FLASH Memory (FLASH)  
FLASH Block Protect Register  
4.9 FLASH Block Protect Register  
The FLASH block protect register is implemented as a byte within the  
FLASH memory, and therefore can only be written during a  
programming sequence of the FLASH memory. The value in this register  
determines the starting address of the protected range within the FLASH  
memory.  
Address: $FFBE  
Bit 7  
BPR7  
U
6
BPR6  
U
5
BPR5  
U
4
BPR4  
U
3
BPR3  
U
2
BPR2  
U
1
BPR1  
U
Bit 0  
BPR0  
U
Read:  
Write:  
Reset:  
U = Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 4-3. FLASH Block Protect Register (FLBPR)  
BPR[7:0] FLASH Protection Register Bits [7:0]  
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory  
address. Bits [15:14] are logic 1s and bits [5:0] are logic 0s.  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory, at $FFFF. With  
this mechanism, the protect start address can be XX00, XX40, XX80,  
or XXC0 within the FLASH memory. See Figure 4-4 and Table 4-1.  
16-BIT MEMORY ADDRESS  
START ADDRESS OF  
FLBPR VALUE  
1
1
0
0
0
0
0
0
FLASH BLOCK PROTECT  
Figure 4-4. FLASH Block Protect Start Address  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA FLASH Memory (FLASH) 53  
FLASH Memory (FLASH)  
Table 4-1. Examples of Protect Start Address  
BPR[7:0]  
$00$B8  
Start of Address of Protect Range  
The entire FLASH memory is protected.  
$EE40 (1110 1110 0100 0000)  
$EE80 (1110 1110 1000 0000)  
$EEC0 (1110 1110 1100 0000)  
$EF00 (1110 1111 0000 0000)  
$B9 (1011 1001)  
$BA (1011 1010)  
$BB (1011 1011)  
$BC (1011 1100)  
and so on...  
$DE (1101 1110)  
$DF (1101 1111)  
$F780 (1111 0111 1000 0000)  
$F7C0 (1111 0111 1100 0000)  
$FF80 (1111 1111 1000 0000)  
FLBPR, OSCTRIM, and vectors are protected  
$FE (1111 1110)  
$FF  
The entire FLASH memory is not protected.  
4.10 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a  
program or erase operation on the FLASH, or the operation will  
discontinue and the FLASH will be on standby mode.  
4.11 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a  
program or erase operation on the FLASH, or the operation will  
discontinue and the FLASH will be on standby mode  
NOTE: Standby mode is the power-saving mode of the FLASH module in which  
all internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
54  
FLASH Memory (FLASH)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 5. Configuration Register (CONFIG)  
5.1 Contents  
5.2  
5.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
5.2 Introduction  
This section describes the configuration registers (CONFIG1 and  
CONFIG2). The configuration registers enable or disable the following  
options:  
Stop mode recovery time (32 × BUSCLKX4 cycles or  
4096 × BUSCLKX4 cycles)  
STOP instruction  
Computer operating properly module (COP)  
COP reset period (COPRS): (21324) × BUSCLKX4 or  
(21824) × BUSCLKX4  
Low-voltage inhibit (LVI) enable and trip voltage selection  
OSC option selection  
IRQ pin  
RST pin  
Auto wake-up timeout period  
5.3 Functional Description  
The configuration registers are used in the initialization of various  
options. The configuration registers can be written once after each reset.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Configuration Register (CONFIG)  
55  
Configuration Register (CONFIG)  
Most of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the microcontroller unit (MCU) it  
is recommended that this register be written immediately after reset. The  
configuration register is located at $001E and $001F, and may be read  
at anytime.  
NOTE: The CONFIG registers are one-time writable by the user after each  
reset. Upon a reset, the CONFIG registers default to predetermined  
settings as shown in Figure 5-1 and Figure 5-2.  
Address: $001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
IRQPUD IRQEN  
R
OSCOPT1 OSCOPT0  
R
R
RSTEN  
0
0
0
0
0
0
0
0
0
0
0
0
U
0
0
0
R
= Reserved  
U = Unaffected  
Figure 5-1 Configuration Register 2 (CONFIG2)  
IRQPUD IRQ Pin Pullup Control Bit  
1 = Internal pullup is disconnected  
0 = Internal pullup is connected between IRQ pin and VDD  
IRQEN IRQ Pin Function Selection Bit  
1 = Interrupt request function active in pin  
0 = Interrupt request function inactive in pin  
OSCOPT1 and OSCOPT0 Selection Bits for Oscillator Option  
(0, 0) Internal oscillator  
(0, 1) External oscillator  
(1, 0) External RC oscillator  
(1, 1) External XTAL oscillator  
RSTEN RST Pin Function Selection  
1 = Reset function active in pin  
0 = Reset function inactive in pin  
NOTE: The RSTEN bit is cleared by a power-on reset (POR) only. Other resets  
will leave this bit unaffected.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
56  
Configuration Register (CONFIG)  
MOTOROLA  
Configuration Register (CONFIG)  
Functional Description  
Address: $001F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
STOP  
COPD  
Write:  
Reset:  
POR:  
0
0
0
0
0
0
U
0
0
0
0
0
0
0
0
0
R
= Reserved  
U = Unaffected  
Figure 5-2 Configuration Register 1 (CONFIG1)  
COPRS (Out of STOP Mode) COP Reset Period Selection Bit  
1 = COP reset short cycle = (213 24) × BUSCLKX4  
0 = COP reset long cycle = (218 24) × BUSCLKX4  
COPRS (In STOP Mode) Auto Wake-up Period Selection Bit  
1 = Auto wake-up short cycle = (29) × INTRCOSC  
0 = Auto wake-up long cycle = (214) × INTRCOSC  
LVISTOP LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the  
LVI to operate during stop mode. Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD LVI Power Disable Bit  
LVIPWRD disables the LVI module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Configuration Register (CONFIG)  
57  
Configuration Register (CONFIG)  
LVI5OR3 LVI 5-V or 3-V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module. The  
voltage mode selected for the LVI should match the operating VDD for  
the LVIs voltage trip points for each of the modes.  
1 = LVI operates in 5-V mode  
0 = LVI operates in 3-V mode  
NOTE: The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other  
resets will leave this bit unaffected.  
SSREC Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of  
32 BUSCLKX4 cycles instead of a 4096 BUSCLKX4 cycle delay.  
1 = Stop mode recovery after 32 BUSCLKX4 cycles  
0 = Stop mode recovery after 4096 BUSCLKX4 cycles  
NOTE: Exiting stop mode by an LVI reset will result in the long stop recovery.  
When using the LVI during normal operation but disabling during stop  
mode, the LVI will have an enable time of tEN. The system  
stabilization time for power-on reset and long stop recovery (both  
4096 BUSCLKX4 cycles) gives a delay longer than the LVI enable  
time for these startup scenarios. There is no period where the MCU is  
not protected from a low-power condition. However, when using the  
short stop recovery configuration option, the 32 BUSCLKX4 delay  
must be greater than the LVIs turn on time to avoid a period in startup  
where the LVI is not protecting the MCU.  
STOP STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
58  
Configuration Register (CONFIG)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 6. Central Processor Unit (CPU)  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
6.2 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Motorola document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Central Processor Unit (CPU) 59  
Central Processor Unit (CPU)  
6.3 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
Low-power stop and wait modes  
6.4 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
60 Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
7
0
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
7
V 1  
1
H
I
N Z C CONDITION CODE REGISTER (CCR)  
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
6.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Central Processor Unit (CPU) 61  
Central Processor Unit (CPU)  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
6.4.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct  
address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
62  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
6.4.4 Program Counter  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
6.4.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and 5  
are set permanently to logic 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
3
I
2
1
Bit 0  
C
Read:  
Write:  
Reset:  
H
X
N
X
Z
X
X
1
X
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Central Processor Unit (CPU) 63  
Central Processor Unit (CPU)  
V Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or  
add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA  
instruction uses the states of the H and C flags to determine the  
appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
64  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Arithmetic/Logic Unit (ALU)  
N Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting  
bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions such as bit test and  
branch, shift, and rotate also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.5 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Motorola document order  
number CPU08RM/AD) for a description of the instructions and  
addressing modes and more detail about the architecture of the CPU.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Central Processor Unit (CPU)  
65  
Central Processor Unit (CPU)  
6.6.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
6.6.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
6.7 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break  
interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with  
$FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
66  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
6.8 Instruction Set Summary  
Table 6-1 provides a summary of the M68HC08 instruction set.  
Table 6-1. Instruction Set Summary (Sheet 1 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
2
3
4
4
3
2
4
5
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
FB  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
IMM  
IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F4  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
58  
C
0
68 ff  
78  
b7  
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37 dd  
47  
4
1
1
4
3
5
57  
C
Arithmetic Shift Right  
67 ff  
77  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
REL  
REL  
25 rr  
27 rr  
3
3
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Central Processor Unit (CPU)  
67  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 2 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
REL  
REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
BGT opr  
3
3
PC (PC) + 2 + rel ? (Z) | (N  
V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
REL  
REL  
REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
REL  
REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F5  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N  
V) = 1  
BLO rel  
BLS rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
REL  
REL  
25 rr  
23 rr  
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
REL  
REL  
REL  
REL  
REL  
REL  
REL  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (N  
V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
REL  
21 rr  
3
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
68 Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 3 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) 1; push (PCH)  
SP (SP) 1  
Branch to Subroutine  
REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (X) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 2 + rel ? (A) (M) = $00  
PC (PC) + 4 + rel ? (A) (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0 INH  
98  
9A  
1
2
Clear Interrupt Mask  
0
INH  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
INH  
5F  
CLRH  
Clear  
0
0
1
INH  
IX1  
IX  
SP1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
Compare A with M  
(A) (M)  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF (M)  
A (A) = $FF (M)  
X (X) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (Ones Complement)  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65 ii ii+1  
75 dd  
3
4
Compare H:X with M  
(H:X) (M:M + 1)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Central Processor Unit (CPU)  
69  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 4 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
CPX #opr  
IMM  
DIR  
EXT  
IX2  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX opr  
CPX ,X  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
Compare X with M  
(X) (M)  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
(A)10  
DAA  
Decimal Adjust A  
U
INH  
72  
2
A (A) 1 or M (M) 1 or X (X) 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
3B dd rr  
4B rr  
5B rr  
6B ff rr  
7B rr  
9E6B ff rr  
Decrement and Branch if Not Zero  
INH  
IX1  
IX  
SP1  
DEC opr  
DECA  
M (M) 1  
A (A) 1  
X (X) 1  
M (M) 1  
M (M) 1  
M (M) 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
SP1  
SP2  
F8  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
5C  
6C ff  
7C  
9E6C ff  
4
1
1
4
3
5
INH  
Increment  
IX1  
IX  
SP1  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
IX2  
IX1  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
Jump  
PC Jump Address  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) 1  
Push (PCH); SP (SP) 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
A (M)  
0
IX1  
IX  
SP1  
SP2  
F6  
9EE6 ff  
9ED6 ee ff  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
70 Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 5 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
LDHX #opr  
LDHX opr  
IMM  
DIR  
45 ii jj  
55 dd  
3
4
Load H:X from M  
H:X ← (M:M + 1)  
0
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
Load X from M  
X (M)  
0
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
SP1  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
4
1
1
4
3
5
54  
0
C
Logical Shift Right  
0
64 ff  
74  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
INH  
IX1  
IX  
30 dd  
40  
4
1
1
4
3
5
M (M) = $00 (M)  
A (A) = $00 (A)  
X (X) = $00 (X)  
M (M) = $00 (M)  
M (M) = $00 (M)  
NEGX  
50  
Negate (Twos Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
60 ff  
70  
9E60 ff  
SP1  
NOP  
NSA  
No Operation  
None  
INH  
INH  
9D  
62  
1
3
Nibble Swap A  
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
SP1  
SP2  
FA  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) 1  
Push (X); SP (SP) 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
INH  
INH  
INH  
INH  
INH  
INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Central Processor Unit (CPU)  
71  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 6 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
ROL opr  
DIR  
INH  
INH  
IX1  
IX  
39 dd  
49  
4
1
1
4
3
5
ROLA  
ROLX  
59  
C
Rotate Left through Carry  
ROL opr,X  
ROL ,X  
69 ff  
79  
9E69 ff  
b7  
b0  
ROL opr,SP  
SP1  
ROR opr  
RORA  
DIR  
INH  
INH  
IX1  
IX  
36 dd  
46  
4
1
1
4
3
5
RORX  
56  
C
Rotate Right through Carry  
ROR opr,X  
ROR ,X  
ROR opr,SP  
66 ff  
76  
9E66 ff  
b7  
b0  
SP1  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
A (A) (M) (C)  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1 INH  
99  
9B  
1
2
Set Interrupt Mask  
1
INH  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
DIR  
INH  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
0
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
Subtract  
A (A) (M)  
F0  
9EE0 ff  
9ED0 ee ff  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
72 Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Sheet 7 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) 1; Push (PCH)  
SP (SP) 1; Push (X)  
SP (SP) 1; Push (A)  
SP (SP) 1; Push (CCR)  
SP (SP) 1; I 1  
SWI  
Software Interrupt  
1
INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
INH  
INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) $00 or (X) $00 or (M) $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
INH  
INH  
INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) 1  
A
C
CCR  
Accumulator  
Carry/borrow bit  
Condition code register  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
dd  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
rel  
Relative program counter offset byte  
rr  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
Offset byte in indexed, 8-bit offset addressing  
H
H
hh ll  
I
ii  
Half-carry bit  
Index register high byte  
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
U
V
X
Z
&
|
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
IMD  
Immediate source to direct destination addressing mode  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( ) Negation (twos complement)  
( )  
IX+  
#
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
6.9 Opcode Map  
The opcode map is provided in Table 6-2.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Central Processor Unit (CPU)  
73  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEGX  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
INH  
4
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
REL 2 DIR  
3
5
4
6
CBEQ  
SP1  
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
REL 2 IMM  
3
BGT  
REL 2 IMM  
3
BLE  
REL 2 IMM  
2
CMP  
3
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
1
IMM  
5
3
1
IMM 3 IX1+  
4
INH  
DIR  
SP2  
IX1  
SP1  
7
DIV  
INH  
3
2
SBC  
3
4
SBC  
5
3
4
BRSET1 BSET1  
MUL  
NSA  
SBC  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
INH  
1
1
2
2
3
2
2
2
2
2
3
2
2
3
2
INH  
DIR  
SP2  
IX1  
SP1  
4
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
DBNZ  
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
5
COM  
SP1  
5
LSR  
SP1  
9
2
CPX  
3
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
1
COMX  
SWI  
CPX  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
INH  
1
LSRA  
INH  
3
LDHX  
IMM  
1
INH  
3
3
1
1
1
1
1
1
1
1
1
1
INH  
DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRX  
INH  
4
LDHX  
DIR  
2
2
2
3
4
AND  
5
3
4
4
BRSET2 BSET2  
TAP  
TXS  
AND  
AND  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
2
INH  
INH  
2
2
2
2
2
2
2
2
IMM  
DIR  
SP2  
IX1  
SP1  
4
1
2
2
BIT  
IMM  
2
LDA  
IMM  
2
AIS  
IMM  
3
BIT  
DIR  
3
LDA  
DIR  
4
BIT  
5
BIT  
SP2  
5
LDA  
SP2  
3
4
BIT  
SP1  
4
LDA  
SP1  
5
BRCLR2 BCLR2  
STHX  
TPA  
TSX  
BIT  
3
DIR  
5
2
DIR  
4
INH  
INH  
IX1  
4
1
1
5
ROR  
SP1  
5
ASR  
SP1  
5
LSL  
SP1  
5
ROL  
SP1  
5
DEC  
SP1  
6
DBNZ  
SP1  
5
INC  
SP1  
4
TST  
SP1  
2
4
LDA  
3
LDA  
IX1  
6
BRSET3 BSET3  
ROR  
RORA  
RORX  
PULA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
INH  
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
1
3
4
STA  
5
3
4
7
BRCLR3 BCLR3  
TAX  
STA  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
DIR  
SP2  
IX1  
SP1  
4
LSL  
1
2
3
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
CLC  
EOR  
EOR  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
IMM  
DIR  
SP2  
IX1  
SP1  
4
ROL  
1
2
3
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
SEC  
ADC  
ADC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
INH  
IMM  
DIR  
SP2  
IX1  
SP1  
4
DEC  
2
CLI  
INH  
2
SEI  
INH  
1
RSP  
INH  
2
3
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
ORA  
ORA  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
IMM  
DIR  
SP2  
IX1  
SP1  
5
3
3
2
3
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX  
ADD  
ADD  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
INCX  
INH  
IMM  
DIR  
SP2  
IX1  
SP1  
3
4
INC  
2
JMP  
DIR  
4
JMP  
3
JMP  
IX1  
BRSET6 BSET6  
BMC  
INCA  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
3
BMS  
REL 2 DIR  
3
BIL  
3
TST  
1
1
2
TST  
IX  
1
4
4
6
JSR  
5
BRCLR6 BCLR6  
TSTA  
TSTX  
NOP  
BSR  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
INH  
5
INH  
4
INH  
2
2
2
REL  
DIR  
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
2
3
4
LDX  
5
3
4
BRSET7 BSET7  
MOV  
DD  
1
CLRA  
INH  
MOV  
DIX+  
1
CLRX  
INH  
MOV  
IX+D  
LDX  
LDX  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
1
1
IMM  
DIR  
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
3
CLR  
IX1  
4
CLR  
SP1  
2
CLR  
IX  
2
AIX  
IMM  
3
4
STX  
5
3
4
BRCLR7 BCLR7  
DIR DIR  
STX  
STX  
STX  
STX  
3
2
REL 2 DIR  
3
1
DIR  
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
LSB  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
N O N - D I S C L O S U R E  
A G R E E M E N T  
R E Q U I R E D  
Data Sheet MC68HC908QY4  
Section 7. System Integration Module (SIM)  
7.1 Contents  
7.2  
7.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79  
7.4  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .79  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .80  
7.4.1  
7.4.2  
7.4.3  
7.5  
7.5.1  
7.5.2  
7.5.2.1  
7.5.2.2  
7.5.2.3  
7.5.2.4  
7.5.2.5  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .80  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .81  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Computer Operating Properly (COP) Reset. . . . . . . . . . .83  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84  
7.6  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .85  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .85  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .85  
7.6.1  
7.6.2  
7.6.3  
7.7  
7.7.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .92  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
7.7.1.1  
7.7.1.2  
7.7.2  
7.7.2.1  
7.7.2.2  
7.7.2.3  
7.7.3  
7.7.4  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA System Integration Module (SIM) 75  
System Integration Module (SIM)  
7.7.5  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . .93  
7.8  
7.8.1  
7.8.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
7.9  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . .96  
Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . . .98  
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7.9.1  
7.9.2  
7.9.3  
7.2 Introduction  
This section describes the system integration module (SIM), which  
supports up to 24 external and/or internal interrupts. Together with the  
central processor unit (CPU), the SIM controls all microcontroller unit  
(MCU) activities. A block diagram of the SIM is shown in Figure 7-1.  
Figure 7-2 is a summary of the SIM I/O registers. The SIM is a system  
state controller that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and  
computer operating properly (COP) timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
76 System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
BUSCLKX4 (FROM OSCILLATOR)  
BUSCLKX2 (FROM OSCILLATOR)  
÷2  
V
DD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
LVI RESET (FROM LVI MODULE)  
SIM RESET STATUS REGISTER  
FORCED MON MODE ENTRY (FROM MENRST MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 7-1. SIM Block Diagram  
Table 7-1. Signal Name Conventions  
Signal Name  
Description  
BUSCLKX4  
Buffered clock from the internal, RC or XTAL oscillator circuit.  
The BUSCLKX4 frequency divided by two. This signal is again divided by two in the SIM  
to generate the internal bus clocks (bus clock = BUSCLKX4 ÷ 4).  
BUSCLKX2  
Address bus  
Data bus  
PORRST  
IRST  
Internal address bus  
Internal data bus  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA System Integration Module (SIM) 77  
System Integration Module (SIM)  
Addr.  
Register Name  
Bit 7  
R
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
SBSW  
Note 1  
0
Break Status Register  
$FE00  
(BSR) Write:  
See page 99.  
Reset:  
0
0
1. Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status  
$FE01  
$FE02  
Register (SRSR) Write:  
See page 96.  
POR:  
1
0
0
0
0
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
Break Flag Control  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE04  
$FE05  
$FE06  
Register (BFCR) Write:  
See page 98.  
Reset:  
0
0
Read:  
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
0
R
0
0
R
Interrupt Status  
Register 1 (INT1) Write:  
R
0
R
See page 91.  
Reset:  
0
0
Read:  
IF14  
R
0
0
0
0
0
0
0
0
Interrupt Status  
Register 2 (INT2) Write:  
R
0
R
0
R
0
R
0
R
R
0
R
See page 91.  
Reset:  
0
0
Read:  
0
0
0
0
0
0
0
IF15  
R
Interrupt Status  
Register 3 (INT3) Write:  
R
0
R
0
R
0
R
0
R
0
R
R
0
See page 92.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
Figure 7-2. SIM I/O Register Summary  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
78 System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
RST and IRQ Pins Initialization  
7.3 RST and IRQ Pins Initialization  
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively.  
RST and IRQ functions can be activated by programing CONFIG2  
accordingly. Refer to Section 5. Configuration Register (CONFIG).  
7.4 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, BUSCLKX2, as shown in Figure 7-3.  
FROM  
OSCILLATOR  
BUSCLKX4  
BUSCLKX2  
SIM COUNTER  
FROM  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 7-3. SIM Clock Signals  
7.4.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency  
(BUSCLKX4) divided by four.  
7.4.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after  
the 4096 BUSCLKX4 cycle POR time out has completed. The RST pin  
is driven low by the SIM during this entire period. The IBUS clocks start  
upon completion of the time out.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
79  
System Integration Module (SIM)  
7.4.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
BUSCLKX4 to clock the SIM counter. The CPU and peripheral clocks do  
not become active until after the stop delay time out. This time out is  
selectable as 4096 or 32 BUSCLKX4 cycles. See 7.8.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
7.5 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFEFFFF ($FEFEFEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 7.6 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR). See 7.9 SIM Registers.  
7.5.1 External Pin Reset  
The RST pin circuits include an internal pullup device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the SIM  
reset status register (SRSR) is set as long as RST is held low for a  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
80  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
minimum of 67 BUSCLKX4 cycles, assuming that the POR was not the  
source of the reset. See Table 7-2 for details. Figure 7-4 shows the  
relative timing.  
Table 7-2. PIN Bit Set Timing  
Reset Type  
POR  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
BUSCLKX2  
RST  
VECT H VECT L  
ADDRESS BUS PC  
Figure 7-4. External Reset Timing  
7.5.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 BUSCLKX4  
cycles to allow resetting of external peripherals. The internal reset signal  
IRST continues to be asserted for an additional 32 cycles (see  
Figure 7-5). An internal reset can be caused by an illegal address, illegal  
opcode, COP time out, LVI, or POR (see Figure 7-6).  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
BUSCLKX4  
ADDRESS  
BUS  
VECTOR HIGH  
Figure 7-5. Internal Reset Timing  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA System Integration Module (SIM) 81  
System Integration Module (SIM)  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 7-6. Sources of Internal Reset  
NOTE: For POR resets, the SIM cycles through 4096 BUSCLKX4 cycles during  
which the SIM forces the RST pin low. The internal reset signal then  
follows the sequence from the falling edge of RST shown in Figure 7-5.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
7.5.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU  
and memories are released from reset to allow the reset vector  
sequence to occur.  
At power on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables the oscillator to drive BUSCLKX4.  
Internal clocks to the CPU and modules are held inactive for 4096  
BUSCLKX4 cycles to allow stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
See Figure 7-7.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
82  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
BUSCLKX4  
BUSCLKX2  
RST  
ADDRESS BUS  
$FFFE  
$FFFF  
Figure 7-7. POR Recovery  
7.5.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module time out, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and stages 125 of the  
SIM counter. The SIM counter output, which occurs at least every  
(212 24) BUSCLKX4 cycles, drives the COP counter. The COP should  
be serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first time out.  
The COP module is disabled during a break interrupt with monitor mode  
when BDCOP bit is set in break auxiliary register (BRKAR).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
83  
System Integration Module (SIM)  
7.5.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic 0, the  
SIM treats the STOP instruction as an illegal opcode and causes an  
illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
7.5.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
7.5.2.5 Low-Voltage Inhibit (LVI) Reset  
The LVI asserts its output to the SIM when the VDD voltage falls to the  
LVI trip voltage VTrip. The LVI bit in the SIM reset status register (SRSR)  
is set, and the external reset pin (RST) is held low while the SIM counter  
counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later,  
the CPU and memories are released from reset to allow the reset vector  
sequence to occur. The SIM actively pulls down the (RST) pin for all  
internal reset sources.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
84  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Counter  
7.6 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter uses 12 stages for counting, followed by a 13th stage that  
triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of BUSCLKX4.  
7.6.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the oscillator to drive the bus clock state machine.  
7.6.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the  
configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then  
the stop recovery is reduced from the normal delay of 4096 BUSCLKX4  
cycles down to 32 BUSCLKX4 cycles. This is ideal for applications using  
canned oscillators that do not require long start-up times from stop  
mode. External crystal applications should use the full stop recovery  
time, that is, with SSREC cleared in the configuration register 1  
(CONFIG1).  
7.6.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter (see 7.8.2 Stop Mode  
for details.) The SIM counter is free-running after all reset states. See  
7.5.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
85  
System Integration Module (SIM)  
7.7 Exception Control  
Normal sequential program execution can be changed in three different  
ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
7.7.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to  
respond to a particular event. Figure 7-8 flow charts the handling of  
system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared).  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
processing can resume. Figure 7-9 shows interrupt entry timing.  
Figure 7-10 shows interrupt recovery timing.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
86 System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Exception Control  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
(AS MANY INTERRUPTS AS EXIST ON CHIP)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 7-8. Interrupt Processing  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
87  
System Integration Module (SIM)  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
DUMMY  
SP  
SP 1  
SP 2  
SP 3  
SP 4  
VECT H  
VECT L START ADDR  
DUMMY PC 1[7:0] PC 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 7-9. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
SP 4  
SP 3  
SP 2  
SP 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC 1[7:0] PC 1[15:8] OPCODE OPERAND  
Figure 7-10. Interrupt Recovery  
7.7.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register), and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 7-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
88  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
INT2  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 7-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2  
return-from-interrupt (RTI) instructions. However, in the case of the INT1  
RTI prefetch, this is a redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
7.7.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
89  
System Integration Module (SIM)  
7.7.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 7-3 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 7-3. Interrupt Sources  
INT  
Register  
Flag  
Vector  
Address  
(1)  
Priority  
Source  
Flag  
Mask  
Highest Reset  
$FFFE$FFFF  
$FFFC$FFFD  
$FFFA$FFFB  
$FFF6$FFF7  
$FFF4$FFF5  
$FFF2$FFF3  
$FFDE$FFDF  
SWI instruction  
IRQ pin  
IRQF1 IMASK1  
IF1  
IF3  
IF4  
IF5  
IF14  
Timer channel 0 interrupt CH0F  
Timer channel 1 interrupt CH1F  
CH0IE  
CH1IE  
TOIE  
Timer overflow interrupt  
Keyboard interrupt  
TOF  
KEYF IMASKK  
COCO AIEN  
ADC conversion  
IF15  
$FFE0$FFE1  
complete interrupt  
Lowest  
1. The I bit in the condition code register is a global mask for all interrupt sources except the  
SWI instruction.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
90  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.7.2.1 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
R
0
IF5  
R
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 7-12. Interrupt Status Register 1 (INT1)  
IF1 and IF3IF5 Interrupt Flags  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, 3, and 7 Always read 0  
7.7.2.2 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF14  
R
0
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 7-13. Interrupt Status Register 2 (INT2)  
IF14 Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources  
shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 06 Always read 0  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
91  
System Integration Module (SIM)  
7.7.2.3 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
0
0
R
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 7-14. Interrupt Status Register 3 (INT3)  
IF15 Interrupt Flags  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 17 Always read 0  
7.7.3 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
7.7.4 Break Interrupts  
The break module can stop normal program flow at a software  
programmable break point by asserting its break interrupt output. (See  
Section 17. Break Module (BREAK).) The SIM puts the CPU into the  
break state by forcing it to the SWI vector location. Refer to the break  
interrupt subsection of each module to see how each module is affected  
by the break state.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
92 System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
7.7.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a two-step clearing mechanism for example, a read  
of one register followed by the read or write of another are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
7.8 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low  
power-consumption mode for standby situations. The SIM holds the  
CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the  
condition code register, allowing interrupts to occur.  
7.8.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 7-15 shows the timing for wait mode entry.  
ADDRESS BUS  
DATA BUS  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 7-15. Wait Mode Entry Timing  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA System Integration Module (SIM) 93  
System Integration Module (SIM)  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode can also be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the break  
status register (BSR). If the COP disable bit, COPD, in the configuration  
register is logic 0, then the computer operating properly module (COP)  
is enabled and remains active in wait mode.  
Figure 7-16 and Figure 7-17 show the timing for wait recovery.  
ADDRESS BUS  
DATA BUS  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 7-16. Wait Recovery from Interrupt or Break  
32  
CYCLES  
32  
CYCLES  
ADDRESS BUS  
$6E0B  
$A6  
RST VCT H RST VCTL  
DATA BUS $A6  
$A6  
RST  
BUSCLKX4  
Figure 7-17. Wait Recovery from Internal Reset  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
94 System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
7.8.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in  
stop mode, stopping the CPU and peripherals. Stop recovery time is  
selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal  
delay of 4096 BUSCLKX4 cycles down to 32. This is ideal for the internal  
oscillator, RC oscillator, and external oscillator options which do not  
require long start-up times from stop mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time  
the recovery period. Figure 7-18 shows stop mode entry timing and  
Figure 7-19 shows the stop mode recovery time from interrupt or break  
NOTE: To minimize stop current, all pins configured as inputs should be driven  
to a logic 1 or logic 0.  
CPUSTOP  
ADDRESS BUS  
DATA BUS  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 7-18. Stop Mode Entry Timing  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
95  
System Integration Module (SIM)  
STOP RECOVERY PERIOD  
BUSCLKX4  
INTERRUPT  
ADDRESS BUS  
STOP + 2  
STOP + 2  
SP  
SP 1  
SP 2  
SP 3  
STOP +1  
Figure 7-19. Stop Mode Recovery from Interrupt  
7.9 SIM Registers  
The SIM has three memory mapped registers. Table 7-4 shows the  
mapping of these registers.  
Table 7-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
BSR  
Access Mode  
User  
SRSR  
BFCR  
User  
User  
7.9.1 SIM Reset Status Register  
This register contains seven flags that show the source of the last reset.  
Clear the SIM reset status register by reading it. A power-on reset sets  
the POR bit and clears all other bits in the register.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 7-20. SIM Reset Status Register (SRSR)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
96 System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
POR Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations  
$FFFE and $FFFF are $FF after POR while IRQB = VDD  
0 = POR or read of SRSR  
LVI Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
97  
System Integration Module (SIM)  
7.9.2 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software  
to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
=Reserved  
Figure 7-21. Break Flag Control Register (BFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
98  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
7.9.3 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break  
caused an exit from wait mode. This register is only used in emulation  
mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note 1  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a logic 0 clears SBSW.  
Figure 7-22. Break Status Register (BSR)  
SBSW SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait mode  
after exiting from a break interrupt. Clear SBSW by writing a logic 0 to  
it. Reset clears SBSW.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
System Integration Module (SIM)  
99  
System Integration Module (SIM)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
100  
System Integration Module (SIM)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 8. Oscillator Module (OSC)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
8.4  
8.4.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
8.4.1.1  
8.4.1.2  
8.4.2  
Internal Oscillator Trimming. . . . . . . . . . . . . . . . . . . . . .103  
Internal to External Clock Switching. . . . . . . . . . . . . . . .104  
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
8.4.3  
8.4.4  
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
8.5  
Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .107  
Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) . .108  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .108  
XTAL Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . .108  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109  
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109  
Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . .109  
Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . .109  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
8.6  
8.6.1  
8.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
8.7  
8.8  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .110  
CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
8.9  
8.9.1  
8.9.2  
Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . .112  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Oscillator Module (OSC) 101  
Oscillator Module (OSC)  
8.2 Introduction  
The oscillator module is used to provide a stable clock source for the  
microcontroller system and bus. The oscillator module generates two  
output clocks, BUSCLKX2 and BUSCLKX4. The BUSCLKX4 clock is  
used by the system integration module (SIM) and the computer  
operating properly module (COP). The BUSCLKX2 clock is divided by  
two in the SIM to be used as the bus clock for the microcontroller.  
Therefore the bus frequency will be one forth of the BUSCLKX4  
frequency.  
8.3 Features  
The oscillator has these four clock source options available:  
1. Internal oscillator: An internally generated, fixed frequency clock,  
trimmable to ± 5%. This is the default option out of reset.  
2. External oscillator: An external clock that can be driven directly  
into OSC1.  
3. External RC: A built-in oscillator module (RC oscillator) that  
requires an external R connection only. The capacitor is internal to  
the chip.  
4. External crystal: A built-in oscillator module (XTAL oscillator) that  
requires an external crystal or ceramic-resonator.  
8.4 Functional Description  
The oscillator contains these major subsystems:  
Internal oscillator circuit  
Internal or external clock switch control  
External clock circuit  
External crystal circuit  
External RC clock circuit  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
102  
Oscillator Module (OSC)  
MOTOROLA  
Oscillator Module (OSC)  
Functional Description  
8.4.1 Internal Oscillator  
The internal oscillator circuit is designed for use with no external  
components to provide a clock source with tolerance less than ±25%  
untrimmed. An 8-bit trimming register allows the adjust to a tolerance of  
less than ±5%.  
The internal oscillator will generate a clock of 12.8 MHz typical (INTCLK)  
resulting in a bus speed (internal clock ÷ 4) of 3.2 MHz. 3.2 MHz came  
from the maximum bus speed guaranteed at 3 V which is 4 MHz. Since  
the internal oscillator will have a ±25% tolerance (pre-trim), then the  
+25% case should not allow a frequency higher than 4 MHz:  
3.2 MHz + 25% = 4 MHz  
Figure 8-2 shows how BUSCLKX4 is derived from INTCLK and, like the  
RC oscillator, OSC2 can output BUSCLKX4 by setting OSC2EN in  
PTAPUE register. See Section 12. Input/Output (I/O) Ports.  
8.4.1.1 Internal Oscillator Trimming  
The 8-bit trimming register, OSCTRIM, allows a clock period adjust of  
+127 and 128 steps. Increasing OSCTRIM value increases the clock  
period. Trimming will allow the internal clock frequency value fit in a ±5%  
range around12.8 MHz.  
Theres an option to order a trimmed version of MC68HC908QY4. The  
trimming value will be provided in a known FLASH location, $FFC0. So  
that the user would be able to copy this byte from the FLASH to the  
OSCTRIM register right at the beginning of assembly code.  
Reset loads OSCTRIM with a default value of $80.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Oscillator Module (OSC)  
103  
Oscillator Module (OSC)  
8.4.1.2 Internal to External Clock Switching  
When external clock source (external OSC, RC, or XTAL) is desired, the  
user must perform the following steps:  
1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help  
precharge an external crystal oscillator, set PTA4 (OSC2) as an  
output and drive high for several cycles. This may help the crystal  
circuit start more robustly.  
2. Set CONFIG2 bits OSCOPT[1:0] according to Table 8-2. The  
oscillator module control logic will then set OSC1 as an external  
clock input and, if the external crystal option is selected, OSC2 will  
also be set as the clock output.  
3. Create a software delay to wait the stabilization time needed for  
the selected clock source (crystal, resonator, RC) as  
recommended by the component manufacturer. A good rule of  
thumb for crystal oscillators is to wait 4096 cycles of the crystal  
frequency, i.e., for a 4-MHz crystal, wait approximately 1 msec.  
4. After the manufacturers recommended delay has elapsed, the  
ECGON bit in the OSC status register (OSCSTAT) needs to be set  
by the user software.  
5. After ECGON set is detected, the OSC module checks for  
oscillator activity by waiting two external clock rising edges.  
6. The OSC module then switches to the external clock. Logic  
provides a glitch free transition.  
7. The OSC module first sets the ECGST bit in the OSCSTAT  
register and then stops the internal oscillator.  
NOTE: Once transition to the external clock is done, the internal oscillator will  
only be reactivated with reset. No post-switch clock monitor feature is  
implemented (clock does not switch back to internal if external clock  
dies).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
104  
Oscillator Module (OSC)  
MOTOROLA  
Oscillator Module (OSC)  
Functional Description  
8.4.2 External Oscillator  
The external clock option is designed for use when a clock signal is  
available in the application to provide a clock source to the  
microcontroller. The OSC1 pin is enabled as an input by the oscillator  
module. The clock signal is used directly to create BUSCLKX4 and also  
divided by two to create BUSCLKX2.  
In this configuration, the OSC2 pin cannot output BUSCLKX4. So the  
OSC2EN bit in the port A pullup enable register will be clear to enable  
PTA4 I/O functions on the pin.  
8.4.3 XTAL Oscillator  
The XTAL oscillator circuit is designed for use with an external crystal or  
ceramic resonator to provide an accurate clock source. In this  
configuration, the OSC2 pin is dedicated to the external crystal circuit.  
The OSC2EN bit in the port A pullup enable register has no effect when  
this clock mode is selected.  
In its typical configuration, the XTAL oscillator is connected in a Pierce  
oscillator configuration, as shown in Figure 8-1. This figure shows only  
the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five  
components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS (optional)  
NOTE: The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the crystal  
manufacturers data for more information.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Oscillator Module (OSC)  
105  
Oscillator Module (OSC)  
FROM SIM  
TO SIM  
BUSCLKX4  
TO SIM  
BUSCLKX2  
XTALCLK  
÷ 2  
SIMOSCEN  
MCU  
OSC1  
OSC2  
RS(1)  
RB  
X
1
C1  
C2  
Note 1.  
RS can be zero (shorted) when used with higher-frequency crystals. Refer to  
manufacturers data. See Section 18. Electrical Specifications for component  
value requirements.  
Figure 8-1. XTAL Oscillator External Connections  
8.4.4 RC Oscillator  
The RC oscillator circuit is designed for use with external R to provide a  
clock source with tolerance less than 25%.  
In its typical configuration, the RC oscillator requires two external  
components, one R and one C. In the MC68HC908QY4, the capacitor is  
internal to the chip. The R value should have a tolerance of 1% or less,  
to obtain a clock source with less than 25% tolerance. The oscillator  
configuration uses one component, REXT  
.
In this configuration, the OSC2 pin can be left in the reset state as PTA4.  
Or, the OSC2EN bit in the port A pullup enable register can be set to  
enable the OSC2 function on the pin without affecting the clocks.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
106 Oscillator Module (OSC) MOTOROLA  
Oscillator Module (OSC)  
Oscillator Module Signals  
OSCRCOPT  
TO SIM  
BUSCLKX4  
FROM SIM  
TO SIM  
BUSCLKX2  
INTCLK  
RCCLK  
0
1
SIMOSCEN  
EXTERNAL RC  
OSCILLATOR  
EN  
÷ 2  
1
0
PTA4  
I/O  
PTA4  
OSC2EN  
MCU  
OSC1  
PTA4/BUSCLKX4 (OSC2)  
V
DD  
See Section 18. Electrical Specifications  
for component value requirements.  
REXT  
Figure 8-2. RC Oscillator External Connections  
8.5 Oscillator Module Signals  
The following paragraphs describe the signals that are inputs to and  
outputs from the oscillator module.  
8.5.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is either an input to the crystal oscillator amplifier, an input  
to the RC oscillator circuit, or an external clock source.  
For the internal oscillator configuration, the OSC1 pin can assume other  
functions according to Table 1-3. Function Priority in Shared Pins.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Oscillator Module (OSC)  
107  
Oscillator Module (OSC)  
8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4)  
For the XTAL oscillator device, the OSC2 pin is the crystal oscillator  
inverting amplifier output.  
For the external clock option, the OSC2 pin is dedicated to the PTA4 I/O  
function. The OSC2EN bit has no effect.  
For the internal oscillator or RC oscillator options, the OSC2 pin can  
assume other functions according to Table 1-3. Function Priority in  
Shared Pins, or the output of the oscillator clock (BUSCLKX4).  
Table 8-1. OSC2 Pin Function  
Option  
OSC2 Pin Function  
Inverting OSC1  
PTA4 I/O  
XTAL oscillator  
External clock  
Internal oscillator Controlled by OSC2EN bit in PTAPUE register  
or  
OSC2EN = 0: PTA4 I/O  
RC oscillator  
OSC2EN = 1: BUSCLKX4 output  
8.5.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM)  
and enables/disables either the XTAL oscillator circuit, the RC oscillator,  
or the internal oscillator.  
8.5.4 XTAL Oscillator Clock (XTALCLK)  
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of  
the crystal (fXCLK) and comes directly from the crystal oscillator circuit.  
Figure 8-1 shows only the logical relation of XTALCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
XTALCLK is unknown and may depend on the crystal and other external  
factors. Also, the frequency and amplitude of XTALCLK can be unstable  
at start up.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
108  
Oscillator Module (OSC)  
MOTOROLA  
Oscillator Module (OSC)  
Low Power Modes  
8.5.5 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly  
proportional to the time constant of external R and internal C. Figure 8-2  
shows only the logical relation of RCCLK to OSC1 and may not  
represent the actual circuitry.  
8.5.6 Internal Oscillator Clock (INTCLK)  
INTCLK is the internal oscillator output signal. Its nominal frequency is  
fixed to 12.8 MHz, but it can be also trimmed using the oscillator  
trimming feature of the OSCTRIM register (see 8.4.1.1 Internal  
Oscillator Trimming).  
8.5.7 Oscillator Out 2 (BUSCLKX4)  
BUSCLKX4 is the same as the input clock (XTALCLK, RCCLK, or  
INTCLK). This signal is driven to the SIM module and is used to  
determine the COP cycles.  
8.5.8 Oscillator Out (BUSCLKX2)  
The frequency of this signal is equal to half of the BUSCLKX4, this signal  
is driven to the SIM for generation of the bus clocks used by the CPU  
and other modules on the MCU. BUSCLKX2 will be divided again in the  
SIM and results in the internal bus frequency being one fourth of either  
the XTALCLK, RCCLK, or INTCLK frequency.  
8.6 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power  
consumption standby modes.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Oscillator Module (OSC)  
109  
Oscillator Module (OSC)  
8.6.1 Wait Mode  
The WAIT instruction has no effect on the oscillator logic. BUSCLKX2  
and BUSCLKX4 continue to drive to the SIM module.  
8.6.2 Stop Mode  
The STOP instruction disables either the XTALCLK, the RCCLK, or  
INTCLK output, hence BUSCLKX2 and BUSCLKX4.  
8.7 Oscillator During Break Mode  
The oscillator continues to drive BUSCLKX2 and BUSCLKX4 when the  
device enters the break state.  
8.8 CONFIG2 Options  
Two CONFIG2 register options affect the operation of the oscillator  
module: OSCOPT1 and OSCOPT0. All CONFIG2 register bits will have  
a default configuration. Refer to Section 5. Configuration Register  
(CONFIG) for more information on how the CONFIG2 register is used.  
Table 8-2 shows how the OSCOPT bits are used to select the oscillator  
clock source.  
Table 8-2. Oscillator Modes  
OSCOPT1 OSCOPT0  
Oscillator Modes  
Internal Oscillator  
External Oscillator  
External RC  
0
0
1
1
0
1
0
1
External Crystal  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
110 Oscillator Module (OSC) MOTOROLA  
Oscillator Module (OSC)  
Input/Output (I/O) Registers  
8.9 Input/Output (I/O) Registers  
The oscillator module contains these two registers:  
1. Oscillator status register (OSCSTAT)  
2. Oscillator trim register (OSCTRIM)  
8.9.1 Oscillator Status Register  
The oscillator status register (OSCSTAT) contains the bits for switching  
from internal to external clock sources  
Address:  
$0036  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ECGST  
R
R
0
0
0
R
=Reserved  
Figure 8-3. Oscillator Status Register (OSCSTAT)  
ECGON External Clock Generator On Bit  
This read/write bit enables external clock generator, so that the  
switching process can be initiated. This bit is forced low during reset.  
This bit is ignored in monitor mode with the internal oscillator  
bypassed, PTM or CTM mode.  
1 = External clock generator enabled  
0 = External clock generator disabled  
ECGST External Clock Status Bit  
This read-only bit indicates whether or not an external clock source is  
engaged to drive the system clock.  
1 = An external clock source engaged  
0 = An external clock source disengaged  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Oscillator Module (OSC)  
111  
Oscillator Module (OSC)  
8.9.2 Oscillator Trim Register (OSCTRIM)  
Address: $0038  
Bit 7  
TRIM7  
1
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM71  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
Figure 8-4. Oscillator Trim Register (OSCTRIM)  
TRIM7TRIM0 Internal Oscillator Trim Factor Bits  
These read/write bits change the size of the internal capacitor used  
by the internal oscillator. By measuring the period of the internal clock  
and adjusting this factor accordingly, the frequency of the internal  
clock can be fine tuned. Increasing (decreasing) this factor by one  
increases (decreases) the period by appoximately 0.2% of the  
untrimmed period (the period for TRIM = $80). The trimmed frequency  
is guaranteed not to vary by more than ±5% over the full specified  
range of temperature and voltage. The reset value is $80, which sets  
the frequency to 12.8 MHz (3.2 MHz bus speed) ±25%.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
112  
Oscillator Module (OSC)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 9. Monitor ROM (MON)  
9.1 Contents  
9.2  
9.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.5  
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
9.2 Introduction  
This section describes the monitor read-only memory (MON) and the  
monitor mode entry methods. The monitor ROM allows complete testing  
of the microcontroller unit (MCU) through a single-wire interface with a  
host computer. Monitor mode entry can be achieved without use of the  
higher test voltage, VTST, as long as vector addresses $FFFE and  
$FFFF are blank, thus reducing the hardware requirements for in-circuit  
programming.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Monitor ROM (MON) 113  
Monitor ROM (MON)  
9.3 Features  
Features of the monitor ROM include:  
Normal user-mode pin functionality on most pins  
One pin dedicated to serial communication between monitor  
read-only memory (ROM) and host computer  
Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
Use of external 9.83 MHz crystal or clock to generate internal  
frequency of 2.4576 MHz  
Simple internal oscillator mode of operation (no external clock or  
high voltage)  
574 bytes monitor ROM code size  
Monitor mode entry without high voltage, VTST, if reset vector is  
blank ($FFFE and $FFFF contain $FF)  
Standard monitor mode entry if high voltage is applied to IRQ  
9.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 9-1, Figure 9-2, and Figure 9-3 show example circuits  
used to enter monitor mode and communicate with a host computer via  
a standard RS-232 interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute code downloaded into RAM by a host  
computer while most MCU pins retain normal operating mode functions.  
All communication between the host computer and the MCU is through  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
114  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
the PTA0 pin. A level-shifting and multiplexing interface is required  
between PTA0 and the host computer. PTA0 is used in a wired-OR  
configuration and requires a pullup resistor.  
The monitor code has been updated from previous versions of the  
monitor code to allow enabling the internal oscillator to generate the  
internal clock. This addition, which is enabled when IRQ is held low out  
of reset, is intended to support serial communication/programming at  
9600 baud in monitor mode by using the internal oscillator, and the  
internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if  
programmed) to generate the desired internal frequency (3.2 MHz).  
Since this feature is enabled only when IRQ is held low out of reset, it  
cannot be used when the reset vector is programmed (i.e., the value is  
not $FFFF) because entry into monitor mode in this case requires VTST  
on IRQ. The IRQ pin must remain low during this monitor session in  
order to maintain communication.  
Table 9-1 shows the pin conditions for entering monitor mode. As  
specified in the table, monitor mode may be entered after a power-on  
reset (POR) and will allow communication at 9600 baud provided one of  
the following sets of conditions is met:  
If $FFFE and $FFFF does not contain $FF (programmed state):  
The external clock is 9.8304 MHz  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ = VDD (this can be implemented through the internal IRQ  
pullup)  
If $FFFE and $FFFF contain $FF (erased state):  
IRQ = VSS (internal oscillator is selected, no external clock  
required)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Monitor ROM (MON)  
115  
Monitor ROM (MON)  
V
DD  
N.C.  
RST (PTA3)  
V
DD  
0.1 µF  
MAX232  
V
DD  
1
16  
15  
2
9.8304 MHz CLOCK  
C1+  
OSC1 (PTA5)  
+
+
1 µF  
1 µF  
3
1 µF  
C1–  
+
PTA1  
PTA4  
N.C.  
N.C.  
10 k*  
4
C2+  
V+  
VDD  
+
IRQ (PTA2)  
PTA0  
1 µF  
6
V–  
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
6
2
7
8
74HC125  
3
4
3
5
V
2
SS  
1
* Value not critical  
Figure 9-1. Monitor Mode Circuit (External Clock, No High Voltage)  
V
DD  
N.C.  
N.C.  
RST (PTA3)  
V
DD  
0.1 µF  
MAX232  
V
DD  
OSC1 (PTA5)  
IRQ (PTA2)  
1
16  
15  
2
C1+  
+
+
+
1 µF  
1 µF  
1 µF  
PTA1  
PTA4  
N.C.  
N.C.  
3
4
1 µF  
C1–  
+
10 k*  
C2+  
V+  
V
DD  
6
V–  
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
6
2
3
7
8
PTA0  
V
SS  
74HC125  
3
4
2
1
5
* Value not critical  
Figure 9-2. Monitor Mode Circuit (Internal Clock, No High Voltage)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
116 Monitor ROM (MON) MOTOROLA  
Monitor ROM (MON)  
Functional Description  
V
DD  
V
DD  
10 k*  
0.1 µF  
RST (PTA3)  
V
DD  
0.1 µF  
9.8304 MHz CLOCK  
V
OSC1 (PTA5)  
DD  
MAX232  
V
DD  
1
16  
15  
2
10 k*  
10 k*  
C1+  
V
TST  
+
+
PTA1  
PTA4  
+
1 µF  
1 µF  
3
4
C1–  
1 µF  
1 k  
+
C2+  
V+  
IRQ (PTA2)  
PTA0  
V
DD  
1 µF  
6
V–  
5
9.1 V  
C2–  
1 µF  
10 kΩ  
+
V
74HC125  
6
DB9  
SS  
5
10  
9
2
7
8
74HC125  
3
4
3
5
2
1
* Value not critical  
Figure 9-3. Monitor Mode Circuit (External Clock, with High Voltage)  
Table 9-1. Monitor Mode Signal Requirements and Options  
External  
Bus  
$FFFE/  
$FFFF  
Mode  
IRQ RST  
PTA1 PTA4 Clock Frequency  
COP  
Comment  
(MHz)  
(MHz)  
PTA1 and PTA4 voltages  
are required. RST and  
OSC1 functions are  
active  
V
TST  
V
V
DD  
X
1
0
9.8304  
2.4576  
Disabled  
monitor  
mode  
TST  
OSC1 function is active.  
RST and IRQ only  
available if later  
Forced  
monitor  
mode  
$FF  
(blank)  
V
X
X
X
9.8304  
2.4576  
Disabled  
DD  
configured.  
Forced  
monitor  
mode  
RST, IRQ, and OSC1  
Disabled only available if later  
configured.  
$FF  
(blank)  
V
V
X
X
X
X
X
X
X
X
3.2  
SS  
Not  
$FF  
(programmed)  
Enters user mode  
Enabled RST pin only available if  
later configured  
DD  
User  
mode  
or  
V
SS  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Monitor ROM (MON) 117  
Monitor ROM (MON)  
If entering monitor mode without high voltage on IRQ (above condition  
set 2 or 3, where applied voltage is VDD or VSS), then startup port pin  
requirements and conditions, (PTA1/PTA4) are not in effect. This is to  
reduce circuit requirements when performing in-circuit programming.  
NOTE: If the reset vector is blank and monitor mode is entered, the chip will see  
an additional reset cycle after the initial power-on reset (POR). Once the  
part has been programmed, the traditional method of applying a voltage,  
VTST, to IRQ must be used to enter monitor mode.  
The computer operating properly (COP) module is disabled in monitor  
mode based on these conditions:  
If monitor mode was entered as a result of the reset vector being  
blank (above condition set 2 or 3), the COP is always disabled  
regardless of the state of IRQ.  
If monitor mode was entered with VTST on IRQ (condition set 1),  
then the COP is disabled as long as VTST is applied to IRQ.  
NOTE: The PTA0 pin must be at logic 1 (pullup) during chip power up to enter  
monitor mode properly.  
Figure 9-4 shows a simplified diagram of the monitor mode entry when  
the reset vector is blank and just 1 x VDD voltage is applied to the IRQ  
pin. An external oscillator of 9.8304 MHz is required for a baud rate of  
9600, as the internal bus frequency is automatically set to the external  
frequency divided by four. No external clock is required if IRQ = 0 since  
chip clock will be drive by internal clock generator.  
Enter monitor mode with pin configuration shown in Figure 9-1 by pulling  
RST low and then high. The rising edge of RST latches monitor mode.  
Once monitor mode is latched, the values on the specified pins can  
change.  
Once out of reset, the MCU waits for the host to send eight security bytes  
(see 9.5 Security). After the security bytes, the MCU sends a break  
signal (10 consecutive logic 0s) to the host, indicating that it is ready to  
receive a command.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
118  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
POR RESET  
NO  
IS VECTOR  
BLANK?  
NORMAL USER  
MODE  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
NO  
POR  
TRIGGERED?  
YES  
Figure 9-4. Low-Voltage Monitor Mode Entry Flowchart  
9.4.1 Forced Monitor Mode  
If the voltage applied to the IRQ is less than VTST, the MCU will come  
out of reset in user mode. The MENRST module monitors the reset  
vector fetches and will assert an internal reset if it detects that the reset  
vectors are erased ($FF). When the MCU comes out of reset, it is forced  
into monitor mode without requiring high voltage on the IRQ pin. Once  
out of reset, the monitor code is initially executing off the internal clock  
at its default frequency.  
If IRQ is tied high, all pins will default to regular input port functions  
except for PTA0 and PTA5 which will operate as a serial communication  
port and OSC1 input respectively (refer to Figure 9-1). That will allow the  
clock to be driven from an external source through OSC1 pin.  
If IRQ is tied low, all pins will default to regular input port function except  
for PTA0 which will operate as serial communication port. Refer to  
Figure 9-2.  
Regardless of the state of the IRQ pin, it will not function as a port input  
pin in monitor mode. Bit 2 of the Port A data register will always read 0.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Monitor ROM (MON)  
119  
Monitor ROM (MON)  
The BIH and BIL instructions will behave as if the IRQ pin is enabled,  
regardless of the settings in the configuration register. See Section 5.  
Configuration Register (CONFIG).  
The COP module is disabled in forced monitor mode. Any reset other  
than a power-on reset (POR) will automatically force the MCU to come  
back to the forced monitor mode.  
In monitor mode, the MCU uses different vectors for reset, SWI  
(software interrupt), and break interrupt than those for user mode. The  
alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE: Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST (when RST pin  
available) low will not exit monitor mode in this situation.  
Table 9-2 summarizes the differences between user mode and monitor  
mode regarding vectors.  
Table 9-2. Mode Difference  
Functions  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
Modes  
User  
Monitor  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
9.4.2 VTST Monitor Mode  
RST and OSC1 functions will be active on the PTA3 and PTA5 pins  
respectively as long as VTST is applied to IRQ pin. If the IRQ pin is  
lowered (no longer VTST) then the chip will still be operating in monitor  
mode, but the pin functions will be determined by the settings in the  
configuration registers (see Section 5. Configuration Register  
(CONFIG)) when VTST was lowered, except for the IRQ pin. IRQ will not  
function as a port input pin in monitor mode. Bit 2 of the Port A data  
register will always read 0. The BIH and BIL instructions will behave as  
if the IRQ pin is enabled, regardless of the settings in the configuration  
registers.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
120  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
9.4.3 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. Transmit and receive baud rates must  
be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 9-5. Monitor Data Format  
9.4.4 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When  
the monitor receives a break signal, it drives the PTA0 pin high for the  
duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 9-6. Break Transaction  
9.4.5 Baud Rate  
The communication baud rate is controlled by the external frequency  
and the divide ratio is 1024.  
Table 9-3 has the external frequency required to achieve a standard  
baud rate of 9600 bps. Other standard baud rates can be accomplished  
using proportionally higher or lower frequency generators. If a crystal is  
used as the source, be aware of the upper frequency limit that the MCU  
can operate.  
Table 9-3. Monitor Baud Rate Selection  
External Frequency  
9.8304 MHz  
IRQ  
Internal Frequency  
Baud Rate (bps)  
V
TST  
2.4576 MHz  
9600  
or V  
DD  
V
3.2 MHz (Trimmed)  
9600  
SS  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Monitor ROM (MON) 121  
Monitor ROM (MON)  
9.4.6 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0  
pin for error checking. An 11-bit delay at the end of each command  
allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ,  
IREAD, or READSP data is returned. The data returned by a read  
command appears after the echo of the last byte of the command.  
NOTE: Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 9-7. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 9-8. Write Transaction  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
122 Monitor ROM (MON) MOTOROLA  
Monitor ROM (MON)  
Functional Description  
A brief description of each monitor mode command is given in  
Table 9-4 through Table 9-9.  
Table 9-4. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data  
Returned  
Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Monitor ROM (MON) 123  
Monitor ROM (MON)  
Table 9-5. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by  
data byte  
Operand  
Data  
Returned  
None  
Opcode $49  
Command Sequence  
FROM  
HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
HIGH  
HIGH  
LOW  
LOW  
Table 9-6. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand 2-byte address in high byte:low byte order  
Data  
Returned  
Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM  
HOST  
IREAD  
DATA  
DATA  
IREAD  
ECHO  
RETURN  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
124 Monitor ROM (MON) MOTOROLA  
Monitor ROM (MON)  
Functional Description  
Table 9-7. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data  
None  
Returned  
Opcode $19  
Command Sequence  
FROM  
HOST  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
A sequence of IREAD or IWRITE commands can access a block of  
memory sequentially over the full 64-Kbyte memory map.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Monitor ROM (MON)  
125  
Monitor ROM (MON)  
Table 9-8. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Data Returns incremented stack pointer value (SP + 1) in  
Returned high-byte:low-byte order  
Opcode $0C  
Command Sequence  
FROM  
HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 9-9. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data  
None  
Returned  
Opcode $28  
Command Sequence  
FROM  
HOST  
RUN  
RUN  
ECHO  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
126 Monitor ROM (MON) MOTOROLA  
Monitor ROM (MON)  
Security  
The MCU executes the SWI and PSHH instructions when it enters  
monitor mode. The RUN command tells the MCU to execute the PULH  
and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program.  
The READSP command returns the incremented stack pointer value,  
SP + 1. The high and low bytes of the program counter are at addresses  
SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 9-9. Stack Pointer at Monitor Mode Entry  
9.5 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6$FFFD. Locations $FFF6$FFFD contain  
user-defined data.  
NOTE: Do not leave locations $FFF6$FFFD blank. For security reasons,  
program locations $FFF6$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTA0. If the received  
bytes match those at locations $FFF6$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code  
from FLASH. Security remains bypassed until a power-on reset occurs.  
If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. See Figure 9-10.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Monitor ROM (MON)  
127  
Monitor ROM (MON)  
V
DD  
4096 + 32 CGMXCLK CYCLES  
RST  
FROM HOST  
PA0  
256 BUS CYCLES  
(MINIMUM)  
1
1
4
1
4
2
1
FROM MCU  
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 9-10. Monitor Mode Entry Timing  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6$FFFD, the host fails to bypass the  
security feature. The MCU remains in monitor mode, but reading a  
FLASH location returns an invalid value and trying to execute code from  
FLASH causes an illegal address reset. After receiving the eight security  
bytes from the host, the MCU transmits a break character, signifying that  
it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bytes.  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $80 is set. If it is, then the correct security code  
has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on  
reset and brought up in monitor mode to attempt another entry. After  
failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal  
RAM. The mass erase operation clears the security code locations so  
that all eight security bytes become $FF (blank).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
128  
Monitor ROM (MON)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 10. Timer Interface Module (TIM)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .134  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .135  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .136  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .137  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .140  
10.9 Input/Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . .141  
10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .144  
10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .145  
10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Timer Interface Module (TIM) 129  
Timer Interface Module (TIM)  
10.2 Introduction  
This section describes the timer interface module (TIM). The TIM is a  
two-channel timer that provides a timing reference with input capture,  
output compare, and pulse-width-modulation functions. Figure 10-1 is a  
block diagram of the TIM.  
10.3 Features  
Features of the TIM include the following:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse width modulation (PWM) signal  
generation  
Programmable TIM clock input with 7-frequency internal bus clock  
prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
10.4 Pin Name Conventions  
The TIM shares two input/output (I/O) pins with two port A I/O pins. The  
full names of the TIM I/O pins are listed in Table 10-1. The generic pin  
name appear in the text that follows.  
Table 10-1. Pin Name Conventions  
TIM Generic Pin Names:  
Full TIM Pin Names:  
TCH0  
TCH1  
PTA0/TCH0  
PTA1/TCH1  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
130 Timer Interface Module (TIM) MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
10.5 Functional Description  
Figure 10-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
The two TIM channels are programmable independently as input  
capture or output compare channels.  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
TCH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 10-1. TIM Block Diagram  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Timer Interface Module (TIM) 131  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
TIM Status and Control  
Register  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
TRST  
0
(TSC)  
See page 141.  
0
0
1
0
0
0
0
Read: Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
TIM Counter Register High  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
(TCNTH) Write:  
See page 144.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM Counter Register Low  
(TCNTL) Write:  
See page 144.  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
Bit 12  
1
0
Bit 11  
1
0
Bit 10  
1
0
Bit 9  
1
0
Bit 8  
1
TIM Counter Modulo  
Register High  
(TMODH)  
See page 144.  
TIM Counter Modulo  
Register Low  
(TMODL)  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
See page 144.  
Read: CH0F  
TIM Channel 0 Status and  
Control Register  
(TSC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B ELS0A  
TOV0 CH0MAX  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
See page 145.  
0
0
0
0
TIM Channel 0  
Register High  
(TCH0H)  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 149.  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIM Channel 0  
Register Low  
(TCH0L)  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 149.  
Read: CH1F  
0
0
TIM Channel 1 Status and  
Control Register  
(TSC1)  
CH1IE  
0
MS1A  
0
ELS1B ELS1A  
TOV1 CH1MAX  
Write:  
0
0
See page 145.  
Reset:  
0
0
0
0
= Unimplemented  
Figure 10-2. TIM I/O Register Summary  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
132 Timer Interface Module (TIM) MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
Addr.  
Register Name  
TIM Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Register High  
(TCH1H)  
See page 149.  
$0029  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIM Channel 1  
Register Low  
(TCH1L)  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
$002A  
See page 149.  
= Unimplemented  
Figure 10-2. TIM I/O Register Summary (Continued)  
10.5.1 TIM Counter Prescaler  
The TIM clock source is one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIM status and control register  
(TSC) select the TIM clock source.  
10.5.2 Input Capture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM central processor unit  
(CPU) interrupt requests.  
10.5.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Timer Interface Module (TIM)  
133  
Timer Interface Module (TIM)  
10.5.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 10.5.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
134  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
10.5.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
10.5.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 10-3 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIM to set the pin if the state of the PWM  
pulse is logic 0.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Timer Interface Module (TIM)  
135  
Timer Interface Module (TIM)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 10-3. PWM Period and Pulse Width  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is 000. See 10.10.1 TIM Status and Control Register.  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
10.5.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 10.5.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel  
registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
during that PWM period. Also, using a TIM overflow interrupt routine to  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
136  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIM overflow  
interrupts and write the new value in the TIM overflow interrupt  
routine. The TIM overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt  
routine (at the end of the current pulse) could cause two output  
compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to  
self-correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
10.5.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
buffered PWM function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Timer Interface Module (TIM)  
137  
Timer Interface Module (TIM)  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
10.5.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset  
bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the  
mode select bits, MSxB:MSxA. See Table 10-3.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. See Table 10-3.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to  
self-correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
138  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM status control register 0 (TSCR0)  
controls and monitors the PWM signal from the linked channels. MS0B  
takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100% duty cycle output. See 10.10.4 TIM Channel  
Status and Control Registers.  
10.6 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) The TOF bit is set when the TIM  
counter reaches the modulo value programmed in the TIM counter  
modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are  
in the TIM status and control register.  
TIM channel flags (CH1F:CH0F) The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests  
are enabled when CHxIE =1. CHxF and CHxIE are in the TIM  
channel x status and control register.  
10.7 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Timer Interface Module (TIM) 139  
Timer Interface Module (TIM)  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
10.8 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the break flag control register (BFCR) enables software to clear status  
bits during the break state. See 7.9.2 Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a two-step read/write clearing procedure. If software  
does the first step on such a bit before the break, the bit cannot change  
during the break state as long as BCFE is at logic 0. After the break,  
doing the second step clears the status bit.  
10.9 Input/Output Signals  
Port A shares two of its pins with the TIM. The two TIM channel I/O pins  
are PTA0/TCH0 and PTA1/TCH1.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTA0/TCH0 can be configured as  
a buffered output compare or buffered PWM pin.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
140  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Input/Output Registers  
10.10 Input/Output Registers  
The following I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM control registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 and TSC1)  
TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
10.10.1 TIM Status and Control Register  
The TIM status and control register (TSC) does the following:  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: $0020  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 10-4. TIM Status and Control Register (TSC)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Timer Interface Module (TIM) 141  
Timer Interface Module (TIM)  
TOF TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo  
value programmed in the TIM counter modulo registers. Clear TOF by  
reading the TIM status and control register when TOF is set and then  
writing a logic 0 to TOF. If another TIM overflow occurs before the  
clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIM counter is reset and always reads as logic 0. Reset clears the  
TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
142  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Input/Output Registers  
PS[2:0] Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIM counter as Table 10-2 shows. Reset clears the  
PS[2:0] bits.  
Table 10-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
10.10.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Timer Interface Module (TIM)  
143  
Timer Interface Module (TIM)  
Address: $0021 TCNTH  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read: Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Address: $0022  
Bit 7  
Bit 7  
0
0
TCNTL  
6
0
0
0
0
0
0
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 10-5. TIM Counter Registers (TCNTH:TCNTL)  
10.10.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH)  
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is  
written. Reset sets the TIM counter modulo registers.  
Address: $0023  
Bit 7  
TMODH  
6
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Bit15  
Write:  
Bit14  
Reset:  
1
1
TMODL  
6
Address: $0024  
Bit 7  
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Bit7  
Write:  
Bit6  
1
Reset:  
1
Figure 10-6. TIM Counter Modulo Registers (TMODH:TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
144  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Input/Output Registers  
10.10.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: $0025  
Bit 7  
TSC0  
6
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
CH0IE  
Write:  
0
0
Reset:  
0
Address: $0028  
Bit 7  
TSC1  
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
CH1IE  
Write:  
0
0
Reset:  
0
0
= Unimplemented  
Figure 10-7. TIM Channel Status and Control  
Registers (TSC0:TSC1)  
CHxF Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Timer Interface Module (TIM)  
145  
Timer Interface Module (TIM)  
Clear CHxF by reading the TIM channel x status and control register  
with CHxF set and then writing a logic 0 to CHxF. If another interrupt  
request occurs before the clearing sequence is complete, then writing  
logic 0 to CHxF has no effect. Therefore, an interrupt request cannot  
be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on  
channel x. Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM channel 0 status and control register.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation.  
See Table 10-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin (see Table 10-3). Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
146  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Input/Output Registers  
ELSxB and ELSxA Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to an I/O port, and pin TCHx is available as a general-purpose I/O pin.  
Table 10-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
Table 10-3. Mode, Edge, and Level Selection  
MSxB MSxA ELSxB ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X
X
0
1
0
0
0
0
Output preset  
Pin under port control;  
initial output level low  
0
0
0
0
0
1
1
0
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising  
or falling edge  
0
0
1
1
0
0
0
1
1
1
1
1
0
1
1
0
1
1
1
0
1
1
0
1
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output  
compare  
or PWM  
1
X
X
X
Buffered  
output  
compare or  
buffered PWM  
NOTE: After initially enabling a TIM channel register for input capture operation  
and selecting the edge sensitivity, clear CHxF to ignore any erroneous  
edge detection flags.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Timer Interface Module (TIM)  
147  
Timer Interface Module (TIM)  
TOVx Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As  
Figure 10-8 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100% duty cycle level until  
the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 10-8. CHxMAX Latency  
10.10.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
148  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Input/Output Registers  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
Address: $0026  
Bit 7  
TCH0H  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Address: $0027  
Bit 7  
TCH0L  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after reset  
Address: $0029  
Bit 7  
TCH1H  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 15  
Write:  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
Address: $02A  
Bit 7  
TCH1L  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Bit 7  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after reset  
Figure 10-9. TIM Channel Registers (TCH0H/L:TCH1H/L)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Timer Interface Module (TIM) 149  
Timer Interface Module (TIM)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
150  
Timer Interface Module (TIM)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 11. Analog-to-Digital Converter (ADC)  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
11.7 Input/Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .157  
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .159  
11.2 Introduction  
This section describes the analog-to-digital converter (ADC). The ADC  
is an 8-bit, 4-channel analog-to-digital converter. The ADC module is  
only available on the MC68HC908QY2, MC68HC908QT2,  
MC68HC908QY4, and MC68HC908QT4.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Analog-to-Digital Converter (ADC) 151  
Analog-to-Digital Converter (ADC)  
11.3 Features  
Features of the ADC module include:  
4 channels with multiplexed input  
Linear successive approximation with monotonicity  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Figure 11-1 provides a summary of the input/output (I/O) registers.  
Addr.  
$003C  
$003D  
Register Name  
Bit 7  
Read: COCO  
Write:  
6
AIEN  
0
5
ADCO  
0
4
CH4  
1
3
CH3  
1
2
CH2  
1
1
CH1  
1
Bit 0  
CH0  
1
ADC Status and Control  
Register  
(ADSCR)  
See page 157.  
Reset:  
0
Unimplemented  
Read:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
$003E  
$003F  
(ADR) Write:  
See page 159.  
Reset:  
Read:  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADC Input Clock Register  
ADIV2  
0
ADIV1  
0
ADIV0  
0
(ADICLK) Write:  
See page 159.  
Reset:  
0
0
= Unimplemented  
Figure 11-1. ADC I/O Register Summary  
11.4 Functional Description  
Four ADC channels are available for sampling external sources at pins  
PTA0, PTA1, PTA4, and PTA5. An analog multiplexer allows the single  
ADC converter to select one of the four ADC channels as an ADC  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
152  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
voltage input (ADCVIN). ADCVIN is converted by the successive  
approximation register-based counters. The ADC resolution is eight bits.  
When the conversion is completed, ADC puts the result in the ADC data  
register and sets a flag or generates an interrupt.  
Figure 11-2 shows a block diagram of the ADC.  
INTERNAL  
DATA BUS  
READ DDRA  
WRITE DDRA  
DISABLE  
DDRAx  
RESET  
WRITE PTA  
READ PTA  
ADCx  
PTAx  
DISABLE  
ADC CHANNEL x  
ADC DATA REGISTER  
ADC VOLTAGE IN  
ADCVIN  
CONVERSION  
COMPLETE  
CHANNEL  
SELECT  
(1 OF 4 CHANNELS)  
INTERRUPT  
LOGIC  
CH[4:0]  
ADC  
ADC CLOCK  
AIEN  
COCO  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
Figure 11-2. ADC Block Diagram  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Analog-to-Digital Converter (ADC) 153  
Analog-to-Digital Converter (ADC)  
11.4.1 ADC Port I/O Pins  
PTA0, PTA1, PTA4, and PTA5 are general-purpose I/O pins that are  
shared with the ADC channels. The channel select bits (ADC status and  
control register (ADSCR), $003C), define which ADC channel/port pin  
will be used as the input signal. The ADC overrides the port I/O logic by  
forcing that pin as input to the ADC. The remaining ADC channels/port  
pins are controlled by the port I/O logic and can be used as  
general-purpose I/O. Writes to the port register or data direction register  
(DDR) will not have any affect on the port pin that is selected by the ADC.  
Read of a port pin which is in use by the ADC will return a logic 0 if the  
corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value  
in the port data latch is read.  
11.4.2 Voltage Conversion  
When the input voltage to the ADC equals VDD, the ADC converts the  
signal to $FF (full scale). If the input voltage equals VSS, the ADC  
converts it to $00. Input voltages between VDD and VSS are a  
straight-line linear conversion. All other input voltages will result in $FF  
if greater than VDD and $00 if less than VSS.  
NOTE: Input voltage should not exceed the analog supply voltages.  
11.4.3 Conversion Time  
Sixteen ADC internal clocks are required to perform one conversion. The  
ADC starts a conversion on the first rising edge of the ADC internal clock  
immediately following a write to the ADSCR. If the ADC internal clock is  
selected to run at 1 MHz, then one conversion will take 16 µs to  
complete. With a 1-MHz ADC internal clock the maximum sample rate  
is 62.5 kHz.  
16 ADC Clock Cycles  
Conversion Time =  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time × Bus Frequency  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
154  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Interrupts  
11.4.4 Continuous Conversion  
In the continuous conversion mode, the ADC continuously converts the  
selected channel filling the ADC data register (ADR) with new data after  
each conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until  
the ADCO bit is cleared. The COCO bit (ADSCR, $003C) is set after  
each conversion and can be cleared by writing the ADC status and  
control register or reading of the ADC data register.  
11.4.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
11.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a  
central processor unit (CPU) interrupt after each ADC conversion. A  
CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit  
is not used as a conversion complete flag when interrupts are enabled.  
11.6 Low-Power Modes  
The following subsections describe the ADC in low-power modes.  
11.6.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the microcontroller unit  
(MCU) out of wait mode. If the ADC is not required to bring the MCU out  
of wait mode, power down the ADC by setting the CH[4:0] bits in ADSCR  
to logic 1s before executing the WAIT instruction.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Analog-to-Digital Converter (ADC) 155  
Analog-to-Digital Converter (ADC)  
11.6.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode. Allow one conversion cycle to stabilize the analog  
circuitry before attempting a new ADC conversion after exiting stop  
mode.  
11.7 Input/Output Signals  
The ADC module has four channels that are shared with I/O port A.  
ADC voltage in (ADCVIN) is the input voltage signal from one of the four  
ADC channels to the ADC module.  
11.8 Input/Output Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC clock register (ADICLK)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
156  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Input/Output Registers  
11.8.1 ADC Status and Control Register  
The following paragraphs describe the function of the ADC status and  
control register (ADSCR).  
Address: $003C  
Bit 7  
Read: COCO  
Write:  
6
AIEN  
0
5
ADCO  
0
4
CH4  
1
3
CH3  
1
2
CH2  
1
1
CH1  
1
Bit 0  
CH0  
1
Reset:  
0
= Unimplemented  
Figure 11-3. ADC Status and Control Register (ADSCR)  
COCO Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is  
set each time a conversion is completed. This bit is cleared whenever  
ADSCR is written or whenever the ADR is read. Reset clears this bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)  
When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is  
a read-only bit, and will always be logic 0 when read.  
AIEN ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when ADR is read or  
ADSCR is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update  
ADR at the end of each conversion. Only one conversion is allowed  
when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
157  
Analog-to-Digital Converter (ADC)  
CH[4:0] ADC Channel Select Bits  
CH4, CH3, CH2, CH1, and CH0 form a 5-bit field which is used to  
select one of the four ADC channels. The five select bits are detailed  
in Table 11-1. Care should be taken when using a port pin as both an  
analog and a digital input simultaneously to prevent switching noise  
from corrupting the analog signal.  
The ADC subsystem is turned off when the channel select bits are all  
set to 1. This feature allows for reduced power consumption for the  
MCU when the ADC is not used. Reset sets all of these bits to a  
logic 1.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
Table 11-1. MUX Channel Select  
ADC  
CH4  
CH3  
CH2  
CH1  
CH0  
Input Select  
Channel  
ADC0  
ADC1  
ADC2  
ADC3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
PTA0  
PTA1  
PTA4  
PTA5  
(1)  
Unused  
1
1
1
1
1
1
0
0
1
1
1
0
0
1
0
Reserved  
Unused  
(2)  
1
1
1
0
1
V
DDA  
(2)  
1
1
1
1
1
1
1
1
0
1
V
SSA  
ADC power off  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes, as specified in the table, are used  
to verify the operation of the ADC converter both in production test and for user applications.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
158  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Input/Output Registers  
11.8.2 ADC Data Register  
One 8-bit result register is provided. This register is updated each time  
an ADC conversion completes.  
Address: $003E  
Bit 7  
AD7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Indeterminate after reset  
= Unimplemented  
Figure 11-4. ADC Data Register (ADR)  
11.8.3 ADC Input Clock Register  
This register selects the clock frequency for the ADC.  
Address: $003F  
Bit 7  
ADIV2  
0
6
ADIV1  
0
5
ADIV0  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 11-5. ADC Input Clock Register (ADICLK)  
ADIV2ADIV0 ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock. Table 11-2  
shows the available clock configurations. The ADC clock should be  
set to approximately 1 MHz.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
159  
Analog-to-Digital Converter (ADC)  
Table 11-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
0
0
0
1
1
X
0
1
0
1
X
Bus clock ÷ 1  
Bus clock ÷ 2  
Bus clock ÷ 4  
Bus clock ÷ 8  
Bus clock ÷ 16  
0
0
0
1
X = dont care  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
160 Analog-to-Digital Converter (ADC) MOTOROLA  
Data Sheet MC68HC908QY4  
Section 12. Input/Output (I/O) Ports  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . .164  
12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . .166  
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . .168  
12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . .169  
12.2 Introduction  
The MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 have  
five bidirectional input-output (I/O) pins and one input only pin. The  
MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4 have  
thirteen bidirectional pins and one input only pin. All I/O pins are  
programmable as inputs or outputs.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
Figure 12-1 provides a summary of the I/O registers.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Input/Output (I/O) Ports  
161  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
AWUL  
PTA2  
Port A Data Register  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 163.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
Port B Data Register  
PTB7  
0
PTB6  
0
PTB5  
PTB2  
0
PTB1  
PTB0  
$0001  
$0004  
$0005  
$000B  
$000C  
(PTB) Write:  
See page 167.  
Reset:  
Read:  
Data Direction Register A  
DDRA5  
DDRA4  
DDRA3  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 164.  
Reset:  
Read:  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
DDRB7  
(DDRB) Write:  
See page 168.  
Reset:  
0
OSC2EN  
0
Port A Input Pullup Read:  
Enable Register  
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Write:  
(PTAPUE)  
See page 166. Reset:  
0
0
0
0
0
0
0
Port B Input Pullup Read:  
Enable Register  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Write:  
(PTBPUE)  
See page 169. Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-1. I/O Port Register Summary  
12.3 Port A  
Port A is an 6-bit special function port that shares all six of its pins with  
the keyboard interrupt (KBI) module (see Section 14. Keyboard  
Interrupt Module (KBI)). Each port A pin also has a software  
configurable pullup device if the corresponding port pin is configured as  
an input port.  
NOTE: PTA2 is input only.  
When the IRQ function is enabled in the configuration register 2  
(CONFIG2), bit 2 of the port A data register (PTA) will always read a  
logic 0. In this case, the BIH and BIL instructions can be used to read the  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
162 Input/Output (I/O) Ports MOTOROLA  
Input/Output (I/O) Ports  
Port A  
logic level on the PTA2 pin. When the IRQ function is disabled, these  
instructions will behave as if the PTA2 pin is a logic 1. However, reading  
bit 2 of PTA will read the actual logic level on the pin.  
12.3.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the six  
port A pins.  
Address: $0000  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
KBI4 KBI3  
Additional Functions:  
KBI5  
KBI2  
KBI1  
KBI0  
= Unimplemented  
Figure 12-2. Port A Data Register (PTA)  
PTA[5:0] Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
AWUL Auto Wake-up Latch Data Bit  
This is a read-only bit which has the value of the auto wake-up  
interrupt request latch. The wake-up request signal is generated  
internally (see 14.4.4 Auto Wake-up Interrupt Request). There is no  
PTA6 port nor any of the associated bits such as PTA6 data register,  
pullup enable or direction.  
KBI[5:0] Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE5KBIE0, in the keyboard  
interrupt control enable register (KBIER) enable the port A pins as  
external interrupt pins (see Section 14. Keyboard Interrupt Module  
(KBI)).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Input/Output (I/O) Ports  
163  
Input/Output (I/O) Ports  
12.3.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is  
an input or an output. Writing a logic 1 to a DDRA bit enables the output  
buffer for the corresponding port A pin; a logic 0 disables the output  
buffer.  
Address: $0004  
Bit 7  
0
6
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
Figure 12-3. Data Direction Register A (DDRA)  
DDRA[5:0] Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[5:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
164  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port A  
Figure 12-4 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
PTAPUEx  
DDRAx  
RESET  
30 k  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
TO KEYBOARD INTERRUPT CIRCUIT  
Figure 12-4. Port A I/O Circuit  
NOTE: Figure 12-4 does not apply to PTA2  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data  
latch. When DDRAx is a logic 0, reading address $0000 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Input/Output (I/O) Ports  
165  
Input/Output (I/O) Ports  
12.3.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software  
configurable pullup device for each if the six port A pins. Each bit is  
individually configurable and requires the corresponding data direction  
register, DDRAx, to be configured as input. Each pullup device is  
automatically and dynamically disabled when its corresponding DDRAx  
bit is configured as output.  
Address: $000B  
Bit 7  
OSC2EN  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE2 PTAPUE0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-5. Port A Input Pullup Enable Register (PTAPUE)  
OSC2EN Enable PTA4 on OSC2 Pin  
This read/write bit configures the OSC2 pin function when internal  
oscillator or RC oscillator option is selected. This bit has no effect for  
the XTAL or external oscillator options.  
1 = OSC2 pin outputs the internal or RC oscillator clock  
(BUSCLKX4)  
0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and  
pullup functions  
PTAPUE[5:0] Port A Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup  
devices on port A pins.  
1 = Corresponding port A pin configured to have internal pull if its  
DDRA bit is set to 0  
0 = Pullup device is disconnected on the corresponding port A pin  
regardless of the state of its DDRA bit  
Table 12-1 summarizes the operation of the port A pins.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
166  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port B  
Table 12-1. Port A Pin Functions  
Accesses to DDRA  
I/O Pin  
Accesses to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
Mode  
Read/Write  
Read  
Write  
(2)  
(1)  
(3)  
(3)  
(5)  
1
0
X
0
0
1
DDRA5DDRA0  
DDRA5DDRA0  
DDRA5DDRA0  
Pin  
Pin  
Input, V  
X
PTA5PTA0  
PTA5PTA0  
PTA5PTA0  
DD  
(4)  
X
X
Input, Hi-Z  
Output  
PTA5PTA0  
1. X = dont care  
2. I/O pin pulled to V by internal pullup.  
DD  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
5. Output does not apply to PTA2  
12.4 Port B  
Port B is an 8-bit general purpose I/O port. Port B is only available on the  
MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4.  
12.4.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight  
port B pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
Figure 12-6. Port B Data Register (PTB)  
PTB[7:0] Port B Data Bits  
These read/write bits are software programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Input/Output (I/O) Ports  
167  
Input/Output (I/O) Ports  
12.4.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is  
an input or an output. Writing a logic 1 to a DDRB bit enables the output  
buffer for the corresponding port B pin; a logic 0 disables the output  
buffer.  
Address: $0005  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
2
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB3 DDRB2  
0
0
Figure 12-7. Data Direction Register B (DDRB)  
DDRB[7:0] Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[7:0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 12-8 shows  
the port B I/O logic.  
READ DDRB ($0005)  
PTBPUEx  
WRITE DDRB ($0005)  
DDRBx  
RESET  
30 k  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 12-8. Port B I/O Circuit  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
168 Input/Output (I/O) Ports MOTOROLA  
Input/Output (I/O) Ports  
Port B  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data  
latch. When DDRBx is a logic 0, reading address $0001 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit. Table 12-2 summarizes the operation  
of the port B pins.  
Table 12-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB PTB  
I/O Pin  
Mode  
Bit  
Bit  
Read  
Write  
(1)  
(2)  
(3)  
0
1
DDRB7DDRB0  
DDRB7DDRB0  
Pin  
Pin  
X
Input, Hi-Z  
Output  
PTB7PTB0  
X
PTB7PTB0  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect the input.  
12.4.3 Port B Input Pullup Enable Register  
The port B input pullup enable register (PTBPUE) contains a software  
configurable pullup device for each of the eight port B pins. Each bit is  
individually configurable and requires the corresponding data direction  
register, DDRBx, be configured as input. Each pullup device is  
automatically and dynamically disabled when its corresponding DDRBx  
bit is configured as output.  
Address: $000C  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-9. Port B Input Pullup Enable Register (PTBPUE)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Input/Output (I/O) Ports 169  
Input/Output (I/O) Ports  
PTBPUE[7:0] Port B Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup  
devices on port B pins  
1 = Corresponding port B pin configured to have internal pull if its  
DDRB bit is set to 0  
0 = Pullup device is disconnected on the corresponding port B pin  
regardless of the state of its DDRB bit.  
Table 12-3 summarizes the operation of the port B pins.  
Table 12-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
PTBPUE  
Bit  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
(4)  
(1)  
(3)  
(3)  
1
0
DDRB7DDRB0  
Pin  
Input, V  
X
PTB7PTB0  
PTB7PTB0  
DD  
0
0
1
X
X
DDRB7DDRB0  
DDRB7DDRB0  
Pin  
Input, Hi-Z  
Output  
X
PTB7PTB0  
PTB7PTB0  
1. X = dont care  
2. I/O pin pulled to V by internal pullup.  
DD  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
170 Input/Output (I/O) Ports MOTOROLA  
Data Sheet MC68HC908QY4  
Section 13. External Interrupt (IRQ)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
13.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
13.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .175  
13.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .175  
13.2 Introduction  
13.3 Features  
The IRQ pin (external interrupt), shared with PTA2 (general purpose  
input) and keyboard interrupt (KBI), provides a maskable interrupt input.  
Features of the IRQ module include the following:  
External interrupt pin, IRQ  
IRQ interrupt control bits  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Selectable internal pullup resistor  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA External Interrupt (IRQ) 171  
External Interrupt (IRQ)  
13.4 Functional Description  
IRQ pin functionality is enabled by setting configuration register 2  
(CONFIG2) IRQEN bit accordingly. A 0 disables the IRQ function and  
IRQ will assume the other shared functionalities. A1 enables the IRQ  
function.  
A logic 0 applied to the external interrupt pin can latch a central  
processur unit (CPU) interrupt request. Figure 13-1 shows the structure  
of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An  
interrupt latch remains set until one of the following actions occurs:  
Vector fetch A vector fetch automatically generates an interrupt  
acknowledge signal that clears the IRQ latch.  
Software clear Software can clear the interrupt latch by writing  
to the acknowledge bit in the interrupt status and control register  
(ISCR). Writing a logic 1 to the ACK1 bit clears the IRQ latch.  
Reset A reset automatically clears the interrupt latch.  
ACK1  
RESET  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
V
DD  
IRQPUD  
INTERNAL  
PULLUP  
DEVICE  
V
DD  
IRQF1  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
CK  
IRQ  
IRQ  
FF  
IMASK1  
MODE1  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 13-1. IRQ Module Block Diagram  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
172 External Interrupt (IRQ) MOTOROLA  
External Interrupt (IRQ)  
Functional Description  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or falling-edge and low-level  
triggered. The MODE1 bit in the ISCR controls the triggering sensitivity  
of the IRQ pin.  
When the interrupt pin is edge-triggered only, the CPU interrupt request  
remains set until a vector fetch, software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level triggered, the  
CPU interrupt request remains set until both of the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE1 control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK1 bit in the ISCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK1 bit is clear.  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks  
all interrupt requests, including external interrupt requests.  
See 7.7 Exception Control.  
Figure 13-2 provides a summary of the IRQ I/O register.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
IRQF1  
IRQ Status and Control  
Register  
IMASK1 MODE1  
$001D  
ACK1  
0
(INTSCR)  
See page 176.  
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-2. IRQ I/O Register Summary  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA External Interrupt (IRQ) 173  
External Interrupt (IRQ)  
13.5 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE1 bit is set, the IRQ pin is both falling-edge sensitive and  
low-level sensitive. With MODE1 set, both of the following actions must  
occur to clear IRQ:  
Vector fetch or software clear A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK1 bit in the interrupt status and control register (ISCR).  
The ACK1 bit is useful in applications that poll the IRQ pin and  
require software to clear the IRQ latch. Writing to the ACK1 bit  
prior to leaving an interrupt service routine can also prevent  
spurious interrupts due to noise. Setting ACK1 does not affect  
subsequent transitions on the IRQ pin. A falling edge that occurs  
after writing to the ACK1 bit latches another interrupt request. If  
the IRQ mask bit, IMASK1, is clear, the CPU loads the program  
counter with the vector address at locations $FFFA and $FFFB.  
Return of the IRQ pin to logic 1 As long as the IRQ pin is at logic  
0, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic 1  
may occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE1  
control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE1 bit is clear, the IRQ pin is falling-edge sensitive only. With  
MODE1 clear, a vector fetch or software clear immediately clears the  
IRQ latch.  
The IRQF1 bit in the ISCR register can be used to check for pending  
interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes  
it useful in applications where polling is preferred.  
NOTE: When the IRQ function is enabled in the CONFIG2 register, the BIH and  
BIL instructions can be used to read the logic level on the IRQ pin. If the  
IRQ function is disabled, these instructions will behave as if the IRQ pin  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
174  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
IRQ Module During Break Interrupts  
is a logic 1, regardless of the actual level on the pin. Conversely, when  
the IRQ function is enabled, bit 2 of the port A data register will always  
read a logic 0.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
An internal pullup resistor to VDD is connected to the IRQ pin; this can  
be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).  
13.6 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ latch can  
be cleared during the break state. The BCFE bit in the break flag control  
register (BFCR) enables software to clear the latches during the break  
state. See Section 7. System Integration Module (SIM).  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the ACK1 bit in the  
IRQ status and control register during the break state has no effect on  
the IRQ latch.  
13.7 IRQ Status and Control Register  
The IRQ status and control register (ISCR) controls and monitors  
operation of the IRQ module, see Section 5. Configuration Register  
(CONFIG).  
The ISCR has the following functions:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks IRQ and interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
External Interrupt (IRQ)  
175  
External Interrupt (IRQ)  
Address: $001D  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
IRQF1  
IMASK1 MODE1  
ACK1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-3. IRQ Status and Control Register (INTSCR)  
IRQF1 IRQ Flag  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK1 IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK1  
always reads as logic 0. Reset clears ACK1.  
IMASK1 IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK1.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE1 IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
Reset clears MODE1.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
176  
External Interrupt (IRQ)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 14. Keyboard Interrupt Module (KBI)  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . .182  
14.4.3 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .184  
14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . .185  
14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
14.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
14.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .187  
14.2 Introduction  
The keyboard interrupt module (KBI) provides six independently  
maskable external interrupts, which are accessible via the PTA0PTA5  
pins, plus one internal maskable interrupt controlled by the auto wake-up  
logic.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Keyboard Interrupt Module (KBI) 177  
Keyboard Interrupt Module (KBI)  
14.3 Features  
Features of the keyboard interrupt module include:  
Six keyboard interrupt pins with separate keyboard interrupt  
enable bits and one keyboard interrupt mask  
One internal interrupt controlled by the auto wake-up logic, with  
separate interrupt enable bit, sharing the same keyboard interrupt  
mask  
Software configurable pullup device if input pin is configured as  
input port bit  
Programmable edge-only or edge and level interrupt sensitivity  
Exit from low-power modes  
Figure 14-1 provides a summary of the input/output (I/O) registers  
Addr.  
Register Name  
Keyboard Status  
and Control Register  
(KBSCR)  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
$001A  
See page 183.  
0
0
0
AWUIE  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Keyboard Interrupt Enable  
KBIE2  
0
$001B  
Register (KBIER) Write:  
See page 184.  
Reset:  
0
= Unimplemented  
Figure 14-1. KBI I/O Register Summary  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
178 Keyboard Interrupt Module (KBI) MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
14.4 Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
KBI0  
VDD  
RESET  
KEYF  
CLR  
.
D
Q
SYNCHRONIZER  
KBIE0  
.
CK  
TO PULLUP ENABLE  
.
KEYBOARD  
INTERRUPT  
REQUEST  
IMASKK  
KBI5  
KEYBOARD  
INTERRUPT FF  
MODEK  
KBIE5  
TO PULLUP ENABLE  
(1)  
AWUIREQ  
1. For AWUGEN logic refer to Figure 14-5.  
Figure 14-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE0KBIE5 bits in the keyboard interrupt enable register  
(KBIER) independently enables or disables each port A pin as a  
keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also  
enables its internal pullup device irrespective of PTAPUEx bits in the  
port A input pullup enable register (see 12.3.3 Port A Input Pullup  
Enable Register). A logic 0 applied to an enabled keyboard interrupt pin  
latches a keyboard interrupt request.  
Writing the AWUIE bit in the keyboard interrupt enable register enables  
or disables the auto wake-up interrupt input (see Figure 14-5). A logic 1  
applied to the AWUIREQ input with auto wake-up interrupt request  
enabled, latches a keyboard interrupt request.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
179  
Keyboard Interrupt Module (KBI)  
A keyboard interrupt is latched when one or more keyboard interrupt  
inputs goes low after all were high. The MODEK bit in the keyboard  
status and control register controls the triggering mode of the keyboard  
interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard interrupt input does not latch an interrupt request if  
another keyboard pin is already low. To prevent losing an interrupt  
request on one input because another input is still low, software  
can disable the latter input while it is low.  
If the keyboard interrupt is falling edge and low-level sensitive, an  
interrupt request is present as long as any keyboard interrupt input  
is low.  
If the MODEK bit is set, the keyboard interrupt inputs are both falling  
edge and low-level sensitive, and both of the following actions must  
occur to clear a keyboard interrupt request:  
Vector fetch or software clear A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register (KBSCR). The ACKK bit is useful in applications that poll  
the keyboard interrupt inputs and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt inputs. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the central  
processor unit (CPU) loads the program counter with the vector  
address at locations $FFE0 and $FFE1.  
Return of all enabled keyboard interrupt inputs to logic 1 As  
long as any enabled keyboard interrupt pin is at logic 0, the  
keyboard interrupt remains set. The auto wake-up interrupt input,  
AWUIREQ, will be cleared only by writing to ACKK bit in KBSCR  
or reset.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
180  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt input stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data  
direction register to configure the pin as an input and then read the data  
register.  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
Auto wake-up latch, AWUL, can be read directly from the bit 6 position  
of port A data register (PTA). This is a read-only bit which is occupying  
and empty bit position on PTA. No PTA associated registers, such as  
PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit.  
14.4.1 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pullup to reach a logic 1. Therefore a false interrupt can occur as soon  
as the pin is enabled. This does not apply to an auto wake-up interrupt,  
which is internally generated without pullup.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
181  
Keyboard Interrupt Module (KBI)  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDRA bits in the data direction register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
14.4.2 Keyboard Status and Control Register  
The keyboard status and control register (KBSCR):  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
182  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-3. Keyboard Status and Control Register (KBSCR)  
Bits 74 Not used  
These read-only bits always read as logic 0s.  
KEYF Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on  
port A or auto wake-up. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request on port A and auto wake-up logic. ACKK always reads as  
logic 0. Reset clears ACKK.  
IMASKKKeyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests on port A  
or auto wake-up. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins on port A and auto wake-up. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
183  
Keyboard Interrupt Module (KBI)  
14.4.3 Keyboard Interrupt Enable Register  
The port A keyboard interrupt enable register (KBIER) enables or  
disables each port A pin or auto wake-up to operate as a keyboard  
interrupt input.  
Address: $001B  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
Figure 14-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE5KBIE0 Port A Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin on port A to latch interrupt requests. Reset clears the  
keyboard interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
AWUIE Auto Wake-up Interrupt Enable Bit  
This read/write bit enables the auto wake-up interrupt input to latch  
interrupt requests. Reset clears AWUIE.  
1 = Auto wake-up enabled as interrupt input  
0 = Auto wake-up not enabled as interrupt input  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
184  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
14.4.4 Auto Wake-up Interrupt Request  
COPRS (FROM CONFIG1)  
V
DD  
AUTOWUGEN  
TO PTA READ, BIT 6  
1 = DIV 29  
0 = DIV 214  
D
E
AWUL  
Q
SHORT  
INT RC OSC  
OVERFLOW  
RST  
AWUIREQ  
R
32KHz  
EN  
CLK  
TO KBI INTERRUPT LOGIC  
(SEE Figure 14-2)  
CLRLOGIC  
RESET  
ACKK  
CLEAR  
(CGMXCLK)  
BUSCLKX4  
CLK  
RST  
RESET  
ISTOP  
RESET  
AWUIE  
Figure 14-5. Auto Wake-up Interrupt Request Generation Logic  
The function of the auto wake-up logic is to generate periodic wake-up  
requests to bring the microcontroller unit (MCU) out of stop mode. The  
wake-up requests are treated as regular keyboard interrupt requests,  
with the difference that instead of a pin, the interrupt signal is generated  
by an internal logic.  
Entering stop mode will enable the auto wake-up generation logic. An  
internal RC oscillator (exclusive for the auto wake-up feature) drives the  
wake-up request generator. Once the overflow count is reached in the  
generator counter, a wake-up request, AWUIREQ, is latched and sent to  
the KBI logic (see Figure 14-2).  
Wake-up interrupt requests will only be serviced if the associated  
interrupt enable bit, AWUIE, in KBIER is set.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Keyboard Interrupt Module (KBI) 185  
Keyboard Interrupt Module (KBI)  
The overflow count can be selected from two options defined by the  
COPRS bit in CONFIG1. This bit was borrowedfrom the computer  
operating properly (COP) using the fact that the COP feature is idle (no  
MCU clock available) in stop mode. The typical values of the periodic  
wake-up request (5 V, room temperature) are:  
COPRS = 0: 512 ms  
COPRS = 1: 16 ms  
The auto wake-up RC oscillator is highly dependent on operating voltage  
and temperature.  
The wake-up request is latched to allow the interrupt source  
identification. The latched value, AWUL, can be read directly from the  
bit 6 position of PTA data register. This is a read-only bit which is  
occupying an empty bit position on PTA. No PTA associated registers,  
such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit.  
The latch can be cleared by writing to the ACKK bit in the KBSCR  
register. Reset also clears the latch. AWUIE bit in KBI interrupt enable  
register (see Figure 14-2) has no effect on AWUL reading.  
14.5 Wait Mode  
14.6 Stop Mode  
The keyboard module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
186 Keyboard Interrupt Module (KBI) MOTOROLA  
Keyboard Interrupt Module (KBI)  
Keyboard Module During Break Interrupts  
14.7 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard  
interrupt latch can be cleared during the break state. The BCFE bit in the  
break flag control register (BFCR) enables software to clear status bits  
during the break state.  
To allow software to clear the keyboard interrupt latch during a break  
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the  
break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the keyboard  
acknowledge bit (ACKK) in the keyboard status and control register  
during the break state has no effect.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
187  
Keyboard Interrupt Module (KBI)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
188  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 15. Computer Operating Properly (COP)  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .192  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .193  
15.2 Introduction  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the configuration 1 (CONFIG1) register.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Computer Operating Properly (COP) 189  
Computer Operating Properly (COP)  
15.3 Functional Description  
SIM MODULE  
12-BIT SIM COUNTER  
SIM RESET CIRCUIT  
BUSCLKX4  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
1. See Section 7. System Integration Module (SIM) for more details.  
Figure 15-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by the 12-bit  
system integration module (SIM) counter. If not cleared by software, the  
COP counter overflows and generates an asynchronous reset after  
218 24 or 213 24 BUSCLKX4 cycles; depending on the state of the  
COP rate select bit, COPRS, in configuration register 1. With a 218 24  
BUSCLKX4 cycle overflow option, a 8-MHz crystal gives a COP timeout  
period of 32.766 ms. Writing any value to location $FFFF before an  
overflow occurs prevents a COP reset by clearing the COP counter and  
stages 125 of the SIM counter.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
190  
Computer Operating Properly (COP)  
MOTOROLA  
Computer Operating Properly (COP)  
I/O Signals  
NOTE: Service the COP immediately after reset and before entering or after  
exiting stop mode to guarantee the maximum time before the first COP  
counter overflow.  
A COP reset pulls the RST pin low for 32 × BUSCLKX4 cycles and sets  
the COP bit in the reset status register (RSR). See 7.9.1 SIM Reset  
Status Register.  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
15.4 I/O Signals  
The following paragraphs describe the signals shown in Figure 15-1.  
15.4.1 BUSCLKX4  
BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is  
equal to the crystal frequency or the RC-oscillator frequency.  
15.4.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 15.5 COP  
Control Register) clears the COP counter and clears bits 125 of the  
SIM counter. Reading the COP control register returns the low byte of  
the reset vector.  
15.4.3 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter  
4096 × BUSCLKX4 cycles after power up.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Computer Operating Properly (COP)  
191  
Computer Operating Properly (COP)  
15.4.4 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
15.4.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the SIM counter.  
15.4.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register (CONFIG). See Section 5. Configuration  
Register (CONFIG).  
15.4.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the configuration register 1 (CONFIG1). See Section 5.  
Configuration Register (CONFIG).  
15.5 COP Control Register  
The COP control register (COPCTL) is located at address $FFFF and  
overlaps the reset vector. Writing any value to $FFFF clears the COP  
counter and starts a new timeout period. Reading location $FFFF  
returns the low byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LOW BYTE OF RESET VECTOR  
CLEAR COP COUNTER  
Unaffected by reset  
Figure 15-2. COP Control Register (COPCTL)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
192 Computer Operating Properly (COP) MOTOROLA  
Computer Operating Properly (COP)  
Interrupts  
15.6 Interrupts  
The COP does not generate CPU interrupt requests.  
15.7 Monitor Mode  
The COP is disabled in monitor mode when VTST is present on the IRQ  
pin.  
15.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
15.8.1 Wait Mode  
15.8.2 Stop Mode  
The COP continues to operate during wait mode. To prevent a COP  
reset during wait mode, periodically clear the COP counter.  
Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM  
counter. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
15.9 COP Module During Break Mode  
The COP is disabled during a break interrupt with monitor mode when  
BDCOP bit is set in break auxiliary register (BRKAR).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Computer Operating Properly (COP)  
193  
Computer Operating Properly (COP)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
194  
Computer Operating Properly (COP)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 16. Low-Voltage Inhibit (LVI)  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
16.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .198  
16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .198  
16.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198  
16.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
16.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
16.2 Introduction  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the VDD pin and can force a reset when the VDD  
voltage falls below the LVI trip falling voltage, VTRIPF  
.
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Low-Voltage Inhibit (LVI) 195  
Low-Voltage Inhibit (LVI)  
16.3 Features  
Features of the LVI module include:  
Programmable LVI reset  
Programmable power consumption  
Selectable LVI trip voltage  
Programmable stop mode operation  
16.4 Functional Description  
Figure 16-1 shows the structure of the LVI module. LVISTOP,  
LVIPWRD, LVI5OR3, and LVIRSTD are user selectable options found in  
the configuration register (CONFIG1). See Section 5. Configuration  
Register (CONFIG).  
V
DD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG  
FROM CONFIG  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
VDD > LVITRIP = 0  
LVI RESET  
LOW V  
DD  
DETECTOR  
VDD LVITRIP = 1  
LVIOUT  
LVI5OR3  
FROM CONFIG  
Figure 16-1. LVI Module Block Diagram  
The LVI is enabled out of reset. The LVI module contains a bandgap  
reference circuit and comparator. Clearing the LVI power disable bit,  
LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI  
reset disable bit, LVIRSTD, enables the LVI module to generate a reset  
when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
196  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
Functional Description  
mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the  
LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage,  
VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit  
enables the trip point voltage, VTRIPF, to be configured for 3-V operation.  
The actual trip thresholds are specified in 18.6 5-V DC Electrical  
Characteristics and 18.9 3-V DC Electrical Characteristics.  
NOTE: After a power-on reset, the LVIs default mode of operation is 3 volts. If  
a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip  
point to 5-V operation.  
If the user requires 5-V mode and sets the LVI5OR3 bit after power-on  
reset while the VDD supply is not above the VTRIPR for 5-V mode, the  
microcontroller unit (MCU) will immediately go into reset. The next time  
the LVI releases the reset, the supply will be above the VTRIPR for 5-V  
mode.  
Once an LVI reset occurs, the MCU remains in reset until VDD rises  
above a voltage, VTRIPR, which causes the MCU to exit reset. See  
Section 7. System Integration Module (SIM) for the reset recovery  
sequence.  
The output of the comparator controls the state of the LVIOUT flag in the  
LVI status register (LVISR) and can be used for polling LVI operation  
when the LVI reset is disabled.  
16.4.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level,  
software can monitor VDD by polling the LVIOUT bit. In the configuration  
register, the LVIPWRD bit must be at logic 0 to enable the LVI module,  
and the LVIRSTD bit must be at logic 1 to disable LVI resets.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
197  
Low-Voltage Inhibit (LVI)  
16.4.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level,  
enabling LVI resets allows the LVI module to reset the MCU when VDD  
falls below the VTRIPF level. In the configuration register, the LVIPWRD  
and LVIRSTD bits must be at logic 0 to enable the LVI module and to  
enable LVI resets.  
16.4.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI  
will maintain a reset condition until VDD rises above the rising trip point  
voltage, VTRIPR. This prevents a condition in which the MCU is  
continually entering and exiting reset if VDD is approximately equal to  
VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS  
.
16.4.4 LVI Trip Selection  
The LVI5OR3 bit in the configuration register selects whether the LVI is  
configured for 5-V or 3-V protection.  
NOTE: The microcontroller is guaranteed to operate at a minimum supply  
voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than  
this. See 18.6 5-V DC Electrical Characteristics and  
18.9 3-V DC Electrical Characteristics for the actual trip point voltages.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
198  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
LVI Status Register  
16.5 LVI Status Register  
The LVI status register (LVISR) indicates if the VDD voltage was  
detected below the VTRIPF level while LVI resets have been disabled.  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
R
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 16-2. LVI Status Register (LVISR)  
LVIOUT LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the  
VTRIPF trip voltage and is cleared when VDD voltage rises above  
VTRIPR. The difference in these threshold levels results in a hysteresis  
that prevents oscillation into and out of reset (see Table 16-1). Reset  
clears the LVIOUT bit.  
Table 16-1. LVIOUT Bit Indication  
V
LVIOUT  
DD  
V
> V  
0
DD  
TRIPR  
TRIPF  
V
< V  
1
DD  
V
< V < V  
DD TRIPR  
Previous value  
TRIPF  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Low-Voltage Inhibit (LVI) 199  
Low-Voltage Inhibit (LVI)  
16.6 LVI Interrupts  
The LVI module does not generate interrupt requests.  
16.7 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
16.7.1 Wait Mode  
16.7.2 Stop Mode  
If enabled, the LVI module remains active in wait mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of wait mode.  
When the LVIPWRD bit in the configuration register is cleared and the  
LVISTOP bit in the configuration register is set, the LVI module remains  
active in stop mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of stop mode.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
200 Low-Voltage Inhibit (LVI) MOTOROLA  
Data Sheet MC68HC908QY4  
Section 17. Break Module (BREAK)  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
17.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .204  
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204  
17.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .204  
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204  
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
17.5.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .205  
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .206  
17.5.3 Break Auxiliary Register. . . . . . . . . . . . . . . . . . . . . . . . . . .207  
17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
17.2 Introduction  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Break Module (BREAK) 201  
Break Module (BREAK)  
17.3 Features  
Features of the break module include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break  
interrupts  
17.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal (BKPT)  
to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI)  
after completion of the current CPU instruction. The program counter  
vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter)  
matches the contents of the break address registers.  
Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the microcontroller unit  
(MCU) to normal operation. Figure 17-1 shows the structure of the break  
module.  
Figure 17-2 provides a summary of the I/O registers.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
202  
Break Module (BREAK)  
MOTOROLA  
Break Module (BREAK)  
Functional Description  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 17-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
SBSW  
Break Status Register  
(BSR) Write:  
R
R
R
R
R
R
R
(1)  
$FE00  
Note  
See page 208.  
Reset:  
Read:  
0
Bit 1  
0
Break Auxiliary Register  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 0  
0
$FE02  
$FE03  
$FE09  
$FE0A  
$FE0B  
(BRKAR) Write:  
See page 207.  
Reset:  
Read:  
Break Flag Control  
Register (BFCR) Write:  
BCFE  
0
R
R
R
R
R
R
R
See page 209.  
Reset:  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
Register (BRKH) Write:  
See page 206.  
Reset:  
Read:  
Break Address Low  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register (BRKL) Write:  
See page 206.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
0
Register (BRKSCR) Write:  
See page 205.  
Reset:  
0
0
0
0
0
0
1. Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 17-2. Break I/O Register Summary  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Break Module (BREAK) 203  
Break Module (BREAK)  
17.4.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module  
status bits can be cleared during the break state. The BCFE bit in the  
break flag control register (BFCR) enables software to clear status bits  
during the break state. See 7.9.2 Break Flag Control Register and the  
Break Interrupts subsection for each module.  
17.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD  
in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
17.4.3 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
17.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt with monitor mode when  
BDCOP bit is set in break auxiliary register (BRKAR).  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
204  
Break Module (BREAK)  
MOTOROLA  
Break Module (BREAK)  
Break Module Registers  
17.5 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
17.5.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Address: $FE0B  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 17-3. Break Status and Control Register (BRKSCR)  
BRKE Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Break Module (BREAK)  
205  
Break Module (BREAK)  
17.5.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
Address: $FE09  
Bit 7  
Bit 15  
0
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 17-4. Break Address Register High (BRKH)  
Address: $FE0A  
Bit 7  
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 17-5. Break Address Register Low (BRKL)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
206 Break Module (BREAK) MOTOROLA  
Break Module (BREAK)  
Break Module Registers  
17.5.3 Break Auxiliary Register  
The break auxiliary register (BRKAR) contains a bit that enables  
software to disable the COP while the MCU is in a state of break interrupt  
with monitor mode.  
Address: $FE02  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
BDCOP  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-6. Break Auxiliary Register (BRKAR)  
BDCOP Break Disable COP Bit  
This read/write bit disables the COP during a break interrupt. Reset  
clears the BDCOP bit.  
1 = COP disabled during break interrupt  
0 = COP enabled during break interrupt.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Break Module (BREAK)  
207  
Break Module (BREAK)  
17.5.4 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break  
caused an exit from wait mode. This register is only used in emulation  
mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
R
R
R
R
R
R
(1)  
Note  
0
R
= Reserved  
1. Writing a logic 0 clears SBSW.  
Figure 17-7. Break Status Register (BSR)  
SBSW SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait mode  
after exiting from a break interrupt. Clear SBSW by writing a logic 0 to  
it. Reset clears SBSW.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
208  
Break Module (BREAK)  
MOTOROLA  
Break Module (BREAK)  
Low-Power Modes  
17.5.5 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software  
to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 17-8. Break Flag Control Register (BFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
17.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes. If enabled, the break module will remain  
enabled in wait and stop modes. However, since the internal address  
bus does not increment in these modes, a break interrupt will never be  
triggered.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Break Module (BREAK)  
209  
Break Module (BREAK)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
210  
Break Module (BREAK)  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 18. Electrical Specifications  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .212  
18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .213  
18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
18.6 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .214  
18.7 5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
18.8 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .216  
18.9 3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .217  
18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .219  
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . .221  
18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
18.2 Introduction  
This section contains electrical and timing specifications.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Electrical Specifications 211  
Electrical Specifications  
18.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit  
(MCU) can be exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to 18.6 5-V DC Electrical Characteristics and  
18.9 3-V DC Electrical Characteristics for guaranteed operating  
conditions.  
(1)  
Symbol  
Value  
Unit  
V
Characteristic  
Supply voltage  
V
0.3 to +6.0  
DD  
V
V
0.3 to V +0.3  
Input voltage  
V
IN  
SS  
DD  
V
V
0.3 to +9.1  
SS  
Mode entry voltage, IRQ pin  
Maximum current per pin excluding  
V
TST  
I
±15  
±25  
mA  
mA  
PTA0PTA5, V , and V  
DD  
SS  
Maximum current for pins  
PTA0PTA5  
I
I
PTA0PTA5  
T
Storage temperature  
55 to +150  
100  
°C  
mA  
mA  
STG  
Maximum current out of V  
I
SS  
MVSS  
Maximum current into V  
I
100  
DD  
MVDD  
1. Voltages references to V  
.
SS  
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIN and VOUT be constrained to the  
range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD.)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
212  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Functional Operating Range  
18.4 Functional Operating Range  
Characteristic  
Symbol  
Value  
40 to +125  
Unit  
°C  
40 to +125  
40 to +85  
T
Operating temperature range  
Operating voltage range  
A
40 to +85  
V
5 V ± 10%  
3 V ± 10%  
V
DD  
18.5 Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
8-pin PDIP  
8-pin SOIC  
16-pin PDIP  
16-pin SOIC  
16-pin TSSOP  
95  
70  
66  
70  
70  
θ
°C/W  
JA  
P
I/O pin power dissipation  
User determined  
P = (I x V  
W
W
I/O  
)
DD  
D
DD  
(1)  
P
Power dissipation  
D
+ P = K/(T + 273°C)  
I/O  
J
P x (T + 273°C)  
D
A
(2)  
K
W/°C  
Constant  
2
+ P x θ  
D
JA  
T
T + (P x θ )  
Average junction temperature  
Maximum junction temperature  
°C  
°C  
J
A
D
JA  
T
100  
JM  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known T and measured P With  
A
D.  
this value of K, P and T can be determined for any value of T .  
D
J
A
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Electrical Specifications 213  
Electrical Specifications  
18.6 5-V DC Electrical Characteristics  
(1)  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
Output high voltage  
Typ  
I
I
I
= 2.0 mA, all I/O pins  
V
V
V
0.4  
Load  
Load  
Load  
DD  
DD  
DD  
V
V
OH  
= 10.0 mA, all I/O pins  
= 15.0 mA, PTA0PTA5 only  
1.5  
0.8  
Output low voltage  
I
I
I
= 1.6 mA, all I/O pins  
Load  
Load  
Load  
0.4  
1.5  
0.8  
V
V
OL  
= 10.0 mA, all I/O pins  
= 15.0 mA, PTA0PTA5 only  
Input high voltage  
PTA0PTA5, PTB0PTB7, RST, IRQ, OSC1  
V
0.7 x V  
V
V
V
IH  
DD  
DD  
Input low voltage  
PTA0PTA5, PTB0PTB7, RST, IRQ, OSC1  
V
V
0.3 x V  
DD  
IL  
SS  
I
DC injection current, all ports  
2  
+2  
mA  
mA  
INJ  
I
Total dc current injection (sum of all I/O)  
25  
+25  
INJTOT  
V
supply current  
DD  
(3)  
7
5
10  
5.5  
5
mA  
mA  
µA  
Run, f = 4 MHz  
OP  
I
DD  
(4)  
Wait  
(5)  
0.1  
Stop , 40°C to 85°C  
I
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
C
IN  
(6)  
V
0
100  
mV  
V/ms  
V
POR rearm voltage  
POR  
POR  
(7)  
R
0.035  
V + 2.5  
DD  
POR rise time ramp rate  
V
Monitor mode entry voltage  
9.1  
TST  
(8)  
Pullup resistors  
R
16  
3.90  
26  
36  
kΩ  
PU  
RST, IRQ, PTA0PTA5, PTB0PTB7  
V
Low-voltage inhibit reset, trip falling voltage  
4.20  
4.50  
V
TRIPF  
Continued on next page  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
214 Electrical Specifications MOTOROLA  
Electrical Specifications  
5-V Control Timing  
(1)  
(2)  
Symbol  
Min  
4.00  
Max  
4.60  
Unit  
V
Characteristic  
Typ  
V
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
4.30  
100  
TRIPR  
V
mV  
HYS  
1. V = 4.5 to 5.5 Vdc, V = 0 Vdc, T = T to T , unless otherwise noted.  
DD  
SS  
A
L
H
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) I measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
DD  
100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.  
4. Wait I measured using external square wave clock source (f = 4MHz); all inputs 0.2 V from rail; no dc loads; less than  
DD  
OP  
100 pF on all outputs.  
5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured  
as inputs with pullups enabled.  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum V is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
DD  
V
is reached.  
DD  
8. R  
and R  
are measured at V = 5.0 V.  
PU1  
PU2 DD  
18.7 5-V Control Timing  
(1)  
Symbol  
Min  
Max  
8
Unit  
MHz  
ns  
Characteristic  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
750  
RST input pulse width low  
IRL  
1. V = 4.5 to 5.5 Vdc, V = 0 Vdc, T = T to T ; timing shown with respect to 20% V and 70% V , unless otherwise  
DD  
SS  
A
L
H
DD  
SS  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Electrical Specifications  
215  
Electrical Specifications  
18.8 5-V Oscillator Characteristics  
Characteristic  
Internal oscillator frequency  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
Symbol  
Min  
1
Typ  
12.8  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
f
INTCLK  
f
32  
OSCXCLK  
f
2
12  
RCCLK  
(1)  
f
dc  
32  
External clock reference frequency  
OSCXCLK  
(2)  
C
2 x C  
2 x C  
10  
Crystal load capacitance  
L
(2)  
C
Crystal fixed capacitance  
1
L
L
(2)  
C
Crystal tuning capacitance  
2
R
Feedback bias resistor  
MΩ  
B
(2), (3)  
R
Series resistor  
S
R
RC oscillator external resistor  
See Figure 18-1  
EXT  
1. No more than 10% duty cycle deviation from 50%.  
2. Consult crystal vendor data sheet.  
3. Not required for high frequency crystals  
14  
12  
10  
8
5 V @ 25°C  
MCU  
OSC1  
6
V
DD  
4
REXT  
2
0
0
10  
20  
30  
40  
50  
Resistor, REXT (k)  
Figure 18-1. RC versus Frequency (5 Volts @ 25°C)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
216 Electrical Specifications MOTOROLA  
Electrical Specifications  
3-V DC Electrical Characteristics  
18.9 3-V DC Electrical Characteristics  
(1)  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
Output high voltage  
Typ  
I
I
I
= 0.6 mA, all I/O pins  
V
V
V
0.3  
Load  
Load  
Load  
DD  
DD  
DD  
V
V
OH  
= 4.0 mA, all I/O pins  
1.0  
0.6  
= 10.0 mA, PTA0PTA4 only  
Output low voltage  
0.3  
1.0  
0.6  
I
I
I
= 0.5 mA, all I/O pins  
Load  
Load  
Load  
V
V
OL  
= 6.0 mA, all I/O pins  
= 10.0 mA, PTA0-PTA5 only  
Input high voltage  
PTA0PTA5, PTB0PTB7, RST, IRQ, OSC1  
V
0.7 x V  
V
V
V
IH  
DD  
DD  
Input low voltage  
PTA0PTA5, PTB0PTB7, RST, IRQ, OSC1  
V
V
0.3 x V  
DD  
IL  
SS  
I
DC injection current, all ports  
2  
+2  
mA  
mA  
INJ  
I
Total dc current injection (sum of all I/O)  
25  
+25  
INJTOT  
V
supply current  
DD  
(3)  
(4)  
Run, f = 2 MHz  
5
1
8
2.5  
5
mA  
mA  
µA  
OP  
I
DD  
Wait, f = 2 MHz  
OP  
(5)  
0.1  
Stop ,40°C to 85°C  
I
Digital I/O ports Hi-Z leakage current  
Input leakage current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
C
IN  
(6)  
V
R
0
100  
mV  
V/ms  
V
POR rearm voltage  
POR  
POR  
(7)  
0.035  
+ 2.5  
POR rise time ramp rate  
V
V
V
+ 4.0  
DD  
Monitor mode entry voltage  
TST  
DD  
(8)  
Pullup resistors  
R
16  
2.40  
26  
36  
2.70  
kΩ  
PU  
RST, IRQ, PTA0PTA5, PTB0PTB7  
V
Low-voltage inhibit reset, trip falling voltage  
2.55  
V
TRIPF  
Continued on next page  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Electrical Specifications 217  
Electrical Specifications  
(1)  
(2)  
Symbol  
Min  
2.50  
Max  
2.80  
Unit  
V
Characteristic  
Typ  
V
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
2.65  
60  
TRIPR  
V
mV  
HYS  
1. V = 2.7 to 3.3 Vdc, V = 0 Vdc, T = T to T , unless otherwise noted.  
DD  
SS  
A
L
H
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) I measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
DD  
100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.  
4. Wait I measured using external square wave clock source (f = 4 MHz); all inputs 0.2 V from rail; no dc loads; less than  
DD  
OP  
100 pF on all outputs.  
5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured  
as inputs with pullups enabled.  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum V is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
DD  
V
is reached.  
DD  
8. R  
and R  
are measured at V = 5.0 V  
PU1  
PU2 DD  
18.10 3-V Control Timing  
(1)  
Symbol  
Min  
Max  
4
Unit  
MHz  
µs  
Characteristic  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
1.5  
RST input pulse width low  
IRL  
1. V = 2.7 to 3.3 Vdc, V = 0 Vdc, T = T to T ; timing shown with respect to 20% V and 70% V , unless otherwise  
DD  
SS  
A
L
H
DD  
DD  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
218  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
3-V Oscillator Characteristics  
18.11 3-V Oscillator Characteristics  
Characteristic  
Internal oscillator frequency  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
Symbol  
Min  
1
Typ  
12.8  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
f
INTCLK  
f
f
16  
OSCXCLK  
f
2
12  
RCCLK  
(1)  
dc  
16  
External clock reference frequency  
OSCXCLK  
(2)  
C
Crystal load capacitance  
L
(2)  
C
2 x C  
2 x C  
Crystal fixed capacitance  
1
L
L
(2)  
C
Crystal tuning capacitance  
2
R
Feedback bias resistor  
10  
MΩ  
B
(2), (3)  
R
Series resistor  
S
R
RC oscillator external resistor  
See Figure 18-2  
EXT  
1. No more than 10% duty cycle deviation from 50%  
2. Consult crystal vendor data sheet  
3. Not required for high frequency crystals  
14  
12  
10  
8
3 V @ 25°C  
MCU  
OSC1  
6
VDD  
REXT  
4
2
0
0
10  
20  
30  
40  
50  
RESISTOR, REXT (K)  
Figure 18-2. RC versus Frequency (3 Volts @ 25°C)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Electrical Specifications 219  
Electrical Specifications  
18.12 Typical Supply Currents  
14  
12  
10  
8
IDD (mA)  
6
4
2
0
5.5 V  
3.3 V  
0
1
2
3
4
5
6
7
8
9
fOP OR fBUS (MHz)  
Figure 18-3. Typical Operating IDD  
,
with All Modules Turned On (25°C)  
2
1.75  
1.50  
1.25  
1
IDD (mA)  
0.75  
0.5  
5.5 V  
3.3 V  
0.25  
0
0
1
2
3
4
5
6
7
8
fOP OR fBUS (MHz)  
Figure 18-4. Typical Wait Mode IDD  
,
with ADC Turned On (25°C)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
220 Electrical Specifications MOTOROLA  
Electrical Specifications  
Analog-to-Digital Converter Characteristics  
18.13 Analog-to-Digital Converter Characteristics  
Characteristic  
Supply voltage  
Symbol  
Min  
Max  
Unit  
Comments  
2.7  
5.5  
V
V
DDAD  
(V min) (V max)  
DD  
DD  
V
V
V
Input voltages  
Resolution  
V
ADIN  
SS  
DD  
B
8
8
Bits  
LSB  
AD  
A
Absolute accuracy  
± 0.5  
± 1.5  
Includes quantization  
AD  
t
= 1/f  
,
ADIC  
ADIC  
f
ADC internal clock  
0.5  
1.048  
MHz  
V
ADIC  
tested only at 1 MHz  
R
V
V
Conversion range  
Power-up time  
AD  
SS  
DD  
t
t
t
t
cycles  
t
t
t
= 1/f  
= 1/f  
= 1/f  
= V  
16  
16  
5
ADPU  
ADIC  
ADIC  
ADIC  
ADIC  
ADIC  
ADIC  
ADIC  
ADIC  
t
cycles  
cycles  
Conversion time  
17  
ADC  
(1)  
t
Sample time  
ADS  
ADIC  
(2)  
Z
V
00  
FE  
01  
FF  
8
Hex  
Zero input reading  
ADI  
IN  
SS  
DD  
(3)  
F
V
= V  
IN  
Hex  
pF  
Full-scale reading  
Input capacitance  
ADI  
C
Not tested  
ADI  
(3)  
± 1  
µA  
Input leakage  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA  
Electrical Specifications  
221  
Electrical Specifications  
18.14 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Max  
Unit  
V
V
RDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
32 k  
8M  
f
Read  
FLASH page erase time  
<1 K cycles  
<10 K cycles  
(2)  
1
4
ms  
t
Erase  
(3)  
FLASH mass erase time  
4
10  
5
40  
ms  
us  
us  
us  
us  
us  
us  
t
MErase  
t
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
nvs  
t
nvh  
t
100  
5
nvhl  
t
pgs  
t
FLASH program time  
30  
1
PROG  
(4)  
FLASH return to read time  
t
rcv  
(5)  
FLASH cumulative program hv period  
4
ms  
t
HV  
(6)  
10 k  
10 k  
10  
Cycles  
Cycles  
Years  
FLASH row erase endurance  
(7)  
FLASH row program endurance  
(8)  
FLASH data retention time  
1. f  
is defined as the frequency range for which the FLASH memory can be read.  
Read  
2. If the page erase time is longer than t  
memory.  
(Min), there is no erase disturb, but it reduces the endurance of the FLASH  
Erase  
3. If the mass erase time is longer than t  
memory.  
(Min), there is no erase disturb, but it reduces the endurance of the FLASH  
MErase  
4. t is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
rcv  
HVEN to logic 0.  
5. t is defined as the cumulative high voltage programming time to the same row before next erase.  
HV  
t
must satisfy this condition: t  
+ t  
+ t  
+ (t  
x 32) t max.  
HV  
nvs  
nvh  
pgs  
PROG HV  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
222  
Electrical Specifications  
MOTOROLA  
Data Sheet MC68HC908QY4  
Section 19. Mechanical Specifications  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
19.3 8-Pin Plastic Dual In-Line Package  
(Case #626). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
19.4 8-Pin Small Outline Integrated Circuit Package  
(Case #968). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
19.5 16-Pin Plastic Dual In-Line Package  
(Case #648D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
19.6 16-Pin Small Outline Integrated Circuit Package  
(Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
19.7 16-Pin Thin Shrink Small Outline Package  
(Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
19.2 Introduction  
This section gives the dimensions for:  
8-pin plastic dual in-line package (PDIP)  
8-pin small outline integrated circuit (SOIC) package  
16-pin PDIP  
16-pin SOIC  
16-pin thin shrink small outline package (TSSOP)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Mechanical Specifications 223  
Mechanical Specifications  
19.3 8-Pin Plastic Dual In-Line Package (Case #626)  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGECONTOUROPTIONAL(ROUNDOR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
-B-  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
1
4
A
B
C
D
F
G
H
J
K
L
M
N
9.40 10.16 0.370 0.400  
6.10  
3.94  
0.38  
1.02  
6.60 0.240 0.260  
4.45 0.155 0.175  
0.51 0.015 0.020  
1.78 0.040 0.070  
F
-A-  
NOTE 2  
L
2.54 BSC  
0.100 BSC  
1.27 0.030 0.050  
0.30 0.008 0.012  
3.43 0.115 0.135  
0.76  
0.20  
2.92  
C
7.62 BSC  
0.300 BSC  
--- 10  
1.01 0.030 0.040  
---  
0.76  
10  
°
°
J
-T-  
SEATING  
PLANE  
N
STYLE 1:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
AC IN  
M
D
DC + IN  
DC - IN  
AC IN  
GROUND  
OUTPUT  
K
G
H
M
M
M
0.13 (0.005)  
T A  
B
AUXILIARY  
VCC  
19.4 8-Pin Small Outline Integrated Circuit Package (Case #968)  
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
8
5
E
2. CONTROLLING DIMENSION: MILLIMETER  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD  
FLASH OR PROTRUSIONS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
Q
1
E
H
E
×
M
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
1
4
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALLBE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION. DAMBAR CANNOT BE LOCATED  
ON THE LOWER RADIUS OR THE FOOT  
MINIMUM SPACE BETWEEN PROTRUSIONS  
AND ADJACENT LEAD TO BE 0.46 (0.018).  
L
Z
DETAIL P  
D
e
P
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MIN MAX  
A
A
b
c
D
E
---  
2.05  
--- 0.081  
0.05  
0.35  
0.18  
5.10  
5.10  
0.20 0.002 0.008  
0.50 0.014 0.020  
0.27 0.007 0.011  
5.50 0.201 0.217  
5.45 0.201 0.215  
1
b
c
M
0.13 (0.005)  
0.10 (0.004)  
e
E
1.27 BSC  
0.050 BSC  
8.20 0.291 0.323  
0.85 0.020 0.033  
1.50 0.043 0.059  
H
7.40  
0.50  
1.10  
L
L
E
M
Q
Z
0
0.70  
---  
10  
0
10  
°
°
°
°
0.90 0.028 0.035  
0.94 --- 0.037  
1
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
224 Mechanical Specifications MOTOROLA  
Mechanical Specifications  
16-Pin Plastic Dual In-Line Package (Case #648D)  
19.5 16-Pin Plastic Dual In-Line Package (Case #648D)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
5. MOLD FLASH OR PROTRUSIONS SHALL  
NOT EXCEED 0.25 (0.010).  
-A-  
16  
9
8
-B-  
S
1
6. ROUNDED CORNERS OPTIONAL.  
F
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
L
C
A
B
C
D
F
G
H
J
K
L
M
S
0.740 0.760 18.80 19.30  
0.245 0.260  
0.145 0.175  
0.015 0.021  
0.050 0.070  
0.100 BSC  
6.23  
3.69  
0.39  
1.27  
2.54 BSC  
1.27 BSC  
6.60  
4.44  
0.53  
1.77  
SEATING  
PLANE  
-T-  
M
K
J
0.050 BSC  
H
0.008 0.015  
0.120 0.140  
0.295 0.305  
0.21  
0.38  
3.55  
7.74  
G
3.05  
7.50  
0
D 16 PL  
0
10  
10  
M
S
S
°
°
°
°
0.25 (0.010)  
T B  
A
0.015 0.035  
0.39  
0.88  
19.6 16-Pin Small Outline Integrated Circuit Package (Case #751G)  
A
NOTES:  
D
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND  
TOLERANCES PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE  
MOLD PROTRUSION.  
q
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
5. DIMENSIONB DOESNOTINCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
EXCESSOFTHEB DIMENSIONATMAXIMUM  
MATERIAL CONDITION.  
1
8
MILLIMETERS  
B
16X B  
DIM MIN  
2.35  
A1 0.10  
MAX  
2.65  
0.25  
0.49  
0.32  
A
M
S
S
0.25  
T A  
B
B
C
D
E
e
H
h
L
q
0.35  
0.23  
10.15 10.45  
7.40 7.60  
1.27 BSC  
10.05 10.55  
0.25  
0.40  
0
0.75  
1.00  
7
SEATING  
PLANE  
14X  
e
°
°
C
T
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Mechanical Specifications 225  
Mechanical Specifications  
19.7 16-Pin Thin Shrink Small Outline Package (Case #948F)  
16X KREF  
M
S
S
0.10 (0.004)  
T U  
V
NOTES:  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
S
0.15 (0.006)T U  
K
5. CONTROLLING DIMENSION: MILLIMETER.  
6. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
7. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEADFLASHORPROTRUSIONSHALL  
NOT EXCEED  
K1  
16  
9
2X L/2  
J1  
B
-U-  
SECTION N-N  
L
0.25 (0.010) PER SIDE.  
J
8. DIMENSIONKDOES NOT INCLUDEDAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
9. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
10. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE -W-.  
S
0.15 (0.006)T U  
A
M
-V-  
N
F
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
F
G
H
J
4.90  
4.30  
---  
0.05  
0.50  
0.65 BSC  
0.18  
0.09  
5.10 0.193 0.200  
4.50 0.169 0.177  
DETAIL E  
1.20  
--- 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
-W-  
C
0.026 BSC  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.10 (0.004)  
J1 0.09  
0.19  
H
DETAIL E  
SEATING  
PLANE  
K
-T-  
D
G
K1 0.19  
L
6.40 BSC  
0.252 BSC  
M
0
8
0
8
°
°
°
°
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
226 Mechanical Specifications MOTOROLA  
Data Sheet MC68HC908QY4  
Section 20. Ordering Information  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
20.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
20.2 Introduction  
This section contains ordering numbers for MC68HC908QY1,  
MC68HC908QY2, MC68HC908QY4, MC68HC908QT1,  
MC68HC908QT2, and MC69HC908QT4.  
20.3 MC Order Numbers  
Table 20-1. MC Order Numbers  
MC Order Number  
ADC  
FLASH Memory  
1536 bytes  
1536 bytes  
4096 bytes  
1536 bytes  
1536 bytes  
4096 bytes  
Package  
MC68HC908QY1  
MC68HC908QY2  
MC68HC908QY4  
MC68HC908QT1  
MC68HC908QT2  
MC68HC908QT4  
16-pins  
PDIP, SOIC,  
and TSSOP  
Yes  
Yes  
8-pins  
PDIP or SOIC  
Yes  
Yes  
Temperature and package designators:  
C = 40°C to +85°C  
V = 40°C to +105°C (available for V = 5 V only)  
DD  
M = 40°C to +125°C (available for V = 5 V only)  
DD  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
DT = Thin shrink small outline package (TSSOP)  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
MOTOROLA Ordering Information 227  
Ordering Information  
MC68HC908QY4MC68HC908QT4MC68HC908QY2MC68HC908QT2MC68HC908QY1MC68HC908QT1  
228  
Ordering Information  
MOTOROLA  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software  
implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola Semiconductors H.K. Ltd.;  
Silicon Harbour Centre, 2 Dai King Street,  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. Typicalparameters which may be provided in Motorola data sheets  
and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including Typicals”  
must be validated for each customer application by customers technical experts.  
Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola  
was negligent regarding the design or manufacture of the part.  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
HOME PAGE:  
http://www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark  
Office. digital dna is a trademark of Motorola, Inc. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal  
Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2002  
MC68HC908QY4/D  

相关型号:

M68HC08AB0

Microcontroller, 8-Bit, EEPROM, 8MHz, CMOS, PQFP100, TQFP-100
MOTOROLA

M68HC08AB16

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP64, QFP-64
MOTOROLA

M68HC08AB24

Microcontroller, 8-Bit, MROM, 8MHz, CMOS, PQFP64, QFP-64
MOTOROLA

M68HC08AB32

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP64, QFP-64
MOTOROLA

M68HC08AZ0

8-BIT, EEPROM, 8MHz, MICROCONTROLLER, PQFP100, TQFP-100
MOTOROLA

M68HC08AZ16

Microcontroller, 8-Bit, MROM, 8MHz, CMOS, PQFP64, QFP-64
MOTOROLA

M68HC08AZ32

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP64, QFP-64
MOTOROLA

M68HC08M6

HCMOS Microcontroller Unit
MOTOROLA

M68HC08M68H

HCMOS Microcontroller Unit
MOTOROLA

M68HC11

Technical Data
MOTOROLA

M68HC11A0

CONFIG Register Programming for EEPROM-based M68HC11 Microcontrollers
MOTOROLA

M68HC11A1

CONFIG Register Programming for EEPROM-based M68HC11 Microcontrollers
MOTOROLA