DSP56F826 [MOTOROLA]

Preliminary Technical Data DSP56F826 16-bit Digital Signal Processor; 初步的技术资料DSP56F826 16位数字信号处理器
DSP56F826
型号: DSP56F826
厂家: MOTOROLA    MOTOROLA
描述:

Preliminary Technical Data DSP56F826 16-bit Digital Signal Processor
初步的技术资料DSP56F826 16位数字信号处理器

数字信号处理器
文件: 总44页 (文件大小:594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DSP56F826/D  
Rev. # 0, 3/2001  
Semiconductor Products Sector  
DSP56F826  
Preliminary Technical Data  
DSP56F826 16-bit Digital Signal Processor  
Up to 40 MIPS at 80MHz core frequency  
Up to 64K × 16-bit words each of external  
memory expansion for Program and Data  
memory  
DSP and MCU functionality in a unified,  
C-efficient architecture  
One Serial Port Interface (SPI)  
Hardware DO and REP loops  
One additional SPI or two optional Serial  
Communication Interfaces (SCI)  
MCU-friendly instruction set supports both  
DSP and controller functions: MAC, bit  
manipulation unit, 14 addressing modes  
One Synchronous Serial Interface (SSI)  
One General Purpose Quad Timer  
JTAG/OnCEfor debugging  
100-pin LQFP Package  
31.5K × 16-bit words Program Flash  
512 × 16-bit words Program RAM  
2K × 16-bit words Data Flash  
4K × 16-bit words Data RAM  
2K × 16-bit words BootFLASH  
16 dedicated and 30 shared GPIO  
One Time-of-Day module  
EXTBOOT  
IRQB  
IO  
IO  
RESET  
IRQA  
V
V
DD  
SS  
V
V
SS  
V
V
SSA  
DD  
DDA  
6
3
3
4
4
Low Voltage Supervisor  
JTAG/  
OnCE  
Port  
Analog Reg  
TOD  
Timer  
Data ALU  
Address  
Generation  
Unit  
Bit  
Manipulation  
Unit  
Program Controller  
and  
Hardware Looping Unit  
16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Two 36-bit Accumulators  
Interrupt  
Controller  
Program Memory  
32252 x 16 Flash  
512 x 16 SRAM  
PAB  
PDB  
Quad Timer  
or  
GPIO  
CLKO  
PLL  
16-Bit  
DSP56800  
Core  
4
XTAL  
Boot Flash  
2048 x 16 Flash  
Clock Gen  
.
EXTAL  
XDB2  
CGDB  
XAB1  
XAB2  
Data Memory  
2048 x 16 Flash  
4096 x 16 SRAM  
SSI  
or  
GPIO  
6
INTERRUPT  
CONTROLS  
IPBB  
CONTROLS  
16  
SCI0 & SCI1  
External  
Address Bus  
Switch  
16  
A[00:15]  
or  
GPIO  
COP  
or  
SPI0  
RESET  
COP/  
Watchdog  
4
4
16  
16  
External  
Data Bus  
Switch  
SPI1  
or  
GPIO  
External  
Bus  
Interface  
Unit  
MODULE CONTROLS  
D[00:15]  
Application-  
Specific  
Memory &  
Peripherals  
IPBus Bridge  
(IPBB)  
ADDRESS BUS [8:0]  
DATA BUS [15:0]  
PS Select  
DS Select  
WR Enable  
RD Enable  
Bus  
Control  
Dedicated  
GPIO  
16  
Figure 1. DSP56F826 Block Diagram  
© Motorola, Inc., 2001. All rights reserved.  
Part 1 Overview  
1.1 DSP56F826 Features  
1.1.1  
Digital Signal Processing Core  
Efficient 16-bit DSP56800 Family DSP engine with dual Harvard architecture  
As many as 40 Million Instructions Per Second (MIPS) at 80MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Two 36-bit accumulators, including extension bits  
16-bit bidirectional barrel shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses and one external address bus  
Four internal data buses and one external data bus  
Instruction set supports both DSP and controller functions  
Controller style addressing modes and instructions for compact code  
Efficient C Compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/OnCE Debug Programming Interface  
1.1.2  
Memory  
Harvard architecture permits as many as three simultaneous accesses to program and data memory  
On-chip memory including a low cost, high volume flash solution  
— 31.5K × 16-bit words of Program Flash  
— 512 × 16-bit words of Program RAM  
— 2K × 16-bit words of Data Flash  
— 4K × 16-bit words of Data RAM  
— 2K × 16-bit words of BootFLASH  
Off-chip memory expansion capabilities programmable for 0, 4, 8, or 12 wait states  
— As much as 64 K × 16-bit data memory  
— As much as 64 K × 16-bit program memory  
1.1.3  
Peripheral Circuits for DSP56F826  
One General Purpose Quad Timer totalling 7pins  
One Serial Peripheral Interface with 4 pins (or four additional GPIO lines)  
One Serial Peripheral Interface, or multiplexed with two Serial Communications Interfaces totalling  
4 pins  
Synchronous Serial Interface (SSI) with configurable six-pin port (or six additional GPIO lines)  
2
DSP56F826 Preliminary Technical Data  
DSP56F826 Description  
Sixteen (16) dedicated general purpose I/O (GPIO) pins  
Thirty (30) shared general purpose I/O (GPIO) pins  
Computer-Operating Properly (COP) Watchdog timer  
Two external interrupt pins  
External reset pin for hardware reset  
JTAG/On-Chip Emulation (OnCE™) for unobtrusive, processor speed-independent debugging  
Software-programmable, Phase Lock Loop-based frequency synthesizer for the DSP core clock  
Fabricated in high-density EMOS with 5V tolerant, TTL-compatible digital inputs  
One Time of Day module  
Energy Information  
Dual power supply, 3.3V and 2.5V  
Wait and Multiple Stop modes available  
1.2 DSP56F826 Description  
The DSP56F826 is a member of the DSP56800 core-based family of Digital Signal Processors (DSPs). It  
combines, on a single chip, the processing power of a DSP and the functionality of a microcontroller with  
a flexible set of peripherals to create an extremely cost-effective solution for general purpose applications.  
Because of its low cost, configuration flexibility, and compact program code, the DSP56F826 is well-  
suited for many applications. The DSP56F826 includes many peripherals that are especially useful for  
applications such as: noise suppression, ID tag readers, sonic/subsonic detectors, security access devices,  
remote metering, sonic alarms, POS terminals, feature phones.  
The DSP56800 core is based on a Harvard-style architecture consisting of three execution units operating  
in parallel, allowing as many as six operations per instruction cycle. The microprocessor-style programming  
model and optimized instruction set allow straightforward generation of efficient, compact code for both  
DSP and MCU applications. The instruction set is also highly efficient for C/C++ Compilers to enable rapid  
development of optimized control applications.  
The DSP56F826 supports program execution from either internal or external memories. Two data operands  
can be accessed from the on-chip Data RAM per instruction cycle. The DSP56F826 also provides two  
external dedicated interrupt lines, and up to 46 General Purpose Input/Output (GPIO) lines, depending on  
peripheral configuration.  
The DSP56F826 DSP controller includes 31.5K words (16-bit) of Program Flash and 2K words of Data  
Flash (each programmable through the JTAG port) with 512 words of Program RAM, and 4K words of Data  
RAM. It also supports program execution from external memory.  
The DSP56F826 incorporates a total of 2K words of BootFLASH for easy customer-inclusion of field-  
programmable software routines that can be used to program the main Program and Data Flash memory  
areas. Both Program and Data Flash memories can be independently bulk-erased or erased in page sizes of  
256 words. The BootFLASH memory can also be either bulk- or page-erased.  
This DSP controller also provides a full set of standard programmable peripherals including one  
Synchronous Serial Interface (SSI), one Serial Peripheral Interface (SPI), the option to select a second SPI  
or two Serial Communications Interfaces (SCIs), and one Quad Timer. The SSI, SPI, and quad timer can be  
used as General Purpose Input/Outputs (GPIOs) if a timer function is not required.  
DSP56F826 Preliminary Technical Data  
3
1.3 Best in Class Development Environment  
The SDK (Software Development Kit) provides fully debugged peripheral drivers, libraries and interfaces  
that allow programmers to create their unique C application code independent of component architecture.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, the SDK, CodeWarrior, and EVMs create a complete,  
scalable tools solution for easy, fast, and efficient development.  
1.4 Product Documentation  
The four documents listed in Table 1 are required for a complete description and proper design with the  
DSP56F826. Documentation is available from local Motorola distributors, Motorola semiconductor sales  
offices, Motorola Literature Distribution Centers, or online at www.motorola.com/semiconductors/.  
Table 1. DSP56F826 Chip Documentation  
Topic  
DSP56800  
Description  
Order Number  
DSP56800FM/D  
Detailed description of the DSP56800 family architecture,  
and 16-bit DSP core processor and the instruction set  
Family Manual  
DSP56824/F826/F827  
User’s Manual  
Detailed description of memory, peripherals, and interfaces  
of the DSP56824, DSP56F826, DSP56F827  
TBD  
DSP56F826  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions, and  
package descriptions (this document)  
DSP56F826/D  
DSP56F826PB/D  
DSP56F826  
Product Brief  
Summary description and block diagram of the DSP56F826  
core, memory, peripherals and interfaces  
1.5 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is active when  
low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
4
DSP56F826 Preliminary Technical Data  
Introduction  
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the DSP56F826 are organized into functional groups, as shown in Table 2  
and as illustrated in Figure 2. In Table 3 describes the signal or signals present on a pin.  
Table 2. Functional Group Pin Allocations  
Functional Group  
Number of Pins  
(3,4,1)  
Power (VDD , VDDIO or VDDA  
)
Ground (VSS , VSSIO or VSSA  
PLL and Clock  
)
(3,4,1)  
3
Address Bus1  
Data Bus  
16  
16  
4
Bus Control  
Interrupt and Program Control  
5
Dedicated General Purpose Input/Output  
Synchronous Serial Interface (SSI) Port  
16  
6
Serial Peripheral Interface (SPI) Port1  
Serial Communications Interface (SCI) Ports  
Quad Timer Module Ports  
4
4
4
6
JTAG/On-Chip Emulation (OnCE)  
1. Alternately, GPIO pins  
DSP56F826 Preliminary Technical Data  
5
DSP56F826  
8
8
3
3
V
GPIOB0–7  
GPIOD0–7  
2.5V Power Port  
Ground Port  
DD  
Dedicated  
GPIO  
V
SS  
DDIO  
V
4
4
3.3V Power Port  
Ground Port  
Analog Power Port (3.3V)  
Ground Port  
V
SSIO  
SRD (GPIOC0)  
SRFS (GPIOC1)  
SRCK (GPIOC2)  
STD (GPIOC3)  
STFS (GPIOC4)  
STCK (GPIOC5)  
V
DDA  
V
SSA  
SSI Port or  
GPIO  
EXTAL(CLOCKIN)  
XTAL  
PLL and Clock  
CLKO  
External  
Bus or GPIO  
Address  
A0-A15(GPIO/E0–E7,  
GPIOA0–A7)  
16  
16  
SCLK (GPIOF4)  
MOSI (GPIOF5)  
MISO (GPIOF6)  
SS (GPIOF7)  
SPI1 Port or  
GPIO  
External Data Bus  
D0–D15  
PS  
DS  
External Bus Control  
SCI0 Port or  
SPI0 Port  
TXD0 (SCLK0)  
RXD0 (MOSI0)  
RD  
WR  
TA0 (GPIOF0)  
TA1 (GPIOF1)  
TA2 (GPIOF2)  
TA3 (GPIOF3)  
SCI1 Port or  
SPI0 Port  
TXD1 (MISO0)  
RXD1 (SS0)  
Quad Timer A  
IRQA  
Interrupt/  
Program  
Control  
IRQB  
RESET  
EXTBOOT  
TCK  
TMS  
TDI  
JTAG/OnCE  
Port  
TDO  
TRST  
DE  
1
Figure 2. DSP56F826 Signals Identified by Functional Group  
1. Alternate pin functionality is shown in parenthesis.  
6
DSP56F826 Preliminary Technical Data  
Introduction  
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
24  
23  
22  
21  
18  
17  
16  
15  
Output  
Address Bus—A0–A7 specify the address for external program or data  
memory accesses.  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
GPIOE0–  
GPIOE7  
Input/Output  
Port E GPIO—These eight General Purpose I/O (GPIO) pins can be  
individually programmed as input or output pins.  
After reset, the default state is Address Bus.  
A8  
A9  
14  
13  
12  
11  
10  
9
Output  
Output  
Output  
Output  
Output  
Output  
Address Bus—A8–A15 specify the address for external program or data  
memory accesses.  
A10  
A11  
A12  
A13  
A14  
A15  
8
7
Output  
Output  
GPIOA0–  
GPIOA7  
Input/Output  
Port A GPIO—These eight General Purpose I/O (GPIO) pins can be  
individually programmed as input or output pins.  
After reset, the default state is Address Bus.  
DSP56F826 Preliminary Technical Data  
7
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
CLKO  
65  
Output  
Clock Output—This pin outputs a buffered clock signal. By programming  
the CLKO Select Register (SLKOSR), the user can select between  
outputting a version of the signal applied to XTAL and a version of the DSP  
master clock at the output of the PLL. The clock frequency on this pin can be  
disabled by programming the CLKO Select Register (CLKOSR).  
D0  
D1  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
46  
47  
48  
49  
50  
98  
28  
Input/Output  
Data Bus— D0–D15 specify the data for external program or data memory  
accesses. D0–D15 are tri-stated when the external bus is inactive.  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
DE  
DS  
Output  
Output  
Debug Event—DE provides a low pulse on recognized debug events.  
Data Memory Select—DS is asserted low for external data memory access.  
8
DSP56F826 Preliminary Technical Data  
Introduction  
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
EXTAL  
61  
Input  
Input  
Input  
External Crystal Oscillator Input—This input can be connected to an  
4MHz external crystal. If a 4MHz or less external clock source is used,  
EXTAL can be used as the input and XTAL must not be connected. For  
more information, please refer to Section 3.5.2.  
CLOCKIN  
External Clock Input—This input can be connected to an external 8MHz  
clock. For more information, please refer to Section 3.5.  
The input clock can be selected to provide the clock directly to the DSP core.  
This input clock can also be selected as input clock for the on-chip PLL.  
EXTBOOT  
25  
External Boot—This input is tied to VDD to force device to boot from off-  
chip memory. Otherwise, it is tied to ground.  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
GPIOB5  
GPIOB6  
GPIOB7  
GPIOD0  
GPIOD1  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
GPIOD6  
GPIOD7  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
82  
83  
Input or Output  
Port B GPIO—These eight dedicated General Purpose I/O (GPIO) pins can  
be individually programmed as input or output pins.  
After reset, the default state is GPIO input.  
Input or Output  
Port D GPIO—These eight dedicated GPIO pins can be individually  
programmed as an input or output pins.  
After reset, the default state is GPIO input.  
DSP56F826 Preliminary Technical Data  
9
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
IRQA  
32  
Input  
External Interrupt Request A—The IRQA input is a synchronized external  
interrupt request that indicates that an external device is requesting service. It  
can be programmed to be level-sensitive or negative-edge- triggered. If  
level-sensitive triggering is selected, an external pull up resistor is required  
for wired-OR operation.  
If the processor is in the Stop state and IRQA is asserted, the processor will  
exit the Stop state.  
IRQB  
33  
86  
Input  
External Interrupt Request B—The IRQB input is an external interrupt  
request that indicates that an external device is requesting service. It can be  
programmed to be level-sensitive or negative-edge-triggered. If level-  
sensitive triggering is selected, an external pull up resistor is required for  
wired-OR operation.  
MISO  
GPIOF6  
MOSI  
Input/Output  
Input/Output  
Input/Output  
SPI Master In/Slave Out (MISO)—This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a slave  
device is placed in the high-impedance state if the slave device is not  
selected.  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is MISO.  
85  
SPI Master Out/Slave In (MOSI)—This serial data pin is an output from a  
master device and an input to a slave device. The master device places data  
on the MOSI line a half-cycle before the clock edge that the slave device  
uses to latch the data.  
GPIOF5  
PS  
Input/Output  
Output  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
29  
26  
Program Memory Select—PS is asserted low for external program memory  
access.  
RD  
Output  
Read Enable—RD is asserted during external memory read cycles. When  
RD is asserted low, pins D0–D15 become inputs and an external device is  
enabled onto the DSP data bus. When RD is deasserted high, the external  
data is latched inside the DSP. When RD is asserted, it qualifies the A0–A15,  
PS, and DS pins. RD can be connected directly to the OE pin of a Static  
RAM or ROM.  
10  
DSP56F826 Preliminary Technical Data  
Introduction  
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
RESET  
45  
Input  
Reset—This input is a direct hardware reset on the processor. When RESET  
is asserted low, the DSP is initialized and placed in the Reset state. A Schmitt  
trigger input is used for noise immunity. When the RESET pin is deasserted,  
the initial chip operating mode is latched from the external boot pin. The  
internal reset signal will be deasserted synchronous with the internal clocks,  
after a fixed number of internal clocks.  
To ensure complete hardware reset, RESET and TRST should be asserted  
together. The only exception occurs in a debugging environment when a  
hardware DSP reset is required and it is necessary not to reset the OnCE/  
JTAG module. In this case, assert RESET, but do not assert TRST.  
RXD0  
96  
Input  
Receive Data (RXD0)— receive data input  
MOSI0  
Input/  
Output  
SPI Master Out/Slave In—This serial data pin is an output from a master  
device, and an input to a slave device. The master device places data on the  
MOSI line one half-cycle before the clock edge the slave device uses to latch  
the data.  
After reset, the default state is SCI input.  
RXD1  
SS0  
92  
84  
Input  
Input  
Receive Data (RXD1)— receive data input  
SPI Slave Select—In maste mode, this pin is used to arbitrate multiple  
masters. In slave mode, this pin is used to select the slave.  
After reset, the default state is SCI input.  
SCLK  
Input/Output  
Input/Output  
SPI Serial Clock—In master mode, this pin serves as an output, clocking  
slaved listeners. In slave mode, this pin serves as the data clock input.  
GPIOF4  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is SCLK.  
SRCK  
53  
Input/Output  
Input/Output  
SSI Serial Receive Clock (STCK)—This bidirectional pin provides the  
serial bit rate clock for the Receive section of the SSI. The clock signal can  
be continuous or gated and can be used by both the transmitter and receiver  
in synchronous mode.  
GPIOC2  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability  
of being individually programmed as input or output.  
After reset, the default state is GPIO input.  
DSP56F826 Preliminary Technical Data  
11  
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
SRD  
51  
Input/Output  
SSI Receive Data (SRD)—This input pin receives serial data and transfers  
the data to the SSI Receive Shift Receiver.  
GPIOC0  
SRFS  
Input/Output  
Input/ Output  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability  
of being individually programmed as input or output.  
After reset, the default state is GPIO input.  
52  
SSI Serial Receive Frame Sync (SRFS)—This bidirectional pin is used by  
the receive section of the SSI as frame sync I/O or flag I/O. The STFS can be  
used only by the receiver. It is used to synchronize data transfer and can be  
an input or an output.  
GPIOC1  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability  
of being individually programmed as input or output.  
After reset, the default state is GPIO input.  
SS  
87  
56  
Input  
SPI Slave Select—In master mode, this pin is used to arbitrate multiple  
masters. In slave mode, this pin is used to select the slave.  
GPIOF7  
Input/Output  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is SS.  
STCK  
Input/ Output  
Input/Output  
SSI Serial Transmit Clock (STCK)—This bidirectional pin provides the  
serial bit rate clock for the transmit section of the SSI. The clock signal can  
be continuous or gated. It can be used by both the transmitter and receiver in  
synchronous mode.  
GPIOC5  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability  
of being individually programmed as input or output.  
After reset, the default state is GPIO input.  
STD  
54  
Output  
SSI Transmit Data (STD)—This output pin transmits serial data from the  
SSI Transmitter Shift Register.  
GPIOC3  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability  
of being individually programmed as input or output.  
After reset, the default state is GPIO input.  
12  
DSP56F826 Preliminary Technical Data  
Introduction  
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
STFS  
55  
Input  
SSI Serial Transmit Frame Sync (STFS)—This bidirectional pin is used  
by the Transmit section of the SSI as frame sync I/O or flag I/O. The STFS  
can be used by both the transmitter and receiver in synchronous mode. It is  
used to synchronize data transfer and can be an input or output pin.  
GPIOC4  
TA0-3  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability  
of being individually programmed as input or output.  
After reset, the default state is GPIO input.  
91  
90  
89  
88  
Input/Output  
Input/Output  
TA0–3—Timer F Channels 0, 1, 2, and 3  
GPIOF0-  
GPIOF3  
Port F GPIO—These four General Purpose I/O (GPIO) pins can be  
individually programmed as input or output.  
After reset, the default state is Quad Timer.  
TCS  
TCK  
99  
TCS—This pin is reserved for factory use. It must be tied to VSS for normal  
use. In block diagrams, this pin is considered an additional VSS.  
100  
Input  
Input  
Output  
Input  
Input  
Test Clock Input—This input pin provides a gated clock to synchronize the  
test logic and shift serial data to the JTAG/OnCE port. The pin is connected  
internally to a pull-down resistor.  
TDI  
TDO  
TMS  
TRST  
2
3
1
4
Test Data Input—This input pin provides a serial input data stream to the  
JTAG/OnCE port. It is sampled on the rising edge of TCK and has an on-  
chip pull-up resistor.  
Test Data Output—This tri-statable output pin provides a serial output data  
stream from the JTAG/OnCE port. It is driven in the Shift-IR and Shift-DR  
controller states, and changes on the falling edge of TCK.  
Test Mode Select Input—This input pin is used to sequence the JTAG TAP  
controller’s state machine. It is sampled on the rising edge of TCK and has  
an on-chip pull-up resistor.  
Test Reset—As an input, a low signal on this pin provides a reset signal to  
the JTAG TAP controller. To ensure complete hardware reset, TRST should  
be asserted whenever RESET is asserted. The only exception occurs in a  
debugging environment when a hardware DSP reset is required and it is  
necessary not to reset the JTAG/OnCE module. In this case, assert RESET,  
but do not assert TRST.  
DSP56F826 Preliminary Technical Data  
13  
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Pin No.  
Type  
Description  
Name  
TXD0  
SCLK0  
97  
Output  
Transmit Data (TXD0)—transmit data output  
Input/Output  
SPI Serial Clock—In master mode, this pin serves as an output, clocking  
slaved listeners. In slave mode, this pin serves as the data clock input.  
After reset, the default state is SCI output.  
TXD1  
93  
Output  
Transmit Data (TXD1)—transmit data output  
MISO0  
Input/Output  
SPI Master In/Slave Out—This serial data pin is an input to a master  
device and an output from a slave device. The MISO line of a slave device is  
placed in the high-impedance state if hte slave device is not selected.  
After reset, the default state is SCI output.  
VDD  
VDD  
20  
64  
94  
59  
5
VDD  
Power—These pins provide power to the internal structures of the chip, and  
are generally connected to a 2.5V supply.  
VDD  
VDD  
VDD  
VDDA  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
VDDA  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
Analog Power—This pin supplies an analog power source (generally 2.5V).  
Power—These pins provide power to the I/O structures of the chip, and are  
generally connected to a 3.3V supply.  
30  
57  
80  
19  
63  
95  
60  
6
GND—These pins provide grounding for the internal structures of the chip.  
All should be attached to VSS.  
VSS  
VSS  
VSS  
VSS  
VSSA  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSA  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
Analog Ground—This pin supplies an analog ground.  
GND In/Out—These pins provide grounding for the I/O ring on the chip.  
All should be attached to VSS.  
31  
58  
81  
14  
DSP56F826 Preliminary Technical Data  
Introduction  
Table 3. DSP56F826 Signal and Package Information for the 100 Pin LQFP  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always enabled.  
Exceptions:  
1. When a pn is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Signal  
Name  
Pin No.  
Type  
Description  
WR  
27  
Output  
Write Enable—WR is asserted during external memory write cycles. When  
WR is asserted low, pins D0–D15 become outputs and the DSP puts data on  
the bus. When WR is deasserted high, the external data is latched inside the  
external device. When WR is asserted, it qualifies the A0–A15, PS, and DS  
pins. WR can be connected directly to the WE pin of a Static RAM.  
XTAL  
62  
Output  
Crystal Oscillator Output—This output connects the internal crystal  
oscillator output to an external crystal. If an external clock source over  
4MHz is used, XTAL must be used as the input and EXTAL connected to  
V
. For more information, please refer to Section 3.5.2.  
SS  
DSP56F826 Preliminary Technical Data  
15  
Part 3 Specifications  
3.1 General Characteristics  
The DSP56F826 is fabricated in high-density CMOS with 5-volt tolerant TTL-compatible digital inputs.  
The term 5-volt tolerant refers to the capability of an I/O pin, built on a 3.3V compatible process technology,  
to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices  
designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V and 5V- compatible  
I/O voltage levels. A standard 3.3V I/O is designed to receive a maximum voltage of 3.3V ± 10% during  
normal operation without causing damage. This 5V tolerant capability, therefore, offers the power savings  
of 3.3V I/O levels while being able to receive 5V levels without being damaged.  
Absolute maximum ratings given in Table 4 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent  
damage to the device.  
The DSP56F826 DC/AC electrical specifications are preliminary and are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
specifications will be published after complete characterization and device qualifications have been  
completed.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields.  
However, normal precautions are advised to avoid  
application of any voltages higher than maximum rated  
voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an  
appropriate logic voltage level (e.g., either or V or V ).  
DD  
SS  
Table 4. Absolute Maximum Ratings (V = 0 V)  
SS  
Characteristic  
Symbol  
VDD  
VDDIO  
VIN  
Min  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
Max  
Unit  
V
Supply voltage, core  
3.0  
4.0  
Supply voltage, IO and analog  
All other input voltages  
V
VDDIO + 0.3  
10  
V
Current drain per pin excluding VDD, VSS  
Junction temperature  
I
mA  
°C  
°C  
TJ  
150  
Storage temperature range  
TSTG  
55  
150  
16  
DSP56F826 Preliminary Technical Data  
DC Electrical Characteristics  
Table 5. Recommended Operating Conditions  
Characteristic  
Symbol  
VDD  
Min  
2.25  
3.0  
–40  
0
Max  
2.75  
3.6  
Unit  
V
Supply voltage, core  
Supply Voltage, IO and analog  
Ambient operating temperature  
Flash program/erase temperature  
VDDIO,VDDA  
TA  
V
85  
°C  
°C  
TF  
85  
1
Table 6. Thermal Characteristics  
100-pin LQFP  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance junction-to-ambient  
(estimated)  
θJA  
39.7  
°C/W  
I/O pin power dissipation  
Power dissipation  
PI/O  
PD  
User Determined  
PD = (IDD x VDD) + PI/O  
(TJ TA) / θJA  
W
W
°C  
Maximum allowed PD  
PDMAX  
1. See Section 5.1 for more detail.  
3.2 DC Electrical Characteristics  
Table 7. DC Electrical Characteristics  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
DDA A L op  
SSIO  
SS  
SSA  
DDIO  
DD  
Characteristic  
Symbol  
VIHC  
VILC  
VIH  
Min  
Typ  
2.5  
Max  
Unit  
V
Input high voltage (XTAL/EXTAL)  
Input low voltage (XTAL/EXTAL)  
Input high voltage  
2.25  
-0.3  
2.0  
-0.3  
-1  
2.75  
0.5  
5.5  
0.8  
1
V
V
Input low voltage  
VIL  
V
Input current low (pullups disabled)  
Input current high (pullups disabled)  
Output tri-state current low  
IIL  
µA  
µA  
µA  
IIH  
-1  
1
IOZL  
-10  
10  
DSP56F826 Preliminary Technical Data  
17  
Table 7. DC Electrical Characteristics (Continued)  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
DDA A L op  
SSIO  
SS  
SSA  
DDIO  
DD  
Characteristic  
Symbol  
IOZH  
VOH  
VOL  
IOH  
Min  
Typ  
8
Max  
Unit  
µA  
V
Output tri-state current high  
Output High Voltage with IOH load  
Output Low Voltage with IOL load  
Output High Current  
-10  
VDD – 0.7  
10  
0.4  
2
V
-300  
µA  
mA  
pF  
Output Low Current  
IOL  
Input capacitance  
CIN  
Output capacitance  
COUT  
IDD  
12  
pF  
VDD supply current  
Run 1  
Wait2  
50  
20  
2
TBD  
TBD  
TBD  
mA  
mA  
mA  
Stop  
Low Voltage Interrupt3  
VEI  
VEIH  
POR  
2.7  
50  
TBD  
V
mV  
V
Low Voltage Interrupt Recovery Hysteresis  
Power on Reset4  
1.5  
2.0  
1. Run (operating) IDD measured using external square external square clock source (fosc = 4MHz) into XTAL. All in-  
puts 0.2V from rail; no DC loads; outputs unloaded. All ports configured as inputs; measured with all modules enabled.  
PLL set to 80MHz out.  
2. Wait IDD measured using external square wave clock source (fosc = 8MHz); all inpuyts 0.2V from rail; no DC loads;  
less than 50 pF on all outputs. CL= 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait  
IDD; measured with PLL and LVI enabled  
3. When VDD drops below VEI max value, an interrupt is generated.  
4. Poweron reset occurs whenever the internally regulated 2.5V digital supply drops below 1.5V typical. While power  
is ramping up, this signal remains active for as long as the internal 2.5V is below 1.5V typical no matter how long the  
ramp up rate is. The internally regulated voltage is typically 100 mV less than VDD during ramp up until 2.5V is reached,  
at which time it self regulates.  
18  
DSP56F826 Preliminary Technical Data  
AC Electrical Characteristics  
3.3 AC Electrical Characteristics  
Timing waveforms in Section 3.3 are tested with a VIL maximum of 0.8V and a VIH minimum of 2.0V for  
all pins except XTAL, which is tested using the input levels in Section 3.2. In Figure 3 the levels of VIH and  
VIL for an input signal are shown.  
Pulse Width  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 3. Input Signal Measurement References  
Figure 4 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state.  
Tri-stated, when a bus or signal is placed in a high impedance state.  
Data Valid state, when a signal level has reached V or V  
OL  
OH.  
Data Invalid state, when a signal level is in transition between V and V  
OL OH.  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 4. Signal States  
DSP56F826 Preliminary Technical Data  
19  
3.4 Flash Memory Characteristics  
Table 8. Flash Memory Truth Table  
XE1  
YE2  
SE3  
OE4  
PROG5  
ERASE6  
MAS17  
NVSTR8  
Mode  
Standby  
Read  
L
H
H
H
H
L
H
H
L
L
L
H
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
L
L
H
L
L
Word Program  
Page Erase  
Mass Erase  
H
H
H
1. X address enable, all rows are disabled when XE = 0  
2. Y address enable, YMUX is disabled when YE = 0  
3. Sense amplifier enable  
4. Output enable, tri-state flash data out bus when OE = 0  
5. Defines program cycle  
6. Defines erase cycle  
7. Defines mass erase cycle, erase whole block  
8. Defines non-volatile store cycle  
Table 9. IFREN Truth Table  
Mode  
IFREN = 1  
IFREN = 0  
Read  
Read information block  
Program information block  
Erase information block  
Erase both block  
Read main memory block  
Word program  
Page erase  
Mass erase  
Program main memory block  
Erase main memory block  
Erase main memory block  
20  
DSP56F826 Preliminary Technical Data  
Flash Memory Characteristics  
Table 10. Timing Symbols  
Characteristic  
Symbol  
See Figure(s)  
X address access time  
Y address access time  
OE access time  
-
Txa  
Tya  
-
-
Toa  
PROG/ERASE to NVSTR set up time  
NVSTR hold time  
Figure 5, Figure 6, Figure 7  
Figure 5, Figure 6  
Figure 7  
Tnvs*  
Tnvh*  
Tnvh1*  
Tpgs*  
Tpgh  
Tads  
NVSTR hold time(mass erase)  
NVSTR to program set up time  
Program hold time  
Figure 5  
Figure 5  
Address/data set up time  
Address/data hold time  
Recovery time  
Figure 5  
Figure 5  
Tadh  
Figure 5, Figure 6, Figure 7  
Figure 5  
Trcv*  
Thv  
Cumulative program HV period  
Program time  
Figure 5  
Tprog*  
Terase*  
Tme*  
Erase time  
Figure 6  
Mass erase time  
Figure 7  
* The Flash interface unit provides registers for the control of these parameters.  
DSP56F826 Preliminary Technical Data  
21  
Table 11. Flash Timing Parameters  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
DDA A L op  
SSIO  
SS  
SSA  
DDIO  
DD  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Program time1  
Erase time2  
20  
20  
us  
ms  
Tprog  
Terase  
Tme  
Mass erase time3  
100  
10,000  
10  
ms  
Endurance4  
ECYC  
DRET  
cycles  
years  
Data Retention  
The following parameters should only be used in the Manual Word Programming mode.  
PROG/ERASE to NVSTR set up time  
NVSTR hold time  
5
5
us  
us  
us  
us  
us  
ms  
Tnvs  
Tnvh  
Tnvh1  
Tpgs  
Trcv  
Thv  
NVSTR hold time(mass erase)  
NVSTR to program set up time  
Recovery time  
100  
10  
1
Cumulative program HV period5  
3
1. Program specification guaranteed from TA = 0° C to 85° C.  
2. Erase specification guaranteed from TA = 0° C to 85° C.  
3. Mass erase specification guaranteed from TA = 0° C to 85° C.  
4. One cycle is equal to an erase, program, and read.  
5. Thv is the cumulative high voltage programming time to the same row before next erase. The same address cannot  
be programmed twice before next erase.  
22  
DSP56F826 Preliminary Technical Data  
Flash Memory Characteristics  
IFREN  
XADR  
XE  
Tadh  
YADR  
YE  
DIN  
Tads  
PROG  
NVSTR  
Tnvs  
Tprog  
Tpgh  
Tpgs  
Tnvh  
Trcv  
Thv  
Figure 5. Flash Program Cycle  
IFREN  
XADR  
XE  
YE=SE=OE=MAS1=0  
ERASE  
NVSTR  
Tnvs  
Tnvh  
Trcv  
Terase  
Figure 6. Flash Erase Cycle  
DSP56F826 Preliminary Technical Data  
23  
IFREN  
XADR  
XE  
MAS1  
YE=SE=OE=0  
ERASE  
NVSTR  
Tnvs  
Tnvh1  
Trcv  
Tme  
Figure 7. Flash Mass Erase Cycle  
3.5 External Clock Operation  
The DSP56F826 system clock can be derived from a crystal or an external system clock signal. To generate  
a reference frequency using the internal oscillator, a reference crystal must be connected between the  
EXTAL and XTAL pins.  
3.5.1  
Crystal Oscillator  
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the frequency  
range specified for the external crystal in Table 13. In Figure 8 a typical crystal oscillator circuit is shown.  
Follow the crystal supplier’s recommendations when selecting a crystal, because crystal parameters  
determine the component values required to provide maximum stability and reliable start-up. The crystal  
and associated components should be mounted as close as possible to the EXTAL and XTAL pins to  
minimize output distortion and start-up stabilization time.  
24  
DSP56F826 Preliminary Technical Data  
External Clock Operation  
Crystal Frequency = 4MHz  
EXTAL XTAL  
Rz  
Sample External Crystal  
Parameters:  
Rz = 20 MW  
Figure 8. External Crystal Oscillator Circuit  
3.5.2  
External Clock Source  
The recommended method of connecting an external clock is given in Figure 9. The external clock source  
is connected to XTAL and the EXTAL pin is grounded.  
DSP56F826  
XTAL  
EXTAL  
V
External  
Clock  
SS  
Figure 9. Connecting an External Clock Signal using XTAL  
It is possible to instead drive EXTAL with an external clock, though this is not the recommended method.  
If you elect to drive EXTAL with an external clock source the following conditions must be met:  
1. XTAL must be completely un-loaded,  
2. the maximum frequency of the applied clock must be less than 6MHz.  
Figure 10 illustrates how to connect an external clock circuit with a external clock source using EXTAL as  
the input.  
DSP56F826  
XTAL  
EXTAL  
External  
No  
Connection Clock ( < 6MHz)  
Figure 10. Connecting an External Clock Signal using EXTAL  
DSP56F826 Preliminary Technical Data  
25  
Table 12. External Clock Operation Timing Requirements  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
SSIO  
SS  
SSA  
DDIO  
DD  
DDA  
A
L
op  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
Unit  
Frequency of operation (external clock driver)1  
Clock Pulse Width2, 5  
80  
3
MHz  
ns  
tPW  
6.25  
External clock input rise time3, 5  
External clock input fall time4, 5  
trise  
ns  
tfall  
3
ns  
1. See Figure 9 for details on using the recommended connection of an external clock driver.  
2. The high or low pulse width must be no smaller than 6.25 ns or the chip will not function.  
3. External clock input rise time is measured from 10% to 90%.  
4. External clock input fall time is measured from 90% to 10%.  
5. Parameters shown are guaranteed by design.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
tPW  
tPW  
VIL  
tfall  
trise  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 11. External Clock Timing  
Table 13. PLL Timing  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
SSIO  
SS  
SSA  
DDIO  
DD  
DDA  
A
L
op  
Characteristic  
Symbol  
fosc  
Min  
2
Typ  
4
Max  
Unit  
MHz  
MHz  
ms  
External reference crystal frequency for the PLL1  
PLL output frequency  
6
fop  
40  
1
80  
10  
PLL stabilization time 2  
tplls  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.  
2. This is the minimum time required after the PLL setup is changed to ensure reliable operation  
26  
DSP56F826 Preliminary Technical Data  
External Bus Asynchronous Timing  
3.6 External Bus Asynchronous Timing  
1, 2  
Table 14. External Bus Asynchronous Timing  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
SSIO  
SS  
SSA  
DDIO  
DD  
DDA  
A
L
op  
Characteristic  
Address Valid to WR Asserted  
Symbol  
Unit  
Min  
Max  
tAWR  
6.5  
ns  
WR Width Asserted  
Wait states = 0  
Wait states > 0  
tWR  
7.5  
ns  
ns  
(T*WS) + 7.5  
WR Asserted to D0–D15 Out Valid  
tWRD  
tDOH  
tDOS  
T + 4.2  
ns  
ns  
Data Out Hold Time from WR Deasserted  
4.8  
Data Out Set Up Time to WR Deasserted  
Wait states = 0  
Wait states > 0  
6.4  
ns  
ns  
(T*WS) + 6.4  
RD Deasserted to Address Not Valid  
tRDA  
0
ns  
Address Valid to RD Deasserted  
Wait states = 0  
Wait states > 0  
tARDD  
18.7  
(T*WS) + 18.7  
ns  
ns  
Input Data Hold to RD Deasserted  
tDRD  
tRD  
0
ns  
RD Assertion Width  
Wait states = 0  
Wait states > 0  
19  
ns  
ns  
(T*WS) + 19  
Address Valid to Input Data Valid  
Wait states = 0  
Wait states > 0  
tAD  
1
ns  
ns  
(T*WS) + 1  
Address Valid to RD Asserted  
tARDA  
tRDD  
-4.4  
ns  
RD Asserted to Input Data Valid  
Wait states = 0  
Wait states > 0  
2.4  
ns  
ns  
(T*WS) + 2.4  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
WR Deasserted to WR Asserted  
RD Deasserted to WR Asserted  
tWRRD  
tRDRD  
tWRWR  
tRDWR  
6.8  
0
ns  
ns  
ns  
ns  
14.1  
12.8  
DSP56F826 Preliminary Technical Data  
27  
1. Timing is both wait state and frequency dependent. In the formulas listed, WS = the number of wait states and  
T = Clock Period. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
To calculate the required access time for an external memory for any frequency < 80Mhz, use this formula:  
Top = Clock period @ desired operating frequency  
WS = Number of wait states  
Memory Access Time = (Top*WS) + (Top- 11.5)  
A0–A15,  
PS, DS  
(See Note)  
tARDD  
tRDA  
tARDA  
tRDRD  
tRD  
tAWR  
tWRWR  
RD  
tWRRD  
tWR  
tRDWR  
WR  
tRDD  
tAD  
tDOH  
tWRD  
tDRD  
tDOS  
Data Out  
Data In  
D0–D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 12. External Bus Asynchronous Timing  
28  
DSP56F826 Preliminary Technical Data  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
3.7 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 5  
Table 15. Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
SSIO  
SS  
SSA  
DDIO  
DD  
DDA  
A
L
op  
Typical  
Min  
Typical  
Max  
See  
Figure  
Characteristic  
Symbol  
Unit  
RESET Assertion to Address, Data and Control Signals  
High Impedance  
tRAZ  
21  
ns  
Figure 13  
Figure 13  
Minimum RESET Assertion Duration2  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tRA  
275,000T  
128T  
ns  
ns  
RESET De-assertion to First External Address Output  
Edge-sensitive Interrupt Request Width  
tRDA  
tIRW  
tIDM  
33T  
1.5T  
34T  
ns  
ns  
ns  
Figure 13  
Figure 14  
Figure 15  
IRQA, IRQB Assertion to External Data Memory  
Access Out Valid, caused by first instruction execution  
in the interrupt service routine  
15T  
IRQA, IRQB Assertion to General Purpose Output  
Valid, caused by first instruction execution in the  
interrupt service routine  
tIG  
16T  
ns  
Figure 15  
Figure 16  
IRQA Low to First Valid Interrupt Vector Address Out  
recovery from Wait State3  
tIRI  
13T  
2T  
ns  
ns  
IRQA Width Assertion to Recover from Stop State4  
tIW  
tIF  
Figure 17  
Figure 17  
Delay from IRQA Assertion to Fetch of first instruction  
(exiting Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
275,000T  
12T  
ns  
ns  
Duration for Level Sensitive IRQA Assertion to Cause  
the Fetch of First IRQA Interrupt Instruction (exiting  
Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tIRQ  
Figure 18  
Figure 18  
275,000T  
12T  
ns  
ns  
Delay from Level Sensitive IRQA Assertion to First  
Interrupt Vector Address Out Valid (exiting Stop)  
OMR Bit 6 = 0  
tII  
275,000T  
12T  
ns  
ns  
OMR Bit 6 = 1  
1. In the formulas, T = clock cycle. For an operating frequency of 80MHz, T = 12.5 ns.  
2. Circuit stabilization delay is required during reset when using an external clock or crystal oscillator in two  
cases:  
• After power-on reset  
• When recovering from Stop state  
3. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the  
Stop state. This is not the minimum required so that the IRQA interrupt is accepted.  
4. The interrupt instruction fetch is visible on the pins only in Mode 3.  
5. Parameters listed are guaranteed by design.  
DSP56F826 Preliminary Technical Data  
29  
RESET  
tRA  
tRAZ  
tRDA  
First Fetch  
A0–A15,  
D0–D15  
PS, DS,  
RD, WR  
First Fetch  
Figure 13. Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 14. External Interrupt Timing (Negative-Edge-Sensitive)  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 15. External Level-Sensitive Interrupt Timing  
30  
DSP56F826 Preliminary Technical Data  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
IRQA,  
IRQB  
tIRI  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 16. Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15,  
PS, DS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 17. Recovery from Stop State Using Asynchronous Interrupt Timing  
tIRQ  
IRQA  
tII  
A0–A15  
PS, DS,  
RD, WR  
First IRQA Interrupt  
Instruction Fetch  
Figure 18. Recovery from Stop State Using IRQA Interrupt Service  
DSP56F826 Preliminary Technical Data  
31  
3.8 Serial Peripheral Interface (SPI) Timing  
1
Table 16. SPI Timing  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
SSIO  
SS  
SSA  
DDIO  
DD  
DDA  
A
L
op  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
Figures 19,  
20, 21, 22  
50  
50  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
Figure 22  
Figure 22  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCLK) high time  
Master  
Slave  
ns  
ns  
Figures 19,  
20, 21, 22  
17.6  
25  
Clock (SCLK) low time  
Master  
Slave  
Figures 19,  
20, 21, 22  
24.1  
25  
ns  
ns  
Data setup time required for inputs  
Master  
Slave  
tDS  
Figures 19,  
20, 21, 22  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
tDH  
Figures 19,  
20, 21, 22  
0
2
ns  
ns  
Access time (time to data active from high-impedance state)  
Slave  
tA  
Figure 22  
Figure 22  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
Figures 19,  
20, 21, 22  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
Figures 19,  
20, 21, 22  
0
0
ns  
ns  
Rise time  
Master  
Slave  
Figures 19,  
20, 21, 22  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
Figures 19,  
20, 21, 22  
9.7  
9.0  
ns  
ns  
1.Parameters listed are guaranteed by design.  
32  
DSP56F826 Preliminary Technical Data  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
tR  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
Bits 14–1  
Master LSB out  
tR  
tF  
Figure 19. SPI Master Timing (CPHA = 0)  
SS  
(Input)  
SS is held High on master  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tDH  
tR  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDV  
tDV(ref)  
MOSI  
(Output)  
Master MSB out  
Bits 14– 1  
Master LSB out  
tR  
tF  
Figure 20. SPI Master Timing (CPHA = 1)  
DSP56F826 Preliminary Technical Data  
33  
SS  
(Input)  
tC  
tF  
tR  
tELG  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tCL  
tELD  
SCLK (CPOL = 1)  
(Input)  
tF  
tCH  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
tDI  
tDS  
tDV  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 21. SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
tF  
tA  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
tDV  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 22. SPI Slave Timing (CPHA = 1)  
34  
DSP56F826 Preliminary Technical Data  
Quad Timer Timing  
3.9 Quad Timer Timing  
1, 2  
Table 17. Timer Timing  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
SSIO  
SS  
SSA  
DDIO  
DD  
DDA  
A
L
op  
Characteristic  
Symbol  
PIN  
Min  
4T+6  
Max  
Unit  
Timer input period  
ns  
ns  
ns  
ns  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
2T+3  
2T-3  
1T-3  
Timer output high/low period  
POUTHL  
1. In the formulas listed, T = clock cycle. For 80MHz operation, T = 12.5 ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PIN  
PINHL  
PINHL  
Timer Outputs  
POUT  
POUTHL  
POUTHL  
Figure 23. Quad Timer Timing  
3.10 Serial Communication Interface (SCI) Timing  
4
Table 18. SCI Timing  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80 MHz  
DDA A L op  
SSIO  
SS  
SSA  
DDIO  
DD  
Characteristic  
Symbol  
Min  
Max  
Unit  
Baud Rate1  
BR  
(fMAX*2.5)/(80)  
1.04/BR  
Mbps  
ns  
RXD2 Pulse Width  
TXD3 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
1.04/BR  
ns  
1. fMAX is the frequency of operation of the system clock in MHz.  
2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
4. Parameters listed are guaranteed by design.  
DSP56F826 Preliminary Technical Data  
35  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 24. RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 25. TXD Pulse Width  
3.11 JTAG Timing  
1, 3  
Table 19. JTAG Timing  
Operating Conditions: V  
=V = V  
= 0 V, V  
=3.0 to 3.6V, V = V  
= 2.25–2.75 V, T = 40° to +85°C, C 50 pF, f = 80MHz  
SSIO  
SS  
SSA  
DDIO  
DD  
DDA  
A
L
op  
Characteristic  
Symbol  
Min  
Max  
Unit  
TCK frequency of operation2  
TCK cycle time  
fOP  
tCY  
tPW  
tDS  
DC  
100  
50  
10  
MHz  
ns  
TCK clock pulse width  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
ns  
0.4  
1.2  
ns  
tDH  
tDV  
tTS  
ns  
26.6  
23.5  
ns  
ns  
tTRST  
tDE  
50  
ns  
DE assertion time  
4T  
ns  
1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz  
operation, T = 12.5 ns.  
2. TCK frequency of operation must be less than 1/8 the processor rate.  
3. Parameters listed are guaranteed by design.  
36  
DSP56F826 Preliminary Technical Data  
JTAG Timing  
tCY  
tPW  
tPW  
VIH  
VM  
VIL  
VM  
TCK  
(Input)  
VM = VIL + (VIH – VIL)/2  
Figure 26. Test Clock Input Timing Diagram  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 27. Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 28. TRST Timing Diagram  
DE  
tDE  
Figure 29. OnCE—Debug Event  
DSP56F826 Preliminary Technical Data  
37  
Part 4 Packaging  
4.1 Package and Pin-Out Information DSP56F826  
This section contains package and pin-out information for the 100-pin LQFP configuration of the  
DSP56F826.  
GPIOD1  
GPIOD0  
GPIOB7  
GPIOB6  
GPIOB5  
TMS  
TDI  
TDO  
TRST  
VDDIO  
PIN 76  
ORIENTATION  
MARK  
PIN 1  
GPIOB4  
GPIOB3  
GPIOB2  
VSSIO  
A15  
A14  
GPIOB1  
GPIOB0  
A13  
A12  
CLKO  
VDD  
VSS  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
Motorola  
DSP56F826  
XTAL  
EXTAL  
VSSA  
VDDA  
VSSIO  
VDDIO  
STCK  
VSS  
VDD  
STFS  
STD  
SRCK  
SRFS  
A3  
A2  
A1  
A0  
PIN 51  
PIN 26  
SRD  
EXTBOOT  
Figure 30. Top View, DSP56F826 100-pin LQFP Package  
38  
DSP56F826 Preliminary Technical Data  
Package and Pin-Out Information DSP56F826  
Table 20. DSP56F826 Pin Identification by Pin Number  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
TMS  
TDI  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
RD  
WR  
DS  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
SRD  
SRFS  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
VDDIO  
VSSIO  
GPIOD6  
GPIOD7  
SCLK  
MOSI  
MISO  
SS  
3
TDO  
TRST  
VDDIO  
VSSIO  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
SRCK  
4
PS  
STD  
5
VDDIO  
VSSIO  
IRQA  
IRQB  
D0  
STFS  
6
STCK  
7
VDDIO  
VSSIO  
VDDA  
VSSA  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
D1  
D2  
EXTAL  
XTAL  
D3  
D4  
VSS  
TA3  
A8  
D5  
VDD  
TA2  
A7  
D6  
CLKO  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
GPIOB5  
GPIOB6  
GPIOB7  
GPIOD0  
GPIOD1  
TA1  
A6  
D7  
TA0  
A5  
D8  
RXD1  
TXD1  
VDD  
A4  
D9  
VSS  
VDD  
A3  
D10  
RESET  
D11  
D12  
D13  
D14  
D15  
VSS  
RXD0  
TXD0  
DE  
A2  
A1  
A0  
TCS  
EXTBOOT  
TCK  
DSP56F826 Preliminary Technical Data  
39  
S
S
S
S
0.15(0.006)  
AC T-U  
Z
-T-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -AB- IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE  
LEAD WHERE THE LEAD EXITS THE PLASTIC  
BODY AT THE BOTTOM OF THE PARTING  
LINE.  
4. DATUMS-T-,-U-,AND-Z-TO BEDETERMINED  
AT DATUM PLANE -AB-.  
5. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE -AC-.  
-Z-  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.250 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT  
DATUM PLANE -AB-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION.DAMBARPROTRUSIONSHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350 (0.014). DAMBAR CAN NOTBELOCATED  
ON THE LOWER RADIUS OR THE FOOT.  
MINIMUM SPACE BETWEEN PROTRUSION  
AND AN ADJACENT LEAD IS 0.070 (0.003).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.003).  
-U-  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
A
9
MILLIMETERS  
DIM MIN MAX MIN MAX  
INCHES  
S
S
S
0.15(0.006)  
AB T-U  
Z
A
B
C
D
E
13.950 14.050 0.549 0.553  
13.950 14.050 0.549 0.553  
1.400 1.600 0.055 0.063  
0.170 0.270 0.007 0.011  
1.350 1.450 0.053 0.057  
0.170 0.230 0.007 0.009  
AE  
AD  
F
G
H
J
K
M
N
Q
R
S
0.500 BSC  
0.020 BSC  
-AB-  
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
-AC-  
SEATING  
PLANE  
G
96X  
12 REF  
12 REF  
°
°
(24X PER SIDE)  
0.090 0.160 0.004 0.006  
1
°
5
1
°
5
°
°
AE  
0.150 0.250 0.006 0.010  
15.950 16.050 0.628 0.632  
15.950 16.050 0.628 0.632  
0.100(0.004) AC  
V
W
X
0.200 REF  
1.000 REF  
0.008 REF  
0.039 REF  
°
M
R
D
F
0.25 (0.010)  
E
C
GAUGE PLANE  
J
N
W
°
Q
H
K
M
S
S
0.20(0.008)  
AC T-U  
Z
X
SECTION AE-AE  
DETAIL AD  
CASE 842F-01  
Figure 31. 100-pin LQPF Mechanical Information  
40  
DSP56F826 Preliminary Technical Data  
Thermal Design Considerations  
Part 5 Design Considerations  
5.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , in °C can be obtained from the equation:  
J
Equation 1: TJ = TA + (PD × RθJA  
)
Where:  
T = ambient temperature °C  
A
R
= package junction-to-ambient thermal resistance °C/W  
θJA  
P = power dissipation in package  
D
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
R
R
R
= package junction-to-ambient thermal resistance °C/W  
= package junction-to-case thermal resistance °C/W  
= package case-to-ambient thermal resistance °C/W  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through  
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the  
heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device  
thermal performance may need the additional modeling capability of a system level thermal simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the  
package is mounted. Again, if the estimations obtained from R  
do not satisfactorily answer whether the  
θJA  
thermal performance is adequate, a system level model may be appropriate.  
Definitions:  
A complicating factor is the existence of three common definitions for determining the junction-to-case  
thermal resistance in plastic packages:  
Measure the thermal resistance from the junction to the outside surface of the package (case) closest  
to the chip mounting area when that surface has a proper heat sink. This is done to minimize  
temperature variation across the surface.  
Measure the thermal resistance from the junction to where the leads are attached to the case. This  
definition is approximately equal to a junction to board thermal resistance.  
DSP56F826 Preliminary Technical Data  
41  
Electrical Design Considerations  
Use the value obtained by the equation (T – T )/P where T is the temperature of the package  
J T D T  
case determined by a thermocouple.  
The junction-to-case thermal resistances quoted in this data sheet are determined using the first definition  
on page 41. From a practical standpoint, that value is also suitable for determining the junction temperature  
from a case thermocouple reading in forced convection environments. In natural convection, using the  
junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the  
case of the package will estimate a junction temperature slightly hotter than actual. Hence, the new thermal  
metric, Thermal Characterization Parameter, or Ψ , has been defined to be (T – T )/P . This value gives  
JT  
J
T
D
a better estimate of the junction temperature in natural convection when using the surface temperature of  
the package. Remember that surface temperature readings of packages are subject to significant errors  
caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor.  
The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the  
package with thermally conductive epoxy.  
5.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or  
electrical fields. However, normal precautions are  
advised to avoid application of any voltages higher  
than maximum rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level  
(e.g., either V or V ).  
SS  
DD  
Use the following list of considerations to assure correct DSP operation:  
Provide a low-impedance path from the board power supply to each V pin on the DSP, and from  
DD  
the board ground to each V (GND) pin.  
SS  
The minimum bypass requirement is to place six 0.01–0.1 µF capacitors positioned as close as  
possible to the package supply pins. The recommended bypass configuration is to place one bypass  
capacitor on each of the eight V /V pairs, including V  
/V  
DD SS  
DDA SSA.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V and  
DD  
V
(GND) pins are less than 0.5 inch per capacitor lead.  
SS  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V and V .  
DD SS  
Bypass the V and V layers of the PCB with approximately 100 µF, preferably with a high-  
DD  
SS  
grade capacitor such as a tantalum capacitor.  
Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal.  
DSP56F826 Preliminary Technical Data  
42  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating  
capacitance. This is especially critical in systems with higher capacitive loads that could create  
higher transient currents in the V and V circuits.  
DD  
SS  
All inputs must be terminated (i.e., not allowed to float) using CMOS levels.  
Take special care to minimize noise levels on the VREF, V and V pins.  
DDA  
SSA  
When using Wired-OR mode on the SPI or the IRQx pins, the user must provide an external pull-  
up device.  
Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as  
development or debugging systems) should allow a means to assert TRST whenever RESET is  
asserted, as well as a means to assert TRST independently of RESET. Designs that do not require  
debugging functionality, such as consumer products, should tie these pins together.  
Because the Flash memory is programmed through the JTAG/OnCE port, designers should provide  
an interface to this port to allow in-circuit Flash programming.  
Part 6 Ordering Information  
Table 21 lists the pertinent information needed to place an order. Consult a Motorola Semiconductor sales  
office or authorized distributor to determine availability and to order parts.  
Table 21. DSP56F803 Ordering Information  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
DSP56F826  
3.0–3.6 V  
Plastic Quad Flat Pack (LQFP)  
100  
80  
DSP56F803BU80  
2.25-2.75 V  
43  
DSP56F826 Preliminary Technical Data  
OnCE™ are trademarks of Motorola, Inc.  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including  
“Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the  
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution: P.O. Box 5405, Denver, Colorado 80217.  
1-303-675-2140 or 1-800-441-2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan.  
81-3-3440-3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T.,  
Hong Kong. 852-26668334  
Technical Information Center: 1-800-521-6274  
HOME PAGE: http://motorola.com/semiconductors/dsp  
MOTOROLA HOME PAGE: http://motorola.com/semiconductors/  
DSP56F826/D  

相关型号:

DSP56F826-827UM

16-bit Digital Signal Controllers
FREESCALE

DSP56F826-827UM/D

56F827 16-bit Hybrid Controller
MOTOROLA

DSP56F826BU80

16-bit Digital Signal Controllers
FREESCALE

DSP56F826BU80E

16-bit Digital Signal Controllers
FREESCALE

DSP56F826D

Preliminary Technical Data DSP56F826 16-bit Digital Signal Processor
MOTOROLA

DSP56F826E

16-bit Digital Signal Controllers
FREESCALE

DSP56F826EVMUM

56F826 Evaluation Module Hardware User's Manual
ETC

DSP56F826PB

16-bit Digital Signal Controllers
FREESCALE

DSP56F826PBD

Preliminary Technical Data DSP56F826 16-bit Digital Signal Processor
MOTOROLA

DSP56F827

Preliminary Technical Data DSP56F826 16-bit Digital Signal Processor
MOTOROLA

DSP56F827

16-bit Digital Signal Controllers
FREESCALE

DSP56F827/D

56F827 16-bit Hybrid Controller
MOTOROLA