BCP69T3 [MOTOROLA]

1A, 25V, PNP, Si, POWER TRANSISTOR, TO-261AA;
BCP69T3
型号: BCP69T3
厂家: MOTOROLA    MOTOROLA
描述:

1A, 25V, PNP, Si, POWER TRANSISTOR, TO-261AA

光电二极管 晶体管
文件: 总4页 (文件大小:71K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BCP69T1/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
This PNP Silicon Epitaxial Transistor is designed for use in low voltage, high current  
applications. The device is housed in the SOT-223 package, which is designed for  
medium power surface mount applications.  
MEDIUM POWER  
PNP SILICON  
HIGH CURRENT  
TRANSISTOR  
High Current: I = –1.0 Amp  
C
The SOT-223 Package can be soldered using wave or reflow.  
SURFACE MOUNT  
SOT-223 package ensures level mounting, resulting in improved thermal  
conduction, and allows visual inspection of soldered joints. The formed leads  
absorb thermal stress during soldering, eliminating the possibility of damage to  
the die.  
4
Available in 12 mm Tape and Reel  
COLLECTOR 2,4  
1
2
3
Use BCP69T1 to order the 7 inch/1000 unit reel.  
Use BCP69T3 to order the 13 inch/4000 unit reel.  
BASE  
1
NPN Complement is BCP68  
CASE 318E-04, STYLE 1  
TO-261AA  
EMITTER 3  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
V
CEO  
V
CBO  
V
EBO  
25  
20  
5.0  
–1.0  
Collector Current  
I
C
(1)  
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
P
D
1.5  
12  
Watts  
mW/°C  
A
Operating and Storage Temperature Range  
DEVICE MARKING  
T , T  
65 to 150  
°C  
J
stg  
CE  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
Thermal Resistance — Junction-to-Ambient (surface mounted)  
R
83.3  
°C/W  
θJA  
Lead Temperature for Soldering, 0.0625from case  
Time in Solder Bath  
T
L
260  
10  
°C  
Sec  
1. Device mounted on a glass epoxy printed circuit board 1.575 in. x 1.575 in. x 0.059 in.; mounting pad for the collector lead min. 0.93 sq. in.  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 2  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector-Emitter Breakdown Voltage (I = –100 µAdc, I = 0)  
V
25  
20  
5.0  
Vdc  
Vdc  
C
E
(BR)CES  
(BR)CEO  
(BR)EBO  
Collector-Emitter Breakdown Voltage (I = –1.0 mAdc, I = 0)  
V
V
C
B
Emitter-Base Breakdown Voltage (I = –10 µAdc, I = 0)  
Vdc  
E
C
Collector-Base Cutoff Current (V  
= 25 Vdc, I = 0)  
I
CBO  
–10  
–10  
µAdc  
µAdc  
CB  
E
Emitter-Base Cutoff Current (V  
ON CHARACTERISTICS  
DC Current Gain  
= 5.0 Vdc, I = 0)  
I
EBO  
EB  
C
h
FE  
(I = 5.0 mAdc, V  
= –10 Vdc)  
= –1.0 Vdc)  
CE  
50  
85  
60  
375  
C
CE  
(I = 500 mAdc, V  
C
(I = –1.0 Adc, V  
C
= –1.0 Vdc)  
CE  
Collector-Emitter Saturation Voltage (I = –1.0 Adc, I = –100 mAdc)  
V
CE(sat)  
0.5  
–1.0  
Vdc  
Vdc  
C
B
Base-Emitter On Voltage (I = –1.0 Adc, V  
C
= –1.0 Vdc)  
V
BE(on)  
CE  
DYNAMIC CHARACTERISTICS  
Current-Gain — Bandwidth Product  
f
T
60  
MHz  
(I = –10 mAdc, V  
= 5.0 Vdc)  
CE  
C
TYPICAL ELECTRICAL CHARACTERISTICS  
300  
200  
200  
100  
70  
50  
100  
V
T
f = 30 MHz  
= –10 V  
CE  
= 25°C  
V
= –1.0 V  
= 25°C  
CE  
J
70  
50  
J
T
20  
30  
–10  
–100  
, COLLECTOR CURRENT (mA)  
–1000  
–10  
–100  
–1000  
I
I , COLLECTOR CURRENT (mA)  
C
C
Figure 1. DC Current Gain  
Figure 2. Current Gain Bandwidth Product  
160  
120  
80  
–1.0  
0.8  
T
= 25  
V
°C  
J
T
= 25°C  
J
@ I /I = 10  
C B  
(BE)sat  
0.6  
0.4  
V
@ V  
= –1.0 V  
CE  
(BE)on  
C
ib  
40  
0.2  
0
V
@ I /I = 10  
C B  
(CE)sat  
Cob  
0
–1.0  
–10  
I
–100  
–1000  
C
C
5.0  
–1.0  
–1.0  
2.0  
–1.5  
3.0  
2.0  
4.0  
2.5  
5.0  
ob  
ib  
, COLLECTOR CURRENT (mA)  
C
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 3. Saturation and “ON” Voltages  
Figure 4. Capacitances  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT-223 SURFACE MOUNT PACKAGE  
POWER DISSIPATION  
The power dissipation of the SOT-223 is a function of the  
input pad size. These can vary from the minimum pad size  
for soldering to the pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
the equation for an ambient temperature T of 25°C, one can  
calculate the power dissipation of the device which in this  
case is 1.5 watts.  
A
150°C – 25°C  
determinedby T  
ture of the die, R  
θJA  
junction to ambient; and the operating temperature, T .  
A
Using the values provided on the data sheet for the SOT-223  
, themaximumratedjunctiontempera-  
, the thermal resistance from the device  
J(max)  
P
=
= 1.5 watts  
D
83.3°C/W  
The 83.3°C/W for the SOT-223 package assumes the  
recommended collector pad area of 965 sq. mils on a glass  
epoxy printed circuit board to achieve a power dissipation of  
1.5 watts. If space is at a premium, a more realistic  
package, P can be calculated as follows.  
D
T
– T  
A
J(max)  
P
=
approach is to use the device at a P of 833 mW using the  
D
D
R
θJA  
footprint shown. Using a board material such as Thermal  
Clad, a power dissipation of 1.6 watts can be achieved using  
the same footprint.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
MOUNTING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient should be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
Mechanical stress or shock should not be applied during  
cooling  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference should be a maximum of 10°C.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.15  
3.8  
0.079  
2.0  
0.248  
6.3  
0.091  
2.3  
0.091  
2.3  
0.079  
2.0  
inches  
mm  
0.059  
1.5  
0.059  
1.5  
0.059  
1.5  
SOT-223  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
PACKAGE DIMENSIONS  
A
F
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
4
2
INCHES  
MILLIMETERS  
S
B
DIM  
A
B
C
D
F
G
H
J
K
L
M
S
MIN  
MAX  
0.263  
0.145  
0.068  
0.035  
0.126  
0.094  
MIN  
6.30  
3.30  
1.50  
0.60  
2.90  
2.20  
0.020  
0.24  
1.50  
0.85  
0
MAX  
6.70  
3.70  
1.75  
0.89  
3.20  
2.40  
0.100  
0.35  
2.00  
1.05  
10  
1
3
0.249  
0.130  
0.060  
0.024  
0.115  
0.087  
D
L
0.0008 0.0040  
G
0.009  
0.060  
0.033  
0
0.014  
0.078  
0.041  
10  
J
C
0.08 (0003)  
0.264  
0.287  
6.70  
7.30  
M
H
K
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 318E–04  
ISSUE H  
TO-261AA  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BCP69T1/D  

相关型号:

BCP69TA

Power Bipolar Transistor, 1A I(C), 20V V(BR)CEO, 1-Element, PNP, Silicon, Plastic/Epoxy, 4 Pin
DIODES

BCP69TA

Power Bipolar Transistor, 1A I(C), 20V V(BR)CEO, 1-Element, PNP, Silicon, Plastic/Epoxy, 4 Pin
ZETEX

BCP69TC

Power Bipolar Transistor, 1A I(C), 20V V(BR)CEO, 1-Element, PNP, Silicon, Plastic/Epoxy, 4 Pin
DIODES

BCP69TRL

Power Bipolar Transistor, 1A I(C), 20V V(BR)CEO, 1-Element, PNP, Silicon, Plastic/Epoxy, 4 Pin
YAGEO

BCP69TRL

TRANSISTOR 1 A, 20 V, PNP, Si, POWER TRANSISTOR, BIP General Purpose Power
NXP

BCP69TRL13

TRANSISTOR 0.025 A, 30 V, PNP, Si, POWER TRANSISTOR, BIP General Purpose Power
NXP

BCP69TRL13

Power Bipolar Transistor, 1A I(C), 20V V(BR)CEO, 1-Element, PNP, Silicon, Plastic/Epoxy, 4 Pin
YAGEO

BCP69_08

PNP Silicon AF Transistor
INFINEON

BCP69_09

PNP MEDIUM POWER TRANSISTOR
UTC

BCP69_15

PNP MEDIUM POWER TRANSISTOR
UTC

BCP69_NL

Small Signal Bipolar Transistor, 1.5A I(C), 20V V(BR)CEO, 1-Element, PNP, Silicon, SOT-223, 4 PIN
FAIRCHILD

BCP70

PNP Silicon AF Power Transistor (For AF driver and output stages High collector current)
INFINEON