PS21864 [MITSUBISHI]

AC Motor Controller, 30A, Hybrid, DIP-41;
PS21864
型号: PS21864
厂家: Mitsubishi Group    Mitsubishi Group
描述:

AC Motor Controller, 30A, Hybrid, DIP-41

电动机控制
文件: 总9页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHISEMICONDUCTOR<Dual-In-LinePackageIntelligentPowerModule>
PS21864/-A
TRANSFER-MOLDTYPE
INSULATEDTYPE
PS21864  
INTEGRATED POWER FUNCTIONS  
600V/15A low-loss 5th generation IGBT inverter bridge for  
3 phase DC-to-AC power conversion  
INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS  
• For upper-leg IGBTS :Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection.  
• For lower-leg IGBTS : Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC). (Fig.3)  
• Fault signaling : Corresponding to an SC fault (Lower-side IGBT) or a UV fault (Lower-side supply).  
• Input interface : 5V line CMOS/TTL compatible. (High Active)  
• UL Approved :Yellow Card No. E80276  
APPLICATION  
AC100V~200V three-phase inverter drive for small power motor control.  
Fig. 1 PACKAGE OUTLINES  
Dimensions in mm  
TERMINAL CODE  
1. UP  
14. VN1  
272.8(=75.6)  
2. VP1  
3. VUFB  
4. VUFS  
5. VP  
6. VP1  
7. VVFB  
8. VVFS  
9. WP  
10. VP1  
11. VPC  
12. VWFB 25.  
13. VWFS 26.  
15. VNC  
16. CIN  
17. CFO  
18. FO  
19. UN  
20. VN  
21. WN  
±0.3  
2.8  
(8.5)  
Heat sink side  
(2.2)  
C
(2.5)  
(2.4) (14.4)  
(17.6)  
(2.4)  
34  
1
2
3
4
5
6
7
8
9
10 11  
12 13  
14 15 16 17 18 19 20 21  
27  
28  
30  
31  
33  
35  
22.  
23.  
24.  
P
U
V
W
N
36  
29  
32  
±0.2  
2-f4.5  
37  
38  
39  
Type name , Lot No.  
41  
40  
DUMMY TERMINAL CODE  
(0.6)  
(2)  
27. VPC  
28. UPG  
29. P  
30. VPC  
31. VPG  
35. UNG  
36. VNC  
37. VNO  
38. WNG  
39. VNG  
22  
23  
±0.3  
24  
±0.3  
25  
±0.3  
26  
(1.5)  
±
0.3  
±0.3  
8.5  
(0.6)  
(2)  
10  
10  
10  
20  
±0.2  
3.8  
±0.3  
±0.5  
67  
32.  
33. WPG  
34.  
U
40.  
41.  
W
P
79  
±0.05  
±0.05  
1.7  
±0.2  
0.8  
1.9  
±0.2  
V
1
A
B
3.25MAX  
1.85MAX  
Detail : A  
(t=0.7)  
Detail : B  
(t=0.7)  
Detail : C  
Heat sink side  
-A : Long terminal type (16.0mm)  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
Fig. 2 INTERNAL FUNCTIONS BLOCK DIAGRAM (TYPICAL APPLICATION EXAMPLE)  
High-side input (PWM)  
(5V line) (Note 1,2)  
C1 : Tight tolerance, temp-compensated electrolytic type  
(Note : The capacitance value depends on the PWM control  
scheme used in the applied system).  
C2  
C1  
Input signal Input signal Input signal  
conditioning conditioning conditioning  
C2 : 0.22~2µF R-category ceramic capacitor for noise filtering.  
Level shifter Level shifter Level shifter  
(Note 6)  
Protection  
circuit (UV)  
Protection  
Protection  
circuit (UV)  
circuit (UV)  
DIP-IPM  
Drive circuit Drive circuit Drive circuit  
Inrush current  
limiter circuit  
P
AC line input  
H-side IGBT  
S
U
V
(Note 4)  
M
W
C
Fig. 3  
N1  
AC line output  
Z
N
L-side IGBT  
S
VNC  
CIN  
Z : ZNR (Surge absorber)  
Drive circuit  
C : AC filter (Ceramic capacitor 2.2~6.5nF)  
(Note : Additionally, an appropriate line-to line  
surge absorber circuit may become necessary  
depending on the application environment).  
Control supply  
Under-Voltage  
protection  
Protection  
circuit  
Fo logic  
Input signal conditioning  
Low-side input (PWM)  
F
O
CFO  
(5V line)  
(Note 1, 2)  
Fault output (5V line)  
(Note 3, 5)  
VNC  
VD  
(15V line)  
Note1: Input logic is high-active. There is a 2.5k(min) pull-down resistor built-in each input circuit. When using an external CR filter, please make it satisfy the  
input threshold voltage.  
2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to CPU terminals without any opto-coupler or transformer  
isolation is possible. (see also Fig. 8)  
3: This output is open collector type. The signal line should be pulled up to the positive side of the 5V power supply with approximately 10kresistance.  
(see also Fig. 8)  
4: The wiring between the power DC link capacitor and the PN1 terminals should be as short as possible to protect the DIP-IPM against catastrophic high  
surge voltages. For extra precaution, a small film type snubber capacitor (0.1~0.22µF, high voltage type) is recommended to be mounted close to  
these PN1 DC power input pins.  
5: Fo output pulse width should be decided by putting external capacitor between CFO and VNC terminals. (Example : CFO=22nF tFO=1.8ms (Typ.))  
6: High voltage (600V or more) and fast recovery type (less than 100ns) diodes should be used in the bootstrap circuit.  
Fig. 3 EXTERNAL PART OF THE DIP-IPM PROTECTION CIRCUIT  
DIP-IPM  
Short Circuit Protective Function (SC) :  
SC protection is achieved by sensing the L-side DC-Bus current (through the external  
shunt resistor) after allowing a suitable filtering time (defined by the RC circuit).  
Drive circuit  
P
When the sensed shunt voltage exceeds the SC trip-level, all the L-side IGBTs are turned  
OFF and a fault signal (Fo) is output. Since the SC fault may be repetitive, it is  
recommended to stop the system when the Fo signal is received and check the fault.  
IC (A)  
SC Protection  
Trip Level  
H-side IGBTS  
L-side IGBTS  
U
V
W
External protection circuit  
Shunt Resistor  
(Note 1)  
A
N
N1  
VNC  
R
C
Drive circuit  
CIN  
Collector current  
waveform  
B
Protection circuit  
C
(Note 2)  
0
2
tw (µs)  
Note1: In the recommended external protection circuit, please select the RC time constant in the range 1.5~2.0µs.  
2: To prevent erroneous protection operation, the wiring of A, B, C should be as short as possible.  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)  
INVERTER PART  
Symbol  
Parameter  
Condition  
Applied between P-N  
Ratings  
Unit  
V
Supply voltage  
Supply voltage (surge)  
450  
500  
VCC  
VCC(surge)  
VCES  
±IC  
Applied between P-N  
V
Collector-emitter voltage  
Each IGBT collector current  
Each IGBT collector current (peak)  
Collector dissipation  
V
600  
15  
A
Tf = 25°C  
±ICP  
PC  
Tj  
30  
A
Tf = 25°C, less than 1ms  
Tf = 25°C, per 1 chip  
43.5  
20~+125  
W
°C  
Junction temperature  
(Note 1)  
Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tf 100°C) however, to en-  
sure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) 125°C (@ Tf 100°C).  
CONTROL (PROTECTION) PART  
Symbol  
VD  
Parameter  
Control supply voltage  
Condition  
Ratings  
20  
Unit  
V
Applied between VP1-VPC, VN1-VNC  
Applied between VUFB-VUFS, VVFB-VVFS,  
VWFB-VWFS  
Applied between UP, VP, WP-VPC, UN, VN,  
WN-VNC  
Applied between FO-VNC  
Sink current at FO terminal  
Applied between CIN-VNC  
VDB  
Control supply voltage  
V
V
20  
VIN  
Input voltage  
0.5~VD+0.5  
0.5~VD+0.5  
Fault output supply voltage  
Fault output current  
Current sensing input voltage  
V
mA  
V
VFO  
IFO  
VSC  
1
0.5~VD+0.5  
TOTAL SYSTEM  
Symbol  
Ratings  
400  
Unit  
V
Condition  
VD = 13.5~16.5V, Inverter part  
Tj = 125°C, non-repetitive, less than 2 µs  
Parameter  
Self protection supply voltage limit  
(short circuit protection capability)  
VCC(PROT)  
Module case operation temperature  
(Note 2)  
20~+100  
40~+125  
°C  
°C  
Tf  
Tstg  
Storage temperature  
60Hz, Sinusoidal, AC 1 minute, connection  
pins to heat-sink plate  
Viso  
Isolation voltage  
2500  
Vrms  
Note 2 : Tf MEASUREMENT POINT  
Al Board Specification :  
Dimensions : 10010010mm, Finishing : 12s, Warp : 50~100µm  
Groove  
Control Terminals  
DIP-IPM  
AI board  
18mm  
13.5mm  
P
U
V
W
N
Temp. measurement point  
(inside the AI board)  
IGBT Chip  
Power Terminals  
Temp. measurement point  
(inside the AI board)  
FWDi Chip  
Silicon-grease should be applied evenly with a thickness of 100~200µm  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
THERMAL RESISTANCE  
Limits  
Symbol  
Parameter  
Condition  
Unit  
Min.  
Typ.  
Max.  
2.30  
3.20  
Rth(j-f)Q  
Rth(j-f)F  
Inverter IGBT part (per 1/6 module)  
Inverter FWDi part (per 1/6 module)  
°C/W  
°C/W  
Junction to case thermal  
resistance (Note 3)  
Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM  
and heat-sink.  
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)  
INVERTER PART  
Limits  
Symbol  
VCE(sat)  
Parameter  
Condition  
Unit  
V
Min.  
Typ.  
Max.  
2.20  
2.30  
2.00  
2.10  
VD = VDB = 15V  
VIN = 5V  
IC = 15A, Tj = 25°C  
IC = 15A, Tj = 125°C  
Tj = 25°C, IC = 15A, VIN = 0V  
1.70  
1.80  
1.50  
1.50  
0.30  
0.50  
1.40  
0.50  
Collector-emitter saturation  
voltage  
FWDi forward voltage  
VEC  
ton  
V
µs  
0.80  
µs  
µs  
µs  
µs  
VCC = 300V, VD = VDB = 15V  
trr  
5V  
tc(on)  
toff  
IC = 15A, Tj = 125°C, VIN = 0  
0.70  
2.10  
0.80  
1
Switching times  
Inductive load (upper-lower arm)  
tc(off)  
Tj = 25°C  
Tj = 125°C  
Collector-emitter cut-off  
current  
ICES  
mA  
VCE = VCES  
10  
CONTROL (PROTECTION) PART  
Symbol  
Parameter  
Limits  
Typ.  
Condition  
Unit  
Min.  
Max.  
5.00  
0.40  
7.00  
0.55  
mA  
mA  
mA  
mA  
V
VD = VDB = 15V  
VIN = 5V  
Total of VP1-VPC, VN1-VNC  
VUFB-VUFS, VVFB-VVFS, VWFB-VWFS  
Total of VP1-VPC, VN1-VNC  
ID  
Circuit current  
VD = VDB = 15V  
VIN = 0V  
VUFB-VUFS, VVFB-VVFS, VWFB-VWFS  
4.9  
VFOH  
VFOL  
VSC(ref)  
IIN  
VSC = 0V, FO circuit pull-up to 5V with 10kΩ  
VSC = 1V, IFO = 1mA  
Tj = 25°C, VD = 15V  
VIN = 5V  
Fault output voltage  
0.95  
0.53  
2.0  
V
0.43  
1.0  
10.0  
10.5  
10.3  
10.8  
1.0  
2.1  
0.8  
0.48  
1.5  
V
Short circuit trip level  
Input current  
(Note 4)  
mA  
V
Trip level  
12.0  
12.5  
12.5  
13.0  
UVDBt  
UVDBr  
UVDt  
UVDr  
tFO  
Reset level  
V
Supply circuit under-voltage  
protection  
Tj 125°C  
Trip level  
V
Reset level  
CFO = 22nF  
V
1.8  
2.3  
1.4  
ms  
V
(Note 5)  
Fault output pulse width  
ON threshold voltage  
OFF threshold voltage  
2.6  
Vth(on)  
Vth(off)  
Applied between UP, VP, WP-VPC, UN, VN, WN-VNC  
2.1  
V
Note 4: Short circuit protection is functioning only at the low-arms. Please select the value of the external shunt resistor such that the SC trip-  
level is less than 25.5 A.  
5: Fault signal is output when the low-arms short circuit or control supply under-voltage protective functions operate. The fault output pulse-  
width tFO depends on the capacitance value of CFO according to the following approximate equation : CFO = 12.2 10-6 tFO [F].  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
MECHANICAL CHARACTERISTICS AND RATINGS  
Parameter  
Limits  
Condition  
Recommended 1.18 N·m  
Unit  
Min.  
Typ.  
Max.  
Mounting torque  
Weight  
Mounting screw : M4  
0.98  
1.47  
N·m  
g
65  
(
)
µm  
Heat-sink flatness  
Note 6  
50  
100  
Note 6: Measurement point of heat-sink flatness  
+
3mm  
Measurement location  
Heat-sink side  
+
Heat-sink side  
RECOMMENDED OPERATION CONDITIONS  
Symbol Parameter  
Supply voltage  
Limits  
Typ.  
300  
15.0  
15.0  
Condition  
Unit  
Min.  
Max.  
400  
16.5  
18.5  
1
VCC  
Applied between P-N  
Applied between VP1-VPC, VN1-VNC  
Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS  
0
13.5  
13.0  
1  
V
V
VD  
Control supply voltage  
Control supply voltage  
Control supply variation  
VDB  
V
VD, VDB  
tdead  
V/µs  
µs  
2
Arm shoot-through blocking time For each input signal, Tf 100°C  
fPWM  
PWM input frequency  
Tf 100°C, Tj 125°C  
VCC = 300V, VD = 15V, fc = 5kHz  
P.F = 0.8, sinusoidal  
5
kHz  
10  
Arms  
IO  
Allowable r.m.s. current  
Tj 125°C, Tf 100°C  
ON  
(Note 7)  
(Note 8)  
300  
ns  
V
PWIN  
VNC  
Minimum input pulse width  
VNC variation  
5.0  
between VNC-N (including surge)  
5.0  
Note 7: The allowable r.m.s. current value depends on the actual application conditions.  
8: The input pulse width less than PWIN might make no response.  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
Fig. 4 THE DIP-IPM INTERNAL CIRCUIT  
V
UFB  
UFS  
DIP-IPM  
V
P
HVIC1  
V
B
IGBT1  
Di1  
VP1  
V
CC  
UP  
HO  
IN  
V
S
B
COM  
U
VVFB  
VVFS  
HVIC2  
V
V
CC  
VP1  
IGBT2  
Di2  
HO  
IN  
VP  
V
S
B
COM  
V
V
WFB  
WFS  
V
HVIC3  
V
VP1  
V
CC  
IGBT3  
IGBT4  
Di3  
Di4  
W
P
HO  
IN  
V
S
VPC  
COM  
W
LVIC  
UOUT  
VN1  
VCC  
IGBT5  
IGBT6  
Di5  
Di6  
V
OUT  
U
N
N
N
U
N
V
VN  
W
OUT  
W
W
N
VNO  
Fo  
Fo  
CIN  
N
VNC  
GND  
CFO  
CFO  
CIN  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
Fig. 5 TIMING CHARTS OF THE DIP-IPM PROTECTIVE FUNCTIONS  
[A] Short-Circuit Protection (Lower-arms only)  
(With the external shunt resistance and CR connection)  
a1. Normal operation : IGBT ON and carrying current.  
a2. Short circuit current detection (SC trigger).  
a3. Hard IGBT gate interrupt.  
a4. IGBT turns OFF.  
a5. FO timer operation starts : The pulse width of the FO signal is set by the external capacitor CFO.  
a6. Input L: IGBT OFF state.  
a7. Input H: IGBT ON state, but during the FO active signal period the IGBT doesnt turn ON.  
a8. IGBT OFF state.  
Lower-arms control  
input  
a6 a7  
Protection circuit state  
Internal IGBT gate  
SET  
a2  
RESET  
a3  
SC  
a4  
a1  
Output current Ic  
a8  
SC reference voltage  
Sense voltage of the  
shunt resistance  
CR circuit time  
constant DELAY  
Error output Fo  
a5  
[B] Under-Voltage Protection (Lower-arm, UVD)  
b1. Control supply voltage rises : After the voltage level reaches UVDr, the circuits start to operate when next input is applied.  
b2. Normal operation : IGBT ON and carrying current.  
b3. Under voltage trip (UVDt).  
b4. IGBT OFF in spite of control input condition.  
b5. FO operation starts.  
b6. Under voltage reset (UVDr).  
b7. Normal operation : IGBT ON and carrying current.  
Control input  
Protection circuit state  
RESET  
b1  
SET  
RESET  
UVDr  
Control supply voltage V  
D
b6  
UVDt  
b2  
b3  
b4  
b7  
Output current Ic  
Error output Fo  
b5  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
[C] Under-Voltage Protection (Upper-arm, UVDB)  
c1. Control supply voltage rises : After the voltage reaches UVDBr, the circuits start to operate when next input is applied.  
c2. Normal operation : IGBT ON and carrying current.  
c3. Under voltage trip (UVDBt).  
c4. IGBT OFF in spite of control input condition, but there is no FO signal output.  
c5. Under voltage reset (UVDBr).  
c6. Normal operation : IGBT ON and carrying current.  
Control input  
Protection circuit state  
RESET  
c1  
SET  
RESET  
UVDBr  
Control supply voltage VDB  
c5  
UVDBt  
c2  
c3  
c4  
c6  
Output current Ic  
Error output Fo  
High-level (no fault output)  
Fig. 6 RECOMMENDED CPU I/O INTERFACE CIRCUIT  
5V line  
DIP-IPM  
10kΩ  
UP,VP,WP,UN,VN,WN  
CPU  
2.5k(min)  
Fo  
NC(Logic)  
V
Note : RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in  
the application and the wiring impedance of the applications printed circuit board.  
The DIP-IPM input signal section integrates a 2.5k(min) pull-down resistor. Therefore, when using a external  
filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.  
Fig. 7 RECOMMENDED WIRING OF SHUNT RESISTANCE  
Wiring inductance should be less than 10nH.  
DIP-IPM  
width=3mm, thickness=100µm, length=17mm  
in copper pattern (rough standard)  
Shunt resistor  
VNC  
N
Please make the connection point  
as close as possible to the terminal  
of shunt resistor.  
Jul. 2003  
MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>  
PS21864/-A  
TRANSFER-MOLD TYPE  
INSULATED TYPE  
Fig. 8 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE  
C1:Tight tolerance temp-compensated electrolytic type  
~
C2,C3: 0.22 2µF R-category ceramic capacitor for noise filtering.  
(Note: The capacitance value depends on the PWM control used in the applied system.)  
V
UFB  
C2  
C1  
DIP-IPM  
V
UFS  
P
HVIC1  
V
P1  
V
CC  
VB  
C3  
UP  
IN  
HO  
U
COM  
V
S
C2  
C1  
V
V
VFB  
VFS  
HVIC2  
V
P1  
V
CC  
V
B
C3  
V
P
IN  
HO  
V
COM  
V
S
M
C2  
C1  
V
V
WFB  
WFS  
HVIC3  
V
P1  
V
CC  
V
B
C3  
W
P
IN  
HO  
V
PC  
W
COM  
VS  
LVIC  
UOUT  
V
N1  
V
CC  
C3  
5V line  
V
OUT  
UN  
UN  
V
N
V
N
W
OUT  
W
N
Too long wiring here might  
cause short-circuit.  
W
N
V
NO  
Fo  
F
o
CIN  
N
V
NC  
GND  
CFO  
C
CIN  
CFO  
C4(CFO  
)
B
15V line  
R1  
Shunt  
Resistance  
C5  
A
N1  
Long GND wiring here might generate  
noise to input and cause IGBT  
malfunction.  
If this wiring is too long, the SC level  
fluctuation might be larger and cause  
SC malfunction.  
Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2cm)  
2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to CPU terminals without any opto-coupler  
or transformer isolation is possible.  
3: FO output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately  
10kresistor.  
4: FO output pulse width is determined by the external capacitor between CFO and VNC terminals (CFO). (Example : CFO = 22 nF tFO  
= 1.8 ms (typ.))  
5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5k(min) pull-down resistor. Therefore, when  
using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.  
6: To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.  
7: Please set the R1C5 time constant in the range 1.5~2µs.  
8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.  
9: To prevent surge destruction, the wiring between the smoothing capacitor and the P&N1 pins should be as short as possible. Approxi-  
mately a 0.1~0.22µF snubber capacitor between the P&N1 pins is recommended.  
Jul. 2003  

相关型号:

PS21864-A

AC Motor Controller, 30A, Hybrid, DIP-41
MITSUBISHI

PS21864-P

Generation DIP and Mini-DIP-IPM
MITSUBISHI

PS21865

AC Motor Controller, 40A, Hybrid, DIP-41
MITSUBISHI

PS21865-A

AC Motor Controller, 40A, Hybrid, DIP-41
MITSUBISHI

PS21865-P

Intellimod™ Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts
POWEREX

PS21865-P

Generation DIP and Mini-DIP-IPM
MITSUBISHI

PS21867

AC Motor Controller, 60A, Hybrid, DIP-41
MITSUBISHI

PS21867

AC Motor Controller, 60A, Hybrid, DIP-41
POWEREX

PS21867-A

Intellimod™ Module Dual-In-Line Intelligent Power Module 30 Amperes/600 Volts
POWEREX

PS21867-AP

Intellimod™ Module Dual-In-Line Intelligent Power Module 30 Amperes/600 Volts
POWEREX

PS21867-P

Intellimod™ Module Dual-In-Line Intelligent Power Module 30 Amperes/600 Volts
POWEREX

PS21867-P

Generation DIP and Mini-DIP-IPM
MITSUBISHI