MT8812AP [MITEL]

ISO-CMOS 8 x 12 Analog Switch Array; ISO- CMOS 8 ×12模拟开关阵列
MT8812AP
型号: MT8812AP
厂家: MITEL NETWORKS CORPORATION    MITEL NETWORKS CORPORATION
描述:

ISO-CMOS 8 x 12 Analog Switch Array
ISO- CMOS 8 ×12模拟开关阵列

开关 输出元件 PC
文件: 总6页 (文件大小:57K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO-CMOS MT8812  
8 x 12 Analog Switch Array  
ISSUE 5  
November 1988  
Features  
Internal control latches and address decoder  
Ordering Information  
Short set-up and hold times  
MT8812AC  
MT8812AE  
MT8812AP  
40 Pin Ceramic DIP  
40 Pin Plastic DIP  
44 Pin PLCC  
Wide operating voltage: 4.5V to 14.5V  
14Vpp analog signal capability  
0° to 70°C  
R
65max. @ V =14V, 25°C  
DD  
ON  
R  
10@ V =14V, 25°C  
DD  
ON  
Full CMOS switch for low distortion  
Description  
Minimum feedthrough and crosstalk  
The Mitel MT8812 is fabricated in MITEL’s ISO-  
CMOS technology providing low power dissipation  
and high reliability. The device contains a 8 x12 array  
of crosspoint switches along with a 7 to 96 line  
decoder and latch circuits. Any one of the 96  
switches can be addressed by selecting the  
appropriate seven input bits. The selected switch  
can be turned on or off by applying a logical one or  
zero to the DATA input.  
Low power consumption ISO-CMOS technology  
Applications  
PBX systems  
Mobile radio  
Test equipment /instrumentation  
Analog/digital multiplexers  
Audio/Video switching  
STROBE  
DATA RESET  
VDD  
VSS  
1
1
AX0  
AX1  
AX2  
AX3  
AY0  
AY1  
AY2  
8 x 12  
Switch  
Array  
7 to 96  
Decoder  
Xi I/O  
(i=0-11)  
Latches  
96  
96  
• • • • • • • • • • • • • • • • • • •  
Yi I/O (i=0-7)  
Figure 1 - Functional Block Diagram  
3-27  
MT8812 ISO-CMOS  
1
2
3
4
5
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
Y3  
AY2  
RESET  
AX3  
AX0  
NC  
VDD  
Y2  
DATA  
Y1  
NC  
Y0  
40  
44 43 42 41  
6 5 4 3 2  
1
7
NC  
NC  
X6  
39  
NC  
NC  
X0  
X1  
X2  
X3  
X4  
X5  
NC  
NC  
NC  
8
6
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
9
7
NC  
NC  
X0  
10  
11  
12  
13  
14  
15  
16  
8
X6  
X7  
9
X8  
X7  
X1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
X9  
X8  
X2  
X10  
X9  
X3  
X11  
NC  
NC  
NC  
X10  
X11  
NC  
X4  
X5  
NC  
NC  
AY1  
AY0  
AX2  
AX1  
Y4  
17  
Y7  
18 19 20 21 22 23 24 25 26 27 28  
NC  
Y6  
STROBE  
Y5  
VSS  
40 PIN CERDIP/PLASTIC DIP  
44 PIN PLCC  
Figure 2 - Pin Connections  
Description  
Pin Description  
Pin #* Name  
1
2
3
Y3  
Y3 Analog (Input/Output): this is connected to the Y3 column of the switch array.  
Y2 Address Line (Input).  
AY2  
RESET Master RESET (Input): this is used to turn off all switches. Active High.  
4,5 AX3,AX0 X3 and X0 Address Lines (Inputs).  
6,7  
NC  
No Connection.  
8-13  
X6-X11 X6-X11 Analog (Inputs/Outputs): these are connected to the X6-X11 rows of the switch  
array.  
14  
15  
16  
17  
18  
NC  
Y7  
NC  
Y6  
No Connection.  
Y7 Analog (Input/Output): this is connected to the Y7 column of the switch array.  
No Connection.  
Y6 Analog (Input/Output): this is connected to the Y6 column of the switch array.  
STROBE STROBE (Input): enables function selected by address and data. Address must be stable  
before STROBE goes high and DATA must be stable on the falling edge of the STROBE.  
Active High.  
19  
20  
21  
Y5  
Y5 Analog (Input/Output): this is connected to the Y5 column of the switch array.  
Ground Reference.  
V
SS  
Y4  
Y4 Analog (Input/Output): this is connected to the Y4 column of the switch array.  
22, 23 AX1,AX2 X1 and X2 Address Lines (Inputs).  
24, 25 AY0,AY1 Y0 and Y1 Address Lines (Inputs).  
26, 27  
NC  
No Connection.  
28 - 33 X5-X0 X5-X0 Analog (Inputs/Outputs): these are connected to the X5-X0 rows of the switch array.  
34  
35  
36  
37  
38  
NC  
Y0  
NC  
Y1  
No Connection.  
Y0 Analog (Input/Output): this is connected to the Y0 column of the switch array.  
No Connection.  
Y1 Analog (Input/Output): this is connected to the Y1 column of the switch array.  
DATA DATA (Input): a logic high input will turn on the selected switch and a logic low will turn off the  
selected switch. Active High.  
39  
40  
Y2  
Y2 Analog (Input/Output): this is connected to the Y2 column of the switch array.  
V
Positive Power Supply.  
DD  
* Plastic DIP and CERDIP only.  
3-28  
ISO-CMOS MT8812  
Functional Description  
Address Decode  
The MT8812 is an analog switch matrix with an array  
size of 8 x 12. The switch array is arranged such that  
there are 8 columns by 12 rows. The columns are  
referred to as the Y input/output lines and the rows  
are the X input/output lines. The crosspoint analog  
switch array will interconnect any X line with any Y  
line when turned on and provide a high degree of  
isolation when turned off. The control memory  
consists of a 96 bit write only RAM in which the bits  
are selected by the address input lines (AY0-AY2,  
AX0-AX3). Data is presented to the memory on the  
DATA input line. Data is asynchro-nously written into  
memory whenever the STROBE input is high and is  
latched on the falling edge of STROBE. A logical “1”  
written into a memory cell turns the corresponding  
crosspoint switch on and a logical “0” turns the  
crosspoint off. Only the crosspoint switches  
corresponding to the addressed memory location are  
altered when data is written into memory. The  
remaining switches retain their previous states. Any  
combination of X and Y lines can be interconnected  
by establishing appropriate patterns in the control  
memory. A logical “1” on the RESET input line will  
asynchronously return all memory locations to logical  
“0” turning off all crosspoint switches.  
The seven address lines along with the STROBE  
input are logically ANDed to form an enable signal  
for the resettable transparent latches. The DATA  
input is buffered and is used as the input to all  
latches. To write to a location, RESET must be low  
while the address and data lines are set up. Then the  
STROBE input is set high and then low causing the  
data to be latched. The data can be changed while  
STROBE is high, however, the corresponding switch  
will turn on and off in accordance with the data. Data  
must be stable on the falling edge of STROBE in  
order for correct data to be written to the latch.  
3-29  
MT8812 ISO-CMOS  
Absolute Maximum Ratings*- Voltages are with respect to VSS unless otherwise stated.  
Parameter  
Symbol  
Min  
Max  
Units  
1
Supply Voltage  
V
V
-0.3  
-0.3  
16.0  
V
V
DD  
SS  
V
V
V
+0.3  
DD  
DD  
DD  
2
3
4
5
6
Analog Input Voltage  
Digital Input Voltage  
V
-0.3  
+0.3  
+0.3  
V
V
INA  
V
V
-0.3  
SS  
IN  
Current on any I/O Pin  
Storage Temperature  
I
±15  
mA  
°C  
T
-65  
+150  
S
Package Power Dissipation  
PLASTIC DIP  
CERDIP  
P
P
0.6  
1.0  
W
W
D
D
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions - Voltages are with respect to VSS unless otherwise stated.  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
3
Operating Temperature  
Supply Voltage  
T
0
25  
70  
°C  
V
O
V
4.5  
14.5  
DD  
Analog Input Voltage  
V
V
V
V
V
V
INA  
SS  
SS  
DD  
DD  
4
Digital Input Voltage  
V
V
IN  
DC Electrical Characteristics- Voltages are with respect to VSS=0V, VDD =14V unless otherwise stated.  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
Quiescent Supply Current  
I
1
100  
µA  
All digital inputs at V =V or  
DD  
IN  
SS  
V
DD  
7
15  
mA  
nA  
All digital inputs at V =2.4V  
IN  
Off-state Leakage Current  
(See G.9 in Appendix)  
I
±1  
±500  
IV - V I = V - V  
Xi Yj DD SS  
See Appendix, Fig. A.1  
OFF  
3
4
5
Input Logic “0” level  
V
0.8  
10  
V
V
IL  
Input Logic “1” level  
V
2.4  
IH  
Input Leakage (digital pins)  
I
0.1  
µA  
All digital inputs at V = V  
IN SS  
LEAK  
or V  
DD  
† DC Electrical Characteristics are over recommended temperature range.  
‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.  
DC Electrical Characteristics- Switch Resistance - VDC is the external DC offset applied at the analog I/O pins.  
Characteristics  
Sym  
25°C  
60°C  
70°C  
Units  
Test Conditions  
Typ Max Typ Max Typ Max  
1 On-state  
V
=14V  
R
45  
60  
65  
65  
85  
95  
75  
95  
110  
260  
V
=0V,V =V /2,  
SS DC DD  
DD  
DD  
ON  
Resistance V =12V  
IV -V I = 0.4V  
See Appendix, Fig. A.2  
Xi Yj  
V
V
=10V  
= 5V  
DD  
DD  
145 220  
(See G.1, G.2, G.3 in  
Appendix)  
2 Difference in on-state  
resistance between two  
switches  
R  
5
10  
10  
10  
V
V
=14V, V =0,  
SS  
ON  
DD  
DC  
=V /2,  
DD  
IV -V I = 0.4V  
Xi Yj  
(See G.4 in Appendix)  
See Appendix, Fig. A.2  
3-30  
ISO-CMOS MT8812  
AC Electrical Characteristics- Crosspoint Performance-VDC is the external DC offset applied at the analog  
I/O pins. Voltages are with respect to VDD=7V, VDC=0V, VSS=-7V, unless otherwise stated.  
Characteristics  
Sym  
Min  
Typ  
Max Units  
Test Conditions  
f=1 MHz  
f=1 MHz  
1
2
3
Switch I/O Capacitance  
Feedthrough Capacitance  
C
C
20  
0.2  
45  
pF  
pF  
S
F
Frequency Response  
Channel “ON”  
F
MHz Switch is “ON”; V  
= 2Vpp  
INA  
3dB  
sinewave; R = 1kΩ  
L
20LOG(V  
/V )=-3dB  
See Appendix, Fig. A.3  
OUT Xi  
4
5
Total Harmonic Distortion  
(See G.5, G.6 in Appendix)  
THD  
FDT  
0.01  
-95  
%
Switch is “ON”; V = 2Vpp  
INA  
sinewave f= 1kHz; R =1kΩ  
L
Feedthrough  
dB  
All Switches “OFF”; V  
=
INA  
Channel “OFF”  
2Vpp sinewave f= 1kHz;  
Feed.=20LOG (V  
/V )  
R = 1k.  
OUT Xi  
L
(See G.8 in Appendix)  
See Appendix, Fig. A.4  
6
Crosstalk between any two  
channels for switches Xi-Yi and  
Xj-Yj.  
X
-45  
-90  
-85  
-80  
dB  
dB  
dB  
dB  
V
=2Vpp sinewave  
INA  
talk  
f= 10MHz; R = 75.  
L
V
=2Vpp sinewave  
INA  
f= 10kHz; R = 600.  
L
Xtalk=20LOG (V /V ).  
Yj Xi  
V
=2Vpp sinewave  
INA  
f= 10kHz; R = 1k.  
L
(See G.7 in Appendix).  
V
=2Vpp sinewave  
INA  
f= 1kHz; R = 10k.  
L
Refer to Appendix, Fig. A.5  
for test circuit.  
7
Propagation delay through  
switch  
t
30  
ns  
R =1k; C =50pF  
L L  
PS  
† Timing is over recommended temperature range. See Fig. 3 for control and I/O timing details.  
‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.  
Crosstalk measurements are for Plastic DIPS only, crosstalk values for PLCC packages are approximately 5dB better.  
AC Electrical Characteristics- Control and I/O Timings- VDC is the external DC offset applied at the analog  
I/O pins. Voltages are with respect to VDD=7V, VDC=0V, VSS=-7V, unless otherwise stated.  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
mVpp V =3V+V  
DC  
Test Conditions  
1
Control Input crosstalk to switch  
(for CS, DATA, STROBE,  
Address)  
CX  
30  
squarewave;  
talk  
IN  
R =1k, R =10k.  
IN  
L
See Appendix, Fig. A.6  
2
3
4
5
6
7
8
9
Digital Input Capacitance  
Switching Frequency  
C
F
10  
pF  
MHz  
ns  
f=1MHz  
DI  
20  
O
Setup Time DATA to STROBE  
Hold Time DATA to STROBE  
Setup Time Address to STROBE  
Hold Time Address to STROBE  
STROBE Pulse Width  
t
10  
10  
10  
10  
20  
40  
R = 1k, C =50pF  
L L  
DS  
t
ns  
R = 1k, C =50pF  
L L  
DH  
t
ns  
R = 1k, C =50pF  
L L  
AS  
AH  
t
ns  
R = 1k, C =50pF  
L L  
t
ns  
R = 1k, C =50pF  
L L  
SPW  
RPW  
RESET Pulse Width  
t
ns  
R = 1k, C =50pF  
L L  
10 STROBE to Switch Status Delay  
11 DATA to Switch Status Delay  
12 RESET to Switch Status Delay  
t
40  
50  
35  
100  
100  
100  
ns  
R = 1k, C =50pF  
L L  
S
t
ns  
R = 1k, C =50pF  
L L  
D
t
ns  
R = 1k, C =50pF  
L L  
R
† Timing is over recommended temperature range. See Fig. 3 for control and I/O timing details.  
Digital Input rise time (tr) and fall time (tf) = 5ns.  
‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.  
Refer to Appendix, Fig. A.7 for test circuit.  
3-31  
MT8812 ISO-CMOS  
tRPW  
50%  
50%  
RESET  
tSPW  
STROBE  
50%  
50%  
50%  
tAS  
ADDRESS  
50%  
50%  
tAH  
DATA  
50%  
tDS  
50%  
tDH  
ON  
SWITCH*  
OFF  
tR  
tR  
tS  
tD  
Figure 3 - Control Memory Timing Diagram  
* See Appendix, Fig. A.7 for switching waveform  
AX0  
AX1  
AX2  
AX3  
AY0  
AY1  
AY2  
Connection  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X0-Y0  
X1-Y0  
X2-Y0  
X3-Y0  
X4-Y0  
X5-Y0  
No Connection  
No Connection  
X6-Y0  
X7-Y0  
X8-Y0  
X9-Y0  
X10-Y0  
X11-Y0  
No Connection  
No Connection  
0
1
0
0
0
1
0
1
1
1
0
0
0
0
X0-Y1  
↓ ↓  
X11-Y1  
X0-Y2  
↓ ↓  
0
1
0
0
0
1
0
1
0
0
1
1
0
0
X11-Y2  
0
0
0
0
1
1
0
X0-Y3  
↓ ↓  
1
0
1
1
1
1
0
X11-Y3  
0
1
0
0
0
1
0
1
0
0
0
0
1
1
X0-Y4  
↓ ↓  
X11-Y4  
X0-Y5  
↓ ↓  
0
1
0
0
0
1
0
1
1
1
0
0
1
1
X11-Y5  
0
0
0
0
0
1
1
X0-Y6  
↓ ↓  
1
0
1
1
0
1
1
X11-Y6  
0
1
0
0
0
1
0
1
1
1
1
1
1
1
X0-Y7  
↓ ↓  
X11-Y7  
Table 1. Address Decode Truth Table  
This address has no effect on device status.  
3-32  

相关型号:

MT8812AP1

Cross Point Switch, 1 Func, 12 Channel, CMOS, PQCC44, LEAD FREE, PLASTIC, MS-018AC, LCC-44
ZARLINK

MT8812AP1

Cross Point Switch, 1 Func, 12 Channel, CMOS, PQCC44, LEAD FREE, PLASTIC, MS-018AC, LCC-44
MICROSEMI

MT8812APR

Cross Point Switch, 1 Func, 12 Channel, CMOS, PQCC44, PLASTIC, MS-018AC, LCC-44
MICROSEMI

MT8812APR1

Cross Point Switch, 1 Func, 12 Channel, CMOS, PQCC44, LEAD FREE, PLASTIC, MS-018AC, LCC-44
ZARLINK

MT8814

ISO-CMOS 8 x 12 Analog Switch Array
MITEL

MT8814AC

ISO-CMOS 8 x 12 Analog Switch Array
MITEL

MT8814AE

ISO-CMOS 8 x 12 Analog Switch Array
MITEL

MT8814AE1

Cross Point Switch, 1 Func, 12 Channel, CMOS, PDIP40, LEAD FREE, PLASTIC, DIP-40
ZARLINK

MT8814AP

ISO-CMOS 8 x 12 Analog Switch Array
MITEL

MT8814AP1

Cross Point Switch, 1 Func, 12 Channel, CMOS, PQCC44, LEAD FREE, PLASTIC, LCC-44
ZARLINK

MT8814APR

Cross Point Switch, 1 Func, 12 Channel, CMOS, PQCC44, PLASTIC, LCC-44
ZARLINK

MT8814APR1

Cross Point Switch, 1 Func, 12 Channel, CMOS, PQCC44, LEAD FREE, PLASTIC, LCC-44
MICROSEMI