SG1644_1 [MICROSEMI]

DUAL HIGH SPEED DRIVER; 双高速驱动器
SG1644_1
型号: SG1644_1
厂家: Microsemi    Microsemi
描述:

DUAL HIGH SPEED DRIVER
双高速驱动器

驱动器
文件: 总8页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SG1644/SG2644/SG3644  
DUAL HIGH SPEED DRIVER  
DESCRIPTION  
FEATURES  
The SG1644, 2644, 3644 is a dual non-inverting monolithic high  
speed driver. This device utilizes high voltage Schottky logic to  
convert TTL signals to high speed outputs up to 18V. The totem  
poleoutputshave3Apeakcurrentcapability, whichenablesthem  
to drive 1000pF loads in typically less than 25ns. These speeds  
make it ideal for driving power MOSFETs and other large capaci-  
tive loads requiring high speed switching.  
Totem pole outputs with 3.0A peak current  
capability.  
Supply voltage to 22V.  
Rise and fall times less than 25ns.  
Propagation delays less than 20ns.  
Non-inverting high-speed high-voltage Schottky  
logic.  
Efficient operation at high frequency.  
Inadditiontothestandardpackages,SiliconGeneraloffersthe16  
pin S.O.I.C. (DW-package) for commercial and industrial applica-  
tions, and the Hermetic TO-66 (R-package) for military use.  
These packages offer improved thermal performance for applica-  
tions requiring high frequencies and/or high peak currents.  
Available in:  
8 Pin Plastic and Ceramic DIP  
14 Pin Ceramic DIP  
16 Pin Plastic S.O.I.C.  
20 Pin LCC  
TO-99  
TO-66  
HIGH RELIABILITY FEATURES - SG1644  
Available to MIL-STD-883  
Radiation data available  
LMI level "S" processing available  
EQUIVALENT CIRCUIT SCHEMATIC  
VCC  
6.5V  
VREG  
3K  
3K  
2.5K  
INV. INPUT  
OUTPUT  
LOGIC  
GND  
POWER  
GND  
(Substrate)  
Rev 1.2a 3/18/2005  
Microsemi Inc.  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
1
(714) 898-8121 FAX: (714) 893-2570  
SG1644/SG2644/SG3644  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Supply Voltage (VCC) ........................................................... 22V  
Logic Input Voltage ............................................................... 7V  
Source/Sink Output Current (Each Output)  
Continuous ................................................................... ±0.5A  
Pulse, 500ns ................................................................ ±3.0A  
Operating Junction Temperature  
Hermetic (J, T, Y, R-Packages) ....................................150°C  
150°C  
Plastic (M, DW, L-Packages) ......................................  
Storage Temperature Range ............................ -65°C to 150°C  
300°C  
Lead Temperature (Soldering, 10 Seconds) ..................  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to ground. All currents are positive into the  
specified terminal.  
RoHS Peak Package Solder Reflow Temp. (40 sec. max. exp.).... 260°C (+0, -5)  
THERMAL DATA  
J Package:  
R Package:  
Thermal Resistance-Junction to Case, θJC .................. 30°C/W  
Thermal Resistance-Junction to Ambient, θJA ............... 80°C/W  
Y Package:  
Thermal Resistance-Junction to Case, θJC .................. 50°C/W  
Thermal Resistance-Junction to Ambient, θJA ............. 130°C/W  
M Package:  
Thermal Resistance-Junction to Case, θJC ................. 5.0°C/W  
Thermal Resistance-Junction to Ambient, θJA .............. 40°C/W  
L Package:  
Thermal Resistance-Junction to Case, θJC .................. 35°C/W  
Thermal Resistance-Junction to Ambient, θJA ............ 120°C/W  
Thermal Resistance-Junction to Case, θJC .................. 60°C/W  
Thermal Resistance-Junction to Ambient, θJA .............. 95°C/W  
DW Package:  
Thermal Resistance-Junction to Case, θJC .................. 40°C/W  
Thermal Resistance-Junction to Ambient, θJA ............... 95°C/W  
T Package:  
Note A. Junction Temperature Calculation: TJ = TA + (PD x θJA).  
Note B. The above numbers forθJC aremaximumsforthelimitingthermal  
resistance of the package in a standard mounting configuration.  
The θJA numbers are meant to be guidelines for the thermal  
performance of the device/pc-board system. All of the above  
assume no ambient airflow.  
Thermal Resistance-Junction to Case, θJC .................. 25°C/W  
Thermal Resistance-Junction to Ambient, θJA ............ 130°C/W  
RECOMMENDED OPERATING CONDITIONS (Note 2)  
Supply Voltage (VCC) .................................. 4.5V to 20V (Note 3)  
Frequency Range ............................................... DC to 1.5MHz  
Peak Pulse Current ............................................................ ±3A  
Logic Input Voltage ................................................. -0.5 to 5.5V  
Operating Ambient Temperature Range (TA)  
SG1644 ......................................................... -55°C to 125°C  
SG2644 ........................................................... -25°C to 85°C  
SG3644 ............................................................... 0°C to 70°C  
Note 2. Range over which the device is functional.  
Note 3. AC performance has been optimized for VCC = 8V to 20V.  
ELECTRICAL CHARACTERISTICS  
(Unlessotherwisespecified, thesespecfiicationsapplyovertheoperatingambienttemperaturesforSG1644with-55°CTA 125°C, SG2644with-25°C  
TA 85°C, SG3644 with 0°C TA 70°C, and VCC = 20V. Low duty cycle pulse testing techniques are used which maintains junction and case  
temperatures equal to the ambient temperature.)  
SG1644/2644/3644  
Min. Typ. Max.  
Parameter  
Static Characteristics  
Test Conditions  
Units  
Logic 1 Input Voltage  
Logic 0 Input Voltage  
Input High Current  
Input High Current  
Input Low Current  
2.0  
V
V
µA  
mA  
mA  
V
V
V
mA  
mA  
0.7  
500  
1.0  
VIN = 2.4V  
VIN = 5.5V  
VIN = 0V  
-4  
Input Clamp Voltage  
IIN = -10mA  
-1.5  
VCC-3  
1.0  
Output High Voltage (Note 4)  
Output Low Voltage (Note 4)  
Supply Current Outputs Low  
Supply Current Outputs High  
IOUT = -200mA  
IOUT = 200mA  
18  
7.5  
VIN = 0V (both inputs)  
VIN = 2.4V (both inputs)  
27  
12  
Note 4. VCC = 10V to 20V.  
Rev 1.2a  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
(714) 898-8121 FAX: (714) 893-2570  
2
SG1644/SG2644/SG3644  
ELECTRICAL CHARACTERISTICS (continued)  
SG1644/2644/3644  
SG1644  
TA=-55°C to 125°C  
TA= 25°C  
Parameter  
Test Conditions (Figure 1)  
Units  
Min. Typ. Max. Min. Typ. Max.  
Dynamic Characteristics (Note 6)  
Propagation Delay High-Low  
(TPHL)  
Propagation Delay Low-High  
(TPLH)  
CL = 1000pF (Note 5)  
CL = 2500pF  
CL = 1000pF (Note 5)  
CL = 2500pF  
CL = 1000pF (Note 5)  
CL = 2500pF  
CL = 1000pF (Note 5)  
CL = 2500pF  
CL = 2500pF, Freq. = 200KHz  
Duty Cycle = 50%  
30  
35  
25  
30  
30  
40  
25  
40  
35  
40  
50  
30  
40  
35  
50  
30  
50  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
mA  
26  
18  
30  
Rise Time (TTLH)  
Fall Time (TTHL)  
30  
30  
Supply Current (ICC)  
(both outputs)  
Note 5. These parameters, specified at 1000pF, although guaranteed over recommended operating conditions, are not tested in production.  
Note 6. VCC = 15V.  
AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS - FIGURE 1  
CHARACTERISTIC CURVES  
FIGURE 2.  
FIGURE 4.  
FIGURE 3.  
TRANSITION TIMES VS. SUPPLY VOLTAGE  
TRANSITION TIMES VS. AMBIENT TEMPERATURE  
PROPAGATION DELAY VS. SUPPLY VOLTAGE  
Rev 1.2a  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
3
(714) 898-8121 FAX: (714) 893-2570  
SG1644/SG2644/SG3644  
CHARACTERISTIC CURVES (continued)  
FIGURE 5.  
FIGURE 6.  
FIGURE 7.  
PROPAGATION DELAY VS. AMBIENT TEMPERATURE  
TRANSITION TIMES VS. CAPACITIVE LOAD  
SUPPLY CURRENT VS. CAPACITANCE LOAD  
FIGURE 8.  
FIGURE 9.  
FIGURE 10.  
HIGH SIDE SATURATION VS. OUTPUT CURRENT  
LOW SIDE SATURATION VS. OUTPUT CURRENT  
SUPPLY CURRENT VS. FREQUENCY  
FIGURE 11.  
SUPPLY CURRENT VS. FREQUENCY  
Rev 1.2a  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
4
(714) 898-8121 FAX: (714) 893-2570  
SG1644/SG2644/SG3644  
APPLICATION INFORMATION  
POWER DISSIPATION  
tantalum capacitor for energy storage. In military applications, a  
CK05 or CK06 ceramic operator with a CSR-13 tantalum capaci-  
tor is an effective combination. For commercial applications, any  
low-inductance ceramic disk capacitor teamed with a Sprague  
150D or equivalent low ESR capacitor will work well. The  
capacitors must be located as close as physically possible to the  
VCC pin, with combined lead and pc board trace lengths held to  
less than 0.5 inches.  
The SG1644, while more energy-efficient than earlier gold-doped  
driver IC’s, can still dissipate considerable power because of its  
high peak current capability at high frequencies. Total power  
dissipation in any specific application will be the sum of the DC or  
steady-state power dissipation, and the AC dissipation caused by  
driving capacitive loads.  
The DC power dissipation is given by:  
PDC = +VCC · ICC [1]  
GROUNDING CONSIDERATIONS  
The ability of the SG1644 to deliver high peak currents into  
capacitive loads can cause undesirable negative transients on  
the logic and power grounds. To avoid this, a low inductance  
ground path should be considered for each output to return the  
high peak currents back to it’s own ground point. A ground plane  
is recommended for best performance. If space for a ground  
plane is not available, make the paths as short and as wide as  
possible. The logic ground can be returned to the supply bypass  
capacitor and be connected at one point to the power grounds.  
where ICC is a function of the driver state, and hence is duty-cycle  
dependent.  
The AC power dissipation is proportional to the switching fre-  
quency, the load capacitance, and the square of the output  
voltage. In most applications, the driver is constantly changing  
state, and the AC contribution becomes dominant when the  
frequency exceeds 100-200KHz.  
LOGIC INTERFACE  
The SG1644 driver family is available in a variety of packages to  
accommodateawiderangeofoperatingtemperaturesandpower  
dissipation requirements. The Absolute Maximums section of the  
data sheet includes two graphs to aid the designer in choosing an  
appropriate package for his design.  
The logic input of the 1644 is designed to accept standard DC-  
coupled5voltlogicswings, withnospeed-upcapacitorsrequired.  
If the input signal voltage exceeds 6 volts, the input pin must be  
protected against the excessive voltage in the HIGH state. Either  
a high speed blocking diode must be used, or a resistive divider  
to attenuate the logic swing is necessary.  
The designer should first determine the actual power dissipation  
of the driver by referring to the curves in the data sheet relating  
operating current to supply voltage, switching frequency, and  
capacitiveload. Thesecurvesweregeneratedfromdatatakenon  
actual devices. The designer can then refer to the Absolute  
Maximum Thermal Dissipation curves to choose a package type,  
and to determine if heat-sinking is required.  
LAYOUT FOR HIGH SPEED  
The SG1644 can generate relatively large voltage excursions  
with rise and fall times around 20-30 nanoseconds with light  
capacitive loads. A Fourier analysis of these time domain signals  
will indicate strong energy components at frequencies much  
higher than the basic switching frequency. These high frequen-  
cies can induce ringing on an otherwise ideal pulse if sufficient  
inductance occurs in the signal path (either the positive signal  
trace or the ground return). Overshoot on the rising edge is  
DESIGN EXAMPLE  
Given:Two2500pFloadsmustbedrivenpush-pullfroma+15volt  
supply at 100KHz. The application is a commercial one in which  
the maximum ambient temperature is +50°C, and cost is impor-  
tant.  
undesirable  
because the excess drive voltage could rupture  
the gate oxide of a power MOSFET. Trailing edge undershoot is  
dangerous because the negative voltage excursion can forward-  
bias the parasitic PN substrate diode of the driver, potentially  
causing erratic operation or outright failure.  
1. From Figure 11, the average driver current consumption  
under these conditions will be 18mA, and the power dissipation  
will be 15volts x 18mA, or 270mW.  
Ringing can be reduced or eliminated by minimizing signal path  
inductance, and by using a damping resistor between the drive  
output and the capacitive load. Inductance can be reduced by  
keeping trace lengths short, trace widths wide, and by using 2oz.  
copper if possible. The resistor value for critical damping can be  
calculated from:  
2. From the ambient thermal characteristic curve, it can be seen  
that the M package, which is an 8-pin plastic DIP with a copper  
lead frame, has more than enough thermal conductance from  
junction to ambient to support operation at an ambient tempera-  
ture of +50°C. The SG36446M driver would be specified for this  
application.  
RD = 2L/CL [2]  
SUPPLY BYPASSING  
where L is the total signal line inductance, and CL is the load  
capacitance. Values between 10 and 100ohms are usually  
sufficient. Inexpensive carbon composition resistors are best  
because they have excellent high frequency characteristics.  
They should be located as close as possible to the gate terminal  
of the power MOSFET.  
Since the SG1644 can deliver peak currents above 3amps under  
some load conditions, adequate supply bypassing is essential for  
proper operation. Two capacitors in parallel are recommended to  
guarantee low supply impedance over a wide bandwidth: a 0.1µF  
ceramic disk capacitor for high frequencies, and a 4.7µF solid  
Rev 1.2a  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
5
(714) 898-8121 FAX: (714) 893-2570  
SG1644/SG2644/SG3644  
TYPICAL APPLICATIONS  
FIGURE 12.  
In this push pull converter circuit, the control capailities of the SG1524B PWM are combined with the powerful totem-pole drivers  
found in the SG1644 (see SG1626 for example). This inexpensive configuration results in very fast charge and discharge of the  
power MOSFET gate capacitance for efficient switching.  
FIGURE 13.  
When the peak current capabilites of PWM's such as 1525A or 1526B are not sufficient to drive high capacitive loads fast enough,  
SG1644 is one solution to this problem. This combination is especially suited for full bridge applications where high input  
capacitance MOSFETs are being used. Diodes D1 and D2 are necessary if the leakage inductance of the drive transformer will  
drive the output pins negative.  
Rev 1.2a  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
(714) 898-8121 FAX: (714) 893-2570  
6
SG1644/SG2644/SG3644  
TYPICAL APPLICATIONS (continued)  
FIGURE 14.  
A low cost, yet powerful alternative to the single ended converters with parallel MOSFETs is a combination of SG1842 and SG1644  
as shown in Figure 16. This combination will also allow a low noise operation by separating the drive and its associated high peak  
currents, away from the PWM logic section.  
FIGURE 16.  
FIGURE 15.  
WhentheinputsaredrivenwithaTTLsquarewavedrive, the  
high peak current capabilites of SG1644 allow easy implem-  
entation of charge pump voltage converters.  
Fast turn off of bipolar transistors is possible by the totem  
poseoutputstageofSG1644. ThechargeoncapacitorCwill  
drive the base negative for faster turn off.  
Rev 1.2a  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
7
(714) 898-8121 FAX: (714) 893-2570  
SG1644/SG2644/SG3644  
CONNECTION DIAGRAMS & ORDERING INFORMATION (See Notes Below)  
Ambient  
Temperature Range  
Package  
Part No.  
Connection Diagram  
14-PIN CERAMIC DIP  
J - PACKAGE  
SG1644J/883B  
SG1644J/DESC  
SG1644J  
SG2644J  
SG3644J  
-55°C to 125°C  
-55°C to 125°C  
-55°C to 125°C  
-25°C to 85°C  
0°C to 70°C  
N.C.  
1
14  
13  
12  
11  
10  
9
VCC  
2
3
N.C.  
N.C.  
OUT A  
OUT B  
PWR GND B  
IN B  
4
5
6
PWR GND A  
IN A  
N.C.  
N.C.  
7
8
LOGIC GND  
N.C.  
8-PIN CERAMIC DIP  
Y - PACKAGE  
SG1644Y/883B  
SG1644Y/DESC  
SG1644Y  
SG2644Y  
SG3644Y  
-55°C to 125°C  
-55°C to 125°C  
-55°C to 125°C  
-25°C to 85°C  
0°C to 70°C  
8
1
2
3
4
IN A  
OUT A  
VCC  
7
6
5
PWR GND A  
PWR GND B  
IN B  
LOGIC GND  
OUT B  
8-PIN PLASTIC DIP  
M - PACKAGE  
SG2644M  
SG3644M  
-25°C to 85°C  
0°C to 70°C  
M Package: RoHS Compliant / Pb-free Transition DC: 0503  
M Package: RoHS / Pb-free 100% Matte Tin Lead Finish  
16-PIN WIDE BODY  
PLASTIC S.O.I.C.  
DW - PACKAGE  
SG2644DW  
SG3644DW  
-25°C to 85°C  
0°C to 70°C  
16  
PWR GND A  
OUT A  
1
2
3
N.C.  
IN A  
15  
14  
13  
12  
VCC  
N.C.  
GROUND  
GROUND  
N.C.  
4
5
6
7
GROUND  
GROUND  
VCC  
11  
10  
9
IN B  
N.C.  
OUT B  
8
PWR GND B  
DW Package: RoHS Compliant / Pb-free Transition DC: 0516  
DW Package: RoHS / Pb-free 100% Matte Tin Lead Finish  
VCC  
8
8-PIN TO-99 METAL CAN  
T - PACKAGE  
SG1644T/883B  
SG1644T/DESC  
SG1644T  
SG2644T  
SG3644T  
-55°C to 125°C  
-55°C to 125°C  
-55°C to 125°C  
-25°C to 85°C  
0°C to 70°C  
OUT A  
2
OUT B  
1
7
6
PWR GND B  
PWR GND A  
3
5
IN B  
IN A  
4
LOGIC GND  
9-PIN TO-66 METAL CAN  
R - PACKAGE  
SG1644R/883B  
SG1644R  
SG2644R  
-55°C to 125°C  
-55°C to 125°C  
-25°C to 85°C  
0°C to 70°C  
VCC  
5
N.C.  
OUT B  
PWR GND B  
N.C.  
OUT A  
PWR GND A  
IN A  
6
9
4
1
SG3644R  
3
2
7
8
IN B  
CASE IS LOGIC GROUND  
Note: Case and tab are  
internally connected to  
substrate ground.  
(Note 4)  
1. N.C.  
2. PWR GND A  
3. N.C.  
4. IN A  
5. N.C.  
6. LOGIC GND  
7. N.C.  
8. IN B  
3
2
1
20 19  
11. N.C.  
12. N.C.  
13. OUT B  
14. N.C.  
15. VCC  
16. N.C.  
17. VCC  
18. N.C.  
19. OUT A  
20. N.C.  
20-PIN CERAMIC (LCC)  
LEADLESS CHIP CARRIER  
L- PACKAGE  
SG1644L/883B  
SG1644L/DESC  
-55°C to 125°C  
-55°C to 125°C  
4
5
18  
17  
16  
15  
14  
6
7
8
9. N.C.  
10 11 12 13  
9
10. PWR GND B  
Note 1. Contact factory for JAN and DESC product availablity.  
2. All packages are viewed from the top.  
Rev 1.2a  
Copyright 1997  
11861 Western Avenue Garden Grove, CA 92841  
(714) 898-8121 FAX: (714) 893-2570  
8

相关型号:

SG16AA

THYRISTOR MODULE (ISOLATED MOLD TYPE)
SANREX

SG16AA20

THYRISTOR MODULE (ISOLATED MOLD TYPE)
SANREX

SG16AA30

Silicon Controlled Rectifier, 16000mA I(T)
SANREX

SG16AA40

THYRISTOR MODULE (ISOLATED MOLD TYPE)
SANREX

SG16AA50

Silicon Controlled Rectifier, 16000mA I(T)
SANREX

SG16AA60

THYRISTOR MODULE (ISOLATED MOLD TYPE)
SANREX

SG1731

DC MOTOR PULSE WIDTH MODULATOR
MICROSEMI

SG1731J

DC MOTOR PULSE WIDTH MODULATOR
MICROSEMI

SG1731J/883B

DC MOTOR PULSE WIDTH MODULATOR
MICROSEMI

SG1731J/DESC

Brush DC Motor Controller
MICROSEMI

SG1731L

暂无描述
MICROSEMI

SG1731_1

DC MOTOR PULSE WIDTH MODULATOR
MICROSEMI