LX1688IPW-TR [MICROSEMI]

Multiple Lamp CCFL Controller; 多灯CCFL控制器
LX1688IPW-TR
型号: LX1688IPW-TR
厂家: Microsemi    Microsemi
描述:

Multiple Lamp CCFL Controller
多灯CCFL控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
KEY FEATURES  
DESCRIPTION  
ƒ
ƒ
Provision to Synchronize Lamp  
Current & Frequency With Other  
Controllers  
Dimming With Analog or Digital  
(PWM) Methods (>20:1)  
Programmable Fixed Frequency  
Adjustable Power-up Reset  
ENABLE/BRITE Polarity Selection  
Voltage Limiting on Step-up  
Transformer Secondary Winding  
Open Lamp Timeout Circuitry  
Switched VDD Output (10mA)  
Micro-Amp Sleep Mode  
The LX1688 is a fixed frequency, dual  
current/voltage mode, switching regulator dual feedback control loop that permits  
that provides the control function for Cold regulation of maximum lamp strike voltage  
Safety and reliability features include a  
Cathode Fluorescent Lighting (CCFL). as well as lamp current.  
Regulating  
This controller can be used to drive a maximum lamp voltage permits the designer  
single lamp, but is specifically designed to provide for ample worst-case lamp strike  
for multiple lamp LCD panels. The IC can voltage while conservatively limiting  
be configured as a master or slave and maximum open circuit voltage. In addition  
ƒ
ƒ
ƒ
ƒ
synchronize up to 12 controllers.  
the controller features include auto  
ƒ
ƒ
ƒ
ƒ
ƒ
The LX1688 includes highly integrated shutdown for an open or broken lamp, and a  
universal ‘PWM or DC’ dim input that lamp fault detection with a status reporting  
allows either a PWM or DC input to adjust output.  
Operates With 3.3V to 5V Supply  
100mA Output Drive Capability  
brightness without requiring external  
To improve design flexibility the IC  
conditioning, since single external includes the ability to select the polarity of  
a
capacitor CPWM can be used to integrate both the chip enable and dim (BRITE)  
a PWM input. Burst mode dimming is inputs. Also included is a switched VDD  
A P P L I C A T I O N S / B E N E F I T S  
possible if the user supplies  
a low output of up to 10mA that will allow the  
ƒ
ƒ
ƒ
ƒ
ƒ
Desktop LCD Monitors  
Multiple Lamp Panels  
frequency PWM signal on the BRITE user to power other circuitry that can be  
input and no CPWM capacitor is used. The switched on and off with the inverters  
controller utilizes Microsemi’s patented enable input. This preserves the micro  
direct drive fixed frequency topology and power sleep mode with no additional  
patented resonant lamp strike generation components.  
Low Ambient Light Displays  
High Efficiency  
Lower Cost than Conventional  
Buck/Royer Inverter Topologies  
Improved Lamp Strike Capability  
Improved Over-Voltage Control  
technique.  
ƒ
ƒ
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com  
Protected by U.S. Patents 5,615,093; 5,923,129; 5,930,121; 6,198,234; Patents Pending  
PRODUCT HIGHLIGHT  
DIMMING (BRITE)  
ENABLE  
LAMPS  
INPUT  
CONNECTOR  
LX1688  
MASTER  
STRIKE  
STATUS  
125 Hz 5% Duty cycle Burst  
65KHz run frequency  
FAULT 1  
FAULT 1  
FAULT 2  
BRITE  
ENABLE  
LX1688  
SLAVE  
STRIKE  
STATUS  
VDD  
FAULT 2  
Ch3  
100µs  
M
10.0mV Ω  
Ch2  
10.0mV Ω  
Simplified Quad Lamp Inverter Showing Synchronized Output Waveforms  
PACKAGE ORDER INFO  
Plastic TSSOP  
24-Pin  
PW  
MIN VDD  
MAX VDD  
TJ (°C)  
RoHS compliant / Pb-free Transition DC: 0442  
0 to 70  
-40 to 85  
3.0V  
3.0V  
5.5V  
5.5V  
LX1688CPW  
LX1688IPW  
Note: Available in Tape & Reel. Append the letters “TR” to the part number. (i.e. LX1688CPW-TR)  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Integrated Products Division  
Page 1  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE PIN OUT  
Supply Voltage (VDD_P, VDD)................................................................................ 6.5V  
Digital Inputs ................................................................................... -0.3V to VDD +0.5V  
Analog Inputs.................................................................................. –0.1V to VDD +0.5V  
Digital Outputs................................................................................. -0.3V to VDD +0.5V  
Analog Outputs................................................................................ -0.1V to VDD +0.5V  
Maximum Operating Junction Temperature ............................................................150°C  
Storage Temperature................................................................................. -65°C to 150°C  
Peak Package Solder Reflow Temp. (40 seconds max. exposure) ................260°C(+0.-5)  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
BOUT  
AOUT  
VSS_P  
VDD_P  
VDD  
VDDSW  
TRI_C  
OLSNS  
ISNS  
3
VSS  
BEPOL  
BRITE  
CPOR  
ENABLE  
I_R  
CPWM1  
CPWM2  
RMP_RST  
PHA_SYNC  
4
5
6
7
8
ICOMP  
VCOMP  
VSNS  
SLAVE  
FAULT  
9
10  
11  
12  
PW PACKAGE  
Note 1: Exceeding these ratings could cause damage to the device. All voltages are with  
respect to Ground. Currents are positive into, negative out of the specified terminal.  
(Top View)  
RoHS / Pb-free 100% matte Tin Lead Finish  
THERMAL DATA  
Plastic TSSOP 24-Pin  
PW  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
100°C/W  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system. All of the  
above assume no ambient airflow.  
FUNCTIONAL PIN DESCRIPTION  
Pin Name  
AOUT  
Description  
Pin Name  
Description  
Output Driver A  
BOUT  
Output Driver B  
Connects to dedicated GND for Aout and Bout  
Drivers  
Connects to analog GND  
Connects to dedicated VDD for Aout and Bout  
Drivers  
Connects to analog VDD  
VSS_P  
VSS  
VDD_P  
VDD  
Tri-mode input pin to control the polarity of the  
ENABLE and BRITE signal  
Analog/PWM input for brightness control  
Connects an external capacitor CPOR to VDD and  
is used for setting power-up reset pulse width.  
BEPOL  
BRITE  
CPOR  
VDDSW  
TRI_C  
OLSNS  
Switchable VDD output controlled by ENABLE  
Connects to external capacitor CTRI  
Analog input to detect open-lamp condition  
Analog input from lamp current, has built-in 300mv  
offset  
Current error Amp’s output; connects to external  
capacitor CICOMP  
ENABLE  
I_R  
Used to enable or disable the chip  
ISNS  
Connects to external resistor RI; for bias current  
setting for internal oscillator  
ICOMP  
Connects to external capacitor CPWM, used for  
integrating an external digital PWM signal for  
analog dimming  
Voltage error Amp’s output; connects to external  
capacitor CVCOMP, can be used for soft-start  
CPWM1  
CPWM2  
VCOMP  
VSNS  
Connects to external capacitor CPWM, used for  
integrating an external digital PWM signal for  
analog dimming.  
Analog input from transformer output voltage  
If SLAVE = “0”, RMP_RST is a CMOS output; if  
SLAVE = “1”, it is a CMOS input that locks the  
ramp oscillation frequency to the master clock  
Input control pin for setting the IC either in Master  
or Slave mode; “1” for slave mode and “0” for  
master mode.  
RMP_RST  
SLAVE  
FAULT  
If SLAVE= “0”, PHA_SYNC is a CMOS output; if  
SLAVE = “1”, it is a CMOS input that make the  
AOUT/BOUT phase synchronous with the master  
Digital output to indicate maximum number of lamp  
striking attempts has occurred without lamp  
ignition.  
PHA_SYNC  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 2  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
RECOMMENDED OPERATING CONDITIONS  
LX1688  
Typ  
Parameter  
Units  
Min  
Max  
Supply Voltage (VDD ,VDDP  
BRITE Linear DC Voltage Range  
BRITE PWM Logic Signal Voltage Range  
Digital Inputs (SLAVE, PHA_SYNC, RMP_RST, BEPOL, ENABLE )  
)
3
1
0
0
5.5  
2.5  
VDD  
VDD  
V
V
V
V
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, specifications apply over the range: TA=-40 to 85OC, VDD (For LX1688IWP) & TA= 0 to 70OC, VDD (For  
LX1688CWP), VDD_P = 3.0 to 5.5V. RI = 80Kohms, CTRI = 0.083µF  
LX1688  
Parameter  
Symbol  
Test Conditions  
Units  
Min  
Typ.  
Max  
DIMMER  
VBRITE_MAX  
VBRITE_MIN  
VBRITE_MAX  
VBRITE_MIN  
VBRT_FULL  
VBRT_DARK  
VTH_IAMP  
VBEPOL = VDD  
2.6  
0.4  
2.5  
0.5  
0.5  
2.5  
2.0  
0
Conventional¹ Dimming  
BRITE Input Voltage  
V
V
VBEPOL = VDD  
VBEPOL = VSS or float  
VBEPOL = VSS or float  
VBEPOL = VSS, VBRITE = 0.4V  
VBEPOL = VSS, VBRITE = 2.6V  
TA= 0 to 70OC  
0.4  
Reverse Dimming  
BRITE Input Voltage  
2.6  
Max Brightness VBRT Voltage  
Full-darkness VBRT voltage  
1.90  
2.05  
0.05  
450  
550  
V
V
ISNS input threshold voltage  
ISNS input threshold voltage  
BRITE-to-ICOMP propagation delay  
STRIKE AND RAMP GENERATOR  
Max. number of strike before fault  
150  
150  
300  
300  
2
mV  
mV  
µS  
VTH_IAMP  
TA= -40 to 85OC  
TD_BRITE  
NFAULT  
VP_TRI  
63  
Triangular Wave Generator Analog Output  
Peak Voltage  
Triangular Wave Generator Analog Output  
Valley Voltage  
Triangular Wave Generator Oscillation  
Frequency  
2.3  
2.5  
0.3  
2.6  
0.40  
13  
V
V
VV_TRI  
0.15  
F_TRI  
FMAX_STK  
FLAMP  
7
10  
195  
65  
Hz  
Max. Lamp Strike Frequency  
FMAX_STK = FLAMP X ~2.5  
150  
60  
KHz  
KHz  
VOLSNS > 0.65V; VDD=5V  
Lamp Run Frequency  
70  
70  
TA= 0 to 70OC  
VOLSNS > 0.65V; VDD=5V  
TA=-40 to 85OC  
Lamp Run Frequency  
FLAMP  
57  
65  
KHz  
Lamp Run Frequency regulation over VDD  
OLSNS threshold voltage  
FLAMP_REG  
VTH_OLSNS  
VH_OLSNS  
TD_OLSNS  
VOLSNS > 0.65V  
4
6
840  
640  
1
% /V  
mV  
mV  
us  
740  
540  
790  
590  
OLSNS hysteresis  
OLSNS-to-ICOMP propagation delay  
GBNT ²  
Fault, PHA_SYNC, RMP_RST, logic high  
threshold  
VH  
VDD – 0.5  
V
Fault, PHA_SYNC, RMP_RST, logic low  
threshold  
VL  
0.7  
15  
1
V
Minimum Fault-pin output current  
I_FAULT  
10  
mA  
¹Conventional polarity means that the lamp brightness increases with increasing voltage on the BRITE pin. Reverse polarity means that brightness decreases with increasing  
voltage  
² Guaranteed but not production tested  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Integrated Products Division  
Page 3  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
LX1688  
Typ.  
Parameter  
Symbol  
Test Conditions  
Units  
Min  
Max  
STRIKE AND RAMP GENERATOR (CONTINUED)  
Minimum PHA_SYNC-pin output current  
Minimum RMP_RST-pin output current  
Minimum A_SYNC output pulse duty-cycle  
Minimum A_SYNC input pulse duty-cycle  
Minimum RMP_RST output pulse duty-cycle  
Minimum RMP_RST input pulse duty-cycle  
OUTPUT BUFFER  
I_PHA_SYNC  
VSLAVE = 0V  
10  
10  
49  
48  
10  
5
mA  
mA  
%
I_RMP_RST  
DO_ASYNC  
DI_ASYNC  
DO_RST  
VSLAVE = 0V  
VSLAVE = 0V  
VSLAVE = VDD  
VSLAVE = 0V  
VSLAVE = VDD  
50  
50  
17  
%
%
DI_RST  
%
VAOUT  
VDD = 5.5V  
VAOUT BOUT = 4.5V  
VDD = 5.5V  
, BOUT = 1V  
Output Sink Current  
ISK_OUTBUF  
IS_OUTBUF  
100  
100  
mA  
mA  
,
Output Source Current  
Output Sink Current  
ISK_OUTBUF  
IS_OUTBUF  
ISK_OUTBUF  
VAOUT  
VAOUT  
VAOUT  
,
,
,
BOUT = 1V, VDD = 3V  
BOUT = 2V, VDD = 3V  
BOUT = 1V, VDD = 5.5V  
50  
50  
mA  
mA  
mA  
Output Source Current  
Output Sink Current  
100  
PWM  
VSNS threshold voltage  
VCOMP Discharge Current  
IAMP transconductance  
VAMP, IAMP output source current  
VAMP, IAMP output sink current  
ICOMP discharge current  
VAMP transconductance  
ICOMP-to-output propagation delay  
BIAS  
VTH_VSNS  
ID_VCOMP  
GM_IAMP  
IS_IAMP  
1.2  
1.25  
4
1.3  
V
mA  
µmho  
µA  
ΔISNS = 0.2V  
100  
200  
75  
500  
VCOMP, ICOMP = 0  
VCOMP, ICOMP =VDD  
ISK_IAMP  
ID_ICOMP  
GM_ICMP  
TD_ICOMP  
75  
µA  
10  
mA  
µmho  
nS  
ΔVSNS = 0.1V  
200  
0.95  
10  
500  
1100  
800  
Voltage at Pin I_R  
V_IR  
IMAX_IR  
1.05  
V
Pin I_R max. source current  
Power-on Reset Pulse Width  
Minimum VDDSW sourcing Current  
50  
31  
25  
µA  
TPOR  
CPOR =.1uF  
mS  
mA  
IMIN_VDDSW  
(VDD – VDDSW) < 0.2V  
VENABLE = 0.8V, VBEPOL = VDD  
VDDSW = 0V  
VDDSW Off Current  
IOFF_VDDSW  
1
15  
µA  
GENERAL  
Operating Current  
IDD  
VDD = VDD_P = 5V  
5.5  
2
8
4
mA  
mA  
VOLSNS = VDD = VDD_P = 5V,  
CA = CB = 1000pF  
Output buffer operating current  
IDD_P  
V
V
ENABLE logic threshold  
VTH_EN  
VTH_EN  
0.8  
1.7  
0.2  
2.4  
ENABLE threshold hysteresis  
VENABLE = 0.8V  
(VBEPOL = VDD or float)  
VENABLE = 2.5V  
(VBEPOL = VDD or float)  
VENABLE = 0.8V  
IDD_SLEEP  
IDD_SLEEP  
IDD_SLEEP  
IDD_SLEEP  
20  
20  
20  
20  
50  
50  
Sleep-mode current (see table-1 for Pin  
ENABLE polarity)  
µA  
300  
(VBEPOL = VSS  
VENABLE = 2.5V  
(VBEPOL = VSS  
)
VDD_P Leakage in Sleep Mode  
300  
2.9  
)
UVLO threshold  
UVLO hysteresis  
VTH_UVLO  
VH_UVLO  
Rising turn-on threshold  
Falling turn-off hysteresis  
2.6  
2.8  
V
190  
mV  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 4  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
RESPONSE VS WAVELENGTH  
IS N K STEP RESPONSE  
ISNS Input Threshold Voltage Vs Temperature  
Typical Operating Current (VDD)  
6
380  
360  
340  
5.5  
VDD=5.5V  
320  
5
VDD=5.5V  
300  
4.5  
280  
260  
VDD=3V  
4
3.5  
3
240  
VDD=3V  
220  
200  
180  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Output Frequency Vs Temperature  
Under Voltage Lockout Vs Temperature  
70  
68  
66  
64  
62  
60  
58  
56  
2.9  
2.85  
2.8  
Turn On  
VDD=5V  
2.75  
2.7  
VDD=3V  
2.65  
2.6  
Turn Off  
2.55  
2.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
I_R Voltage Vs Temperature VDD=V  
Power-on-Reset Pulse Width Vs Temperature VDD=5V  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
40  
35  
30  
25  
20  
15  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 5  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
TABLE 1  
Pin BEPOL  
VDD  
ENABLE POLARITY  
DIMMING POLARITY*  
CONVENTIONAL  
REVERSE  
+ (HI = CHIP_ON, LOW = CHIP_OFF  
+ (HI = CHIP_ON, LOW = CHIP_OFF)  
- (LOW = CHIP_ON, HI = CHIP_OFF)  
FLOAT  
VSS  
REVERSE  
* Conventional polarity means that the lamp brightness increases with increasing voltage on the BRITE pin.  
Reverse polarity means that brightness decreases with increasing voltage  
OPERATIONAL MODES  
Controller  
Mode  
Controller  
Operation  
Input Pin:  
OLSNS  
Input Pin:  
SLAVE  
Output Pin:  
FAULT  
Lamp  
Frequency  
Pin: RMP_RST  
Output: FINT  
Pin: A_SYNC  
Output: FINT / 2  
Output: FINT / 2  
Run  
> 0.6V  
VSS  
L
FINT / 2  
Ramping up /  
down  
Master  
Slave  
Striking  
< 0.2V  
VSS  
L
Output: FINT  
Fault  
Run  
X
VSS  
VDD  
H
L
Output: FINT  
Input: FEXT  
Output: FINT / 2  
Input: FEXT / 2  
Off  
> 0.6V  
FEXT / 2  
Ramping up /  
down  
Striking  
Fault  
< 0.2V  
X
VDD  
VDD  
L
Input: FEXT  
Input: FEXT  
Input: FEXT / 2  
Input: FEXT / 2  
H
Off  
SIMPLIFIED BLOCK DIAGRAM  
VCOMP ICOMP  
VSNS  
ISNS  
FEXT/2  
VDD_P  
VOLTAGE  
COMPARATOR  
ERROR AMP  
TFF R  
T
PWR_ GD  
Q
A OUT  
1.25V  
VAMP  
PHA_SYNC  
SLAVE  
Q
PWR_ BD  
OUTPUT  
PWR_ GD  
FAULT  
STEERING  
LOGIC  
RAMP RUN  
FINT  
PWR_BD  
FAULT  
GENERATOR  
Q
B OUT  
VSS_P  
STRIKE  
RMP_RST  
FEXT  
GENERATOR  
300mV  
CURRENT  
COMPARATOR  
IAMP  
1V  
1V  
+
-
+
-
200K  
BRT  
2.5  
V
800mV  
600mV  
BRITE  
100K  
100K  
100K  
100K  
0-2V  
+
IGNITE  
6 BIT  
-
OLSNS  
0.5  
V
CPW 1  
CPW 2  
BEPOL  
TRI WAVE  
GEN  
TRI_C  
COUNTER  
PWR_ BD  
1M  
VDD  
POLARITY  
DECODE  
BIAS GEN  
UVLO  
PWR_GD  
PWR_BD  
1M  
TTL  
BUF  
FAULT  
FAULT  
TTL  
BUF  
ENABLE  
VDDSW  
INTERNAL VDD  
VSS  
LX1688  
VSS  
VDD  
CPOR  
I_R  
Figure – Simplified Block Diagram  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 6  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
DETAILED DESCRIPTION  
The LX1688 is a backlight controller specifically  
designed with a special feature set needed in multiple lamp  
desktop monitors, and other multiple lamp displays. While  
utilizing the same architecture as Microsemi’s LX1686  
controller it eliminates the synchronized digital dimming  
and adds, lamp ‘strike’ count out timer, lamp fault status  
output, and external clock input/output that permits multiple  
controllers to synchronize their output current both in  
frequency and phase.  
and Slave Input/Output are used. RMP_RST and  
PHA_SYNC should be connected between all the  
controllers. The master controller should have its SLAVE  
pin connected to VSS (GND) and the slave controllers  
SLAVE input to VDD (High).  
BEPOL INPUT  
The BEPOL pin is a tri-mode input that controls the  
polarity of the ENABLE and BRITE input signals.  
Depending on the state of this pin (VDD, floating, or VSS)  
the controller can be set to allow active high enable with  
active high full brightness or active high or low enable  
with active low full brightness (see Table 1).  
OPERATION FROM 3.3V AND/OR 5.0V INPUT SUPPLY  
The LX1688 is designed to operate and meet all  
specifications at 3.3V ±10% to 5.0V ±10%. The under  
voltage lockout is set at nominally 2.8V with a 190mV  
hysteresis.  
BRITE INPUT (DIMMING INPUT)  
The BRITE input is capable of accepting either a DC  
voltage (> .5V to < 2.5V) or a PWM digital signal that is  
clamped on chip (< .5V or > 2.5V). A digital signal can  
either be passed unfiltered to effect pulse ‘digital’ dimming  
or filtered with a capacitor to effect analog dimming with a  
digital PWM signal.  
MASTER/SLAVE CLOCK SYNCHRONIZATION  
One or more controllers (up to 11) may be designated as  
slave controllers and receive ramp reset and phase  
synchronization from the designated master controller.  
This will allow up to 12 lamps (24 with two lamps in  
series/controller design) to all operate in phase and  
frequency synchronization. This is important to prevent  
random interference between lamps through unpredictably  
changing electric and magnetic fields that will inevitably  
link them.  
The LX1688 has two independent oscillators, one for  
lamp strike and one for the lamp run frequency. The strike  
oscillator ramps the operating frequency slowly up and  
down when the open lamp sense input (OLSNS) indicates  
the lamp is not ignited. During this lamp strike condition  
the operating frequency of each IC will vary up and down  
as needed to strike its lamp. The controller is so designed  
that the master controller clock remains at the pre-selected  
frequency for fully ignited lamps even while striking.  
Likewise the designated slave controller will not alter the  
frequency or phase of the master clock during its strike  
phase. Thus each controller will vary its frequency as  
needed to strike its lamp then it will synchronize to the  
master clock frequency and phase.  
Analog Dimming Methods:  
• Mechanical or digital potentiometer set to provide 1V  
to 2.5V on the wiper output. A filter cap from BRITE  
to signal ground is recommended.  
• D/A converter output directly connected to BRITE  
input. A R/C filter using a capacitor from the CPW1  
input to ground for applications where the ADC output  
may contain noise sufficient to modulate the BRITE  
input.  
• A high frequency PWM digital logic pulse connected  
directly to the BRITE input. The Brightness (BRT,  
internal node) output will be sensitive only to the  
PWM duty cycle, and not to the PWM signal  
amplitude, so long as the amplitude exceeds 2.6V for a  
logic high (1) and is less than .4V for a logic (0). This  
pulse frequency will typically be between 1KHz and  
100KHz and will not be synchronized with the LCD  
video frame rate. A capacitor (CPWM) between  
CPW1 and CPW2 will integrate the PWM signal for  
use by the controller.  
The TRI_C wave generator (see Block Diagram) sets the  
rate of operating frequency variation during lamp strike.  
The TRI_C generator is connected to a 6-bit counter that  
times out after 63 cycles and then latches the FAULT  
output high if the OLSNS input indicates no lamp current is  
flowing. Even in the case of timeout fault the master  
controller clock will continue to provide synchronization to  
the slave controllers.  
Digital Dimming Methods:  
• Low frequency PWM digital logic pulses connected  
directly to the BRITE input. As above the Brightness  
(BRT internal) will be sensitive only to the PWM duty  
cycle, and not to the PWM signal amplitude, so long  
as the amplitude exceeds 2.6V for a logic high (1) and  
is less than .4V for a logic (0). This pulse frequency  
will typically be in the range of 90-320Hz.  
When synchronizing more than one controller the Ramp  
Reset (RMP_RST), Phase Sync (PHA_SYNC),  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 7  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
DETAILED DESCRIPTION  
and may or may not be externally synchronized to the LCD  
video frame rate. It will directly gate the signal BRT.  
CPWM should not be used in this case.  
RMP_RST AND PHA_SYNC PIN TIMING REQUIREMENT  
WITH SLAVE MODE OPERATION  
When the LX1688 is configured for slave mode  
operation, and RMP_RST and PHA_SYNC is supplied  
from an external source, the signal timing should be met as  
outlined below.  
FAULT PIN  
The fault pin is a digital output that indicates that the  
maximum numbers of strike attempts has occurred without  
lamp ignition. In this condition the FAULT pin will go  
active high with typically 20mA drive capability. Holding  
the OLSNS pin low (<200mV) will also force timeout and  
activate the FAULT pin. When used as a master, fault  
condition true does not inhibit master clock outputs  
PHA_SYNC and RMP_RST.  
RMP_RST should be 2 times frequency of lamp  
frequency and duty should be 10 to 13%, and PHA_SYNC  
should be generated by divide by 2 of RMP_RST signal.  
Phase of these signals should be met the as shown, note the  
delay between the RMP_RST and PHA_SYNC signals:  
I_R PIN  
The run mode frequency of the output is one half the  
internal ramp frequency, which is proportional to a bias  
current set by resistor RI of 80.6K. The output frequency  
can thus be adjusted by varying the value of RI-R, the  
typical range from about 50K to 100K. Since there is some  
variation in the frequency due to change in the input supply  
(VDD) it is recommended that the value of RI-R be selected  
at the nominal input voltage.  
Min  
150  
10  
Typ  
Max  
Unit  
nsec  
%
T1  
T2  
250  
13  
51  
T3  
49  
50  
%
Tr, Tf  
100  
nsec  
T3 duty is 50% of operating frequency.  
SLEEP MODE (ENABLE SIGNAL) AND SWITCHED VDD  
(VDDSW)  
Since the LX1688 can be used in portable battery  
operated systems, a very low power sleep mode is included.  
The IC will consume less than 10µA quiescent current from  
both the VDD and VDD_P pins combined, when the  
ENABLE pin is deactivated. The polarity of the ENABLE  
pin is programmable by the BEPOL input (see table 1). In  
addition the controller provides a switched supply pin  
VDDSW this output supplies at least 10mA at VDD .2V  
for external circuitry. This output can be used to power  
additional circuitry that can be enabled with the controller.  
T2  
T3  
T1  
BIAS & TIMING EQUATIONS  
Formula 1:  
Formula 2:  
Triangular Wave Generator Frequency, FTRI  
Lamp Frequency (AOUT’s switching frequency), FLAMP  
1
1
FTRI  
=
[Hz]  
F
LAMP  
=
[Hz]  
(25× R  
I
×CTRI  
)
200e-12× R  
I
Formula 3:  
Formula 4:  
Minimum Current Error Amp Bandwidth, BWIEA_MIN  
Minimum Voltage Error Amp Bandwidth, BWVEA_MIN  
0.000048  
0.000048  
B
WIEA_MIN  
=
[Hz]  
B
WVEA_MIN  
=
[Hz]  
C
ICOMP  
C
VCOMP  
Formula 5:  
Softstart time, TSS  
Formula 6:  
Minimum Power-on Reset Pulse Width, TMIN_POR  
MIN_POR = 2.3e6×CPOR [sec]  
T
SS = 4,500,000 × CVCOMP [sec]  
T
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 8  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
APPLICATION CIRCUITS  
CN1  
VIN  
VIN  
1
2
C1  
10%  
470nF 16V  
GND  
GND  
3
4
5
6
U2  
SI9945AEY  
8
VBRITE  
C13  
0.1uF 50V  
T1  
CN2  
1 HV1  
2
LV1  
RMP_RST  
PHA_SYNC  
1:75  
3
7
RMP_RST  
PHA_SYNC  
R4 39  
7
5
2
8
2
1
6
4
ENABLE  
VDDSW  
2.2PF  
PCB  
C14  
VDDP  
VDDP  
9
Q2  
5
BC847ALT1  
Q1  
10  
R5 39  
C12  
4
BC847ALT1  
+
220µ  
25V  
1
3
R8  
C15  
100K  
2
1
2.2nF  
50V 5%  
COG  
R6  
82  
D1  
BAW56  
R7  
10K  
3
1
24  
C2  
AOUT  
VSS_P  
VSS  
BOUT  
VDD_P  
VDD  
16V 10%  
470nF  
R2 47  
2
3
23  
22  
VDD  
Analog Ground must  
connect to power  
ground at this point  
only  
C4  
220nF  
C5  
VDDSW  
4
220nF  
VDD  
VDD  
BEPOL  
VDD_SW  
TRI_C  
16V  
D2  
3
16V 10%  
C6  
20  
5
6
7
1
2
10%  
82nF  
BRITE  
16V 10%  
C7  
19  
18  
R9  
1K  
16V 10%  
10nF 16V  
10%  
C3  
BAW56  
CPOR  
OLSNS  
ISNS  
C16  
100nF  
C8  
2.2nF  
16V 5%  
R12  
2.74K  
1%  
3.3nF  
ENABLE  
3
COG  
50V 5%  
D3  
BAV99  
C9  
4.7nF  
R10  
1M  
R1  
8
9
17  
16  
ICOMP  
VCOMP  
VSNS  
I_R  
2
1
C10 16V 10%  
10nF  
16V 10%  
80.6K 1%  
CPWM1  
R11  
2.74K  
1%  
C11  
10nF  
10  
11  
12  
15  
14  
13  
CPWM2  
16V 10%  
RMP_RST  
RMP_RST SLAVE  
PHA_SYNC FAULT  
PHA_SYNC  
R3  
220  
LED1  
OPTION  
Figure 1 – Schematic for LX1688 Inverter Module Configured as Master  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Integrated Products Division  
Page 9  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
APPLICATION INFORMATION  
SETTING MASTER/SLAVE CONFIGURATION  
APPLICATION EXAMPLE WITH LX1688  
This section will highlight the features of LX1688  
controller by showing a practical example. Three identical  
inverter modules are connected to each other and each  
module drives a single lamp. One module configured as a  
master and two others configured as slaves.  
Simply connecting pin 14 to the ground for a master  
and to the VDD for a slave will do master and slave  
configuration. As shown in figure 2, module (A)  
configured as master and modules (B) and (C) configured  
as slaves.  
A complete schematic hooked up a a master is given in  
Figure 1, the schematic provides all necessary functions  
such as high voltage feedback for regulation the peak lamp  
voltage, short-circuit protection, open lamp sensing and  
lamp current regulation needed for a typical application.  
The section follows with measurement waveforms and list  
of material of the actual modules. For more detail design  
procedure and circuit description please refer to application  
note (AN-13), which is available in Microsemi’s web site.  
INPUT VOLTAGE  
The LX1688 controller can operate at 3.3 to 5.0V  
±10%, in this application all modules were driven by the  
same power voltage (a constant 5.0V), which provides  
VDD for controllers, and input voltage for the power  
section. Notice that VDD feeds all analog signals and  
VDD_P feeds only the output driver stage, these two  
signals should be filtered separately (Figure 1).  
SETTING LAMP FREQUENCY  
SYNCHRONIZATION OF FREQUENCY AND PHASE  
To synchronize the Lamp frequency and phase of all  
modules, it is required to connect the RMP_RST pin of all  
the modules together and connect PHA_SYNC pin of all  
the modules together.  
LAYOUT CONSIDERATION  
By designing the layout in a proper way we can reduce  
the overall noise and EMI for the module.  
The gate drivers for MOSFETs should have an  
independent loop that doesn’t interface with the more  
sensitive analog control function, therefore LX1688  
provides two power inputs with separate ground pins  
(analog/signal), VDD feeds all analog signals and VDD_P  
feeds only the output drivers, as shown in figure1 these  
two pins (pin 23, 24) are separated and filtered by R14, C2  
and C7. The connection of two ground pins should be at  
only one point as shown in figure1.  
The power traces should be short and wide as possible  
and all periphery components such capacitors should be  
located as closed as possible to the controller.  
The value of R1 determines magnitude of internal  
current sources that set timing parameters. Equation (2)  
gives the relationship between Lamp frequency (FLAMP)  
and (RI_R), R1 in schematic. For this application we  
choose R6=80.6 K, which results to a lamp frequency at  
62.0 KHz.  
OSCILLOSCOPE WAVEFORMS PICTURES  
The following oscilloscope waveform pictures are  
taken from the actual circuits and will show the operation  
of the modules in different modes when three identical  
modules are synchronized, one as a master, and two others  
as slaves.  
DIMMING  
The LX1688 includes highly integrated universal ‘PWM  
or DC’ dim input that allows either a PWM or DC input  
without requiring external conditioning.  
In this application we choose Digital Dimming by  
applying a PWM signal to BRITE pin.  
All modules were driven by the same PWM signals, but  
notice that it is possible to dim each module quite  
separately.  
BEPOL pin has three different modes (see table 1), in  
this application it is connected to VDD which means active  
high enable with active high full brightness.  
The PWM signal can be varied in frequency between  
48-320 HZ. No capacitor between CPWM1 and CPWM2 is  
necessary.  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 10  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
TYPICAL SLAVE APPLICATIONS  
VDDP  
CN  
1
C1  
470nF 16V  
10%  
VIN  
1
VIN  
2
3
GND  
GND  
C2  
470nF 16V  
10%  
4
5
1
2
3
24  
23  
22  
AOUT  
VSS_P  
VSS  
BOUT  
VDD_P  
VDD  
VBRITE  
6
7
8
RMP_RST  
VDD  
R2  
47  
PHA_SYNC  
ENABLE  
VDDSW  
9
C4  
1
0
VDDSW  
VDD  
4
5
6
7
21  
220nF  
16v 10%  
C5  
BEPOL VDD_SW  
VBRITE  
20  
19  
C6  
BRITE  
CPOR  
TRI_C  
C7  
C8  
Power  
Output  
Section  
OLSNS  
C3 10nF  
16V 10%  
18  
17  
ENABLE  
I_R  
ISNS  
ICOMP  
VCOMP  
VSNS  
8
9
C9  
R1  
80.6K 1%  
16  
15  
C10  
CPWM1  
CPWM2  
10  
C11  
11  
12  
14  
13  
RMP_RST  
PHA-SYNC  
RMP_RST SLAVE  
PHA_SYNC  
FAULT  
R3  
220  
LED1  
C5 : 220nF 16V 10%  
C6 : 82nF 16V 10%  
C7 : 100nF 16V 10%  
C8 : 2.2nF 50V 5%  
C9 : 4.7nF 16V 10%  
C10-11 : 10nF 16V 10%  
Master  
VDDP  
C1a  
470nF 16V  
10%  
CN1  
VDDP  
C1b  
470nF 16V  
10%  
CN1  
VIN  
1
2
3
VIN  
VIN  
1
2
3
VIN  
GND  
GND  
GND  
GND  
C2a  
470nF 16V  
10%  
4
5
1
24  
23  
22  
C2b  
470nF 16V  
10%  
4
5
6
7
8
1
24  
23  
22  
AOUT  
VSS_P  
VSS  
BOUT  
AOUT  
VSS_P  
BOUT  
VDD_P  
VDD  
VBRITE  
6
7
8
VBRITE  
2
3
RMP_RST  
2
3
VDD  
R2a  
47  
VDD_P  
VDD  
RMP_RST  
VDD  
R2b  
47  
PHA_SYNC  
PHA_SYNC  
ENABLE  
VDDSW  
9
ENABLE  
VDDSW  
VSS  
9
C4a  
220nF  
16v 10%  
VDDSW  
C4b  
220nF  
16v 10%  
VDD  
10  
4
5
6
7
21  
VDDSW  
21  
VDD  
10  
C5a  
4
5
6
7
C5b  
BEPOL  
VDD_SW  
BEPOL  
VDD_SW  
VBRITE  
VBRITE  
20  
19  
C6a  
20  
19  
C6b  
BRITE  
CPOR  
TRI_C  
BRITE  
CPOR  
TRI_C  
C7a  
C8a  
Power  
Output  
Section  
C7b  
C8b  
OLSNS  
Power  
Output  
Section  
OLSNS  
C3a 10nF  
16V 10%  
C3b 10nF  
16V 10%  
18  
17  
18  
17  
ENABLE  
I_R  
ISNS  
ICOMP  
VCOMP  
VSNS  
ENABLE  
I_R  
ISNS  
ICOMP  
VCOMP  
VSNS  
8
9
8
9
C9a  
C9b  
R1a  
80.6K 1%  
R1b  
80.6K 1%  
16  
15  
C10a  
16  
15  
C10b  
CPWM1  
CPWM2  
CPWM1  
CPWM2  
10  
10  
C11a  
C11b  
11  
12  
14  
13  
11  
12  
14  
13  
RMP_RST  
PHA-SYNC  
RMP_RST SLAVE  
PHA_SYNC FAULT  
RMP_RST  
RMP_RST SLAVE  
PHA_SYNC FAULT  
PHA-SYNC  
R3a  
220  
VDDSW  
R3b  
220  
VDDSW  
R13a  
100K  
R13b  
100K  
Slave 1  
Slave 2  
LED1a  
LED1b  
C5a: 220nF 16V 10%  
C6a: 82nF 16V 10%  
C7a: 100nF 16V 10%  
C8a: 2.2nF 50V 5%  
C9a: 4.7nF 16V 10%  
C10-11a: 10nF 16V 10%  
C5b: 220nF 16V 10%  
C6b: 82nF 16V 10%  
C7b: 100nF 16V 10%  
C8b: 2.2nF 50V 5%  
C9b: 4.7nF 16V 10%  
C10-11b: 10nF 16V 10%  
Figure 2 – Schematic Modules Connected as a Master and Slave  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 11  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
THEORY OF OPERATION  
Multiple Lamp Sync  
Strike Mode  
The figure 3 shows the sync signals (PHA_SYNC  
and RMP_RST) timing relationship to Gate signal  
AOUT, for the master module. AOUT and  
PHA_SYNC running at the same frequency and  
RMP_RST signal has the twice frequency.  
Every IC includes a separate strike controller that  
operates from the primary oscillator; therefore the strike  
controller is independent of the sync signals. The  
following oscilloscope waveform picture is taken when  
the master module is on striking mode and the salves are  
on running mode.  
Figure 3- Sync signals-Timing relationship to AOUT  
CH2= AOUT(Master), CH3=PHA_SYNC,  
CH4=RMP_RST  
Figure 5- Master is in striking mode while slaves  
are in running mode CH2=  
AOUT(Master), CH3=AOUT(Slave1),  
CH4=AOUT(Slave2)  
Output Drivers  
The figure 4 shows the gate signals of the modules, which are operating, in running mode during digital dimming with 95%  
duty cycle. As shown all signals are synchronized. The difference between each signal’s duty cycles is because each lamp has  
an independent control loop.  
Figure 4- Output drivers of both Master  
and Slaves.  
CH2=AOUT(Master),  
CH3=AOUT(Slave1),  
CH4=AOUT(Slave2)  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Integrated Products Division  
Page 12  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
THEORY OF OPERATION  
Digital Dimming  
The following oscilloscope waveforms are showing  
gate signals of Master and slaves during digital dimming at  
50% and 5% duty cycle.  
Figure 7- Gate signals during digital dimming with  
Figure 6- Gate signals during digital dimming with  
50% duty cycle CH2= AOUT(Master),  
5% duty cycle CH2= AOUT(Master),  
CH3=AOUT(Slave1), CH4=AOUT(Slave2)  
CH3=AOUT(Slave1), CH4=AOUT(Slave2)  
Output currents  
Figure 8 shows the output current of master and slaves during digital dimming with 5% duty cycle. The lamp currents are  
operating in phase and frequency synchronization. This prevents random interface between controllers and reduces EMI.  
Figure 8- Output current during  
digital dimming with 5%  
duty cycle R1= out(Master)  
R2=Iout(Slave1)  
R3=Iout(Slave2)  
Lamp Current at 10mA/Div  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Integrated Products Division  
Page 13  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
LX1688 MODULE BOARD LIST OF MATERIAL  
Reference  
Designator  
U1  
Part Description  
Manufacture  
Part Number  
Backlight Controller  
Dual N-Channel MOSFET  
NPN Transistor  
Dual Diode  
Microsemi  
Siliconix  
Motorola  
Motorola  
Philips  
LX1688  
Si9945AEY  
BC847ALT1  
BAW56  
U2  
Q1, Q2  
D1, D2  
D3  
Dual Diode  
BAV99  
LED1  
R1  
R2  
LED  
80.6K 1% 1/16 W  
47 ohm 5% 1/8 W  
220 ohm 5% 1/8 W  
R3  
R4, R5  
R6  
39 ohm 5% 1/16 W  
82 ohm 5% 1/16 W  
10K 5% 1/16 W  
100K 5% 1/16 W  
1K 5% 1/16 W  
R7  
R8  
R9  
R10  
1 M 5% 1/16 W  
2.74K 1% 1/16 W  
R11, R12  
C1, C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10, C11  
C12  
C13  
C14  
C15  
C16  
T1  
470nF 16V 10% X7R 1206  
10nF 16V 10% 0805  
220nF 16V 10% X7R 1206  
220nF 16V 20% 0805  
82nF 16V 10% X7R 0603  
100nF 16V 20% X7R  
2.2nF 50V 10%  
NOVACAP  
AVX  
AVX  
AVX  
0805YC224MAT2A  
0603YC823KAT2A  
0603YC104MAT2A  
0603B22K500NT  
0603YC472KAT2A  
0603YC103KAT2A  
NOVACAP  
AVX  
AVX  
AVX  
NOVACAP  
4.7nF 16V 10% X7R  
10nF 16V 10% X7R  
220µF Tantalum 7343  
220pF 2KV 5% COG  
2.2pF PCB  
1206N221J202NT  
2.2nF 50V 5% COG  
3.3nF 50V 5% COG  
Low profile, High voltage xfmr,  
turns ratio 1:75  
AVX  
NOVACAP  
Microsemi  
08055A222JAT2A  
0805N332J500NT  
SGE2645-1  
CN1  
CN2  
Connector, 10 pin  
Connector, 2 pin  
Molex  
Molex  
53261-1090  
Table 2- List of material for LX1688 inverter module  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Page 14  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
PACKAGE DIMENSIONS  
24-Pin Thin Small Shrink Outline (TSSOP) Package  
PW  
3 2 1  
P
E
F
D
A
H
L
SEATING PLANE  
B
C
G
M
MILLIMETERS  
INCHES  
Dim  
MIN  
0.85  
0.19  
0.09  
7.70  
4.30  
MAX  
0.95  
0.30  
0.20  
7.90  
4.50  
MIN  
0.033  
0.007  
MAX  
0.037  
0.012  
A
B
C
D
E
0.0035 0.008  
0.303  
0.169  
0.311  
0.177  
F
0.65 BSC  
0.025 BSC  
G
H
L
M
P
*LC  
0.05  
0.50  
0°  
6.25  
0.15  
1.10  
0.75  
8°  
6.55  
0.10  
0.002  
0.020  
0°  
0.246  
0.005  
.0433  
0.030  
8°  
0.258  
0.004  
* Lead Coplanarity  
Note: Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(.006”) on any side. Lead dimension shall  
not include solder coverage.  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Integrated Products Division  
Page 15  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
RangeMAX™  
LX1688  
®
Multiple Lamp CCFL Controller  
TM  
PRODUCTION DATA SHEET  
NOTES  
PRODUCTION DATA – Information contained in this document is proprietary to  
Microsemi and is current as of publication date. This document may not be modified in  
any way without the express written consent of Microsemi. Product processing does not  
necessarily include testing of all parameters. Microsemi reserves the right to change the  
configuration and performance of the product and to discontinue product at any time.  
Copyright © 2001  
Rev. 1.2, 2006-03-09  
Microsemi  
Integrated Products Division  
Page 16  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  

相关型号:

LX1688_06

Multiple Lamp CCFL Controller
MICROSEMI

LX1689

Third Generation CCFL Controller
MICROSEMI

LX1689CPW

Third Generation CCFL Controller
MICROSEMI

LX1689CPWT

Fluorescent Light Controller, 500kHz Switching Freq-Max, BICMOS, PDSO20, PLASTIC, TSSOP-20
MICROSEMI

LX1689IPW

Third Generation CCFL Controller
MICROSEMI

LX1689IPW-TR

暂无描述
MICROSEMI

LX1689IPWT

Fluorescent Light Controller, 500kHz Switching Freq-Max, BICMOS, PDSO20, PLASTIC, TSSOP-20
MICROSEMI

LX1689_06

Third Generation CCFL Controller
MICROSEMI

LX1691

Enhanced Multi-Mode CCFL Controller
MICROSEMI

LX1691A

Enhanced Multi-Mode CCFL Controller
MICROSEMI

LX1691AIPW

Enhanced Multi-Mode CCFL Controller
MICROSEMI

LX1691AIPW-TR

Fluorescent Light Controller, 0.1A, 250kHz Switching Freq-Max, PDSO16, LEAD FREE, PLASTIC, TSSOP-16
MICROSEMI