LX1673-09CLQT [MICROSEMI]

Switching Controller, Voltage-mode, 1A, 1035kHz Switching Freq-Max, PQCC20, PLASTIC, MLPQ-20;
LX1673-09CLQT
型号: LX1673-09CLQT
厂家: Microsemi    Microsemi
描述:

Switching Controller, Voltage-mode, 1A, 1035kHz Switching Freq-Max, PQCC20, PLASTIC, MLPQ-20

开关
文件: 总15页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
KEY FEATURES  
DESCRIPTION  
Two Independently Regulated  
Outputs  
Outputs As Low As 0.8V  
Generated From An Internal 1%  
Reference  
The LX1673 is a highly integrated  
With onboard gate drivers, the  
power supply controller IC featuring one switching PWM output is capable of  
PWM switching regulator stage with an sourcing up to 15A. The LX1673 also  
additional onboard linear regulator features an additional Linear Regulator  
driver.  
Controller output, which when coupled  
Integrated High Current MOSFET  
With several switching frequencies with an inexpensive MOSFET is capable  
available (up to 900kHz) the LX1673 of supplying up to an additional 5A for  
can be optimized for both cost and PCB I/O, memory, and other supplies  
Drivers  
300KHz, 600KHz, and 900KHz  
High Frequency Operation  
Minimizes External Component  
Requirements  
space.  
Utilizing  
external surrounding today’s micro-processor  
compensation, a wide selection of designs.  
Soft-Start and Power Sequencing  
external components can be chosen for  
Each regulator output voltage is  
Control  
use in any application while programmed via a simple voltage-divider  
Adjustable Linear Regulator Driver  
Output  
No current-sense resistors  
maintaining stable operation.  
network.  
The LX1673 incorporates fully  
Integrated hiccup-mode current limiting  
programmable soft-start and power is implemented utilizing MOSFET RDS(ON)  
sequence capabilities. The LDO and impedance. This enables the LX1673 to  
APPLICATIONS/BENEFITS  
PWM have independent enable pins.  
monitor maximum current limit conditions  
without the use of expensive current sense  
resistors.  
Video Card Power Supplies  
PC Peripherals  
Computer Add-On Cards  
3.3V Power Conversion  
DDR Memory Termination  
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com  
PRODUCT HIGHLIGHT  
+3.3V  
+5V  
PWRGD  
VOUT1  
+12V  
+3.3V  
+5V  
20  
19  
18  
17  
16  
LDVCC PWGD VC1 TDRV PGND  
1
15  
LDGD  
LDFB  
BDRV  
2
3
4
5
14  
13  
12  
VCCL  
VCC  
VS  
VOUT2  
LDDIS  
DGND  
AGND  
LX1673  
+5V  
11  
CS  
DIS  
SS  
EA+ EA- EAO  
10  
6
7
8
9
LDDIS  
DIS  
PACKAGE ORDER INFO  
Switching  
Plastic MLPQ  
20-Pin  
TA (°C)  
LQ  
Frequency (kHz)  
0 to 70  
0 to 70  
0 to 70  
300  
600  
900  
LX1673-03CLQ  
LX1673-06CLQ  
LX1673-09CLQ  
Note: Available in Tape & Reel.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 1  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
Append the letter “T” to the part number. (i.e. LX1673-03CLQT)  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE PIN OUT  
Supply Voltage (VCC) DC................................................................-0.3V to 5.5V  
Supply Voltage (VCC) Transient ........................................................-0.3V to 6V  
Driver Supply Voltage (VC1, VCCL, LDVCC) DC..................................-0.3V to 16V  
Driver Supply Voltage (VC1, VCCL, LDVCC) Transient ........................-0.3V to 18V  
Input Voltage (SS/DIS).....................................................................-0.3V to 5.5V  
Output Drive Peak Current Source (HO, LO) ...................................... 1A (500ns)  
Output Drive Peak Current Sink (HO, LO).......................................... 1A (500ns)  
Operating Junction Temperature ..................................................................150°C  
Storage Temperature Range .......................................................... -65°C to 150°C  
Lead Temperature (Soldering 180 seconds).................................................235°C  
1
17  
20  
19  
18  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
LDGD  
LDFB  
BDRV  
VCCL  
VCC  
VS  
LDDIS  
DGND  
AGND  
Connect Bottom to  
Power GND  
CS  
6
7
8
9
10  
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to  
Ground. Currents are positive into, negative out of specified terminal.  
LQ PACKAGE  
(Top View)  
N.C. – No Internal Connection  
N/U – Not Used  
The limitation on transient time is thermal and is due to zener diodes on the  
supply pins, brief application of maximum voltages will increase current into that  
pin and increase package power dissipation..  
RSVD – Do Not Use  
THERMAL DATA  
Plastic Micro Leadframe Package 20-Pin  
LQ  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
35°C/W  
Junction Temperature Calculation: TJ = TA + (PD x θJC).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board  
system. All of the above assume no ambient airflow.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Integrated Products  
Page 2  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
FUNCTIONAL PIN DESCRIPTION  
NAME  
DESCRIPTION  
Voltage Feedback – Output voltage is connected through a resistor network to this pin for feedback to set the  
desired output voltage of the switching PWM output.  
EA-  
Error Amplifier Output – Sets error amplifier gain and external compensation if used.  
EAO  
EA+  
Voltage Reference – Connect to the SS pin or any other external voltage. Used in conjunction with EA-, and an  
external resistor divider, to set the desired output voltage for the PWM output.  
IC supply voltage (nominal 5V).  
VCC  
VCCL  
LDFB  
Power supply pin for Low side drivers.  
Low Dropout Regulator Voltage Feedback – Sets output voltage of external MOSFET via resistor network.  
Over-Current Limit Set – Connecting a resistor between CS pin and the source of the high-side MOSFET sets the  
current-limit threshold for the PWM output. A minimum of 1Kmust be in series with this pin.  
CS  
SS  
PWM Soft-start/Hiccup Capacitor Pin – During start-up, the voltage on this pin controls the output voltage of the  
switching regulator. An internal 20kresistor and the external capacitor set the time constant for soft-start  
function. The Soft-start function does not initialize until the supply voltage on VCC exceeds the UVLO threshold.  
When an over-current condition occurs, this capacitor is used for the timing of hiccup mode protection.  
Analog ground reference.  
AGND  
DGND  
Digital ground reference.  
Low Dropout Regulator Gate Drive – Connect to gate of external N-Channel MOSFET for linear regulator  
function.  
LDGD  
PGND  
MOSFET Driver Power Ground. Connects to the source of the bottom N-channel MOSFETS of the switching  
regulator.  
High Side MOSFET Gate Driver  
TDRV  
BDRV  
Low Side MOSFET Gate Driver  
High-Side MOSFET Gate Driver Supply – Connect to separate supply or boot strap supply to ensure proper high-  
side gate driver supply voltage.  
VC1  
LDDIS  
VS  
LDO Disable Input – High disables LDO output. This pin has a 100Kpulldown resistor.  
Voltage reference for Short Circuit Current sense. This pin is also the supply pin for the Current Sense  
Comparator. This pin cannot be left floating, if current limit is not used connect to VCC.  
Power Good Output – Open collector output. Open drain output , high at end of Soft Start and no Fault. Pulls low  
if any Fault condition occurs.  
PWGD  
LDO VCC Supply – Connect to voltage supply greater than supply rail for LDO MOSFET drain.  
LDVCC  
DIS  
PWM Disable Input –High disables the PWM output. This pin has a 80Kpulldown resistor.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 3  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, the following specifications apply over the operating ambient temperature 0°C TA 70°C except where  
otherwise noted and the following test conditions: VCC = 5V, VCCL = 5V, VC1=12V, LDVCC=12V TDRV=BDRV=3000pF Load.  
LX1673  
Typ  
Parameter  
SWITCHING REGULATORS  
Input Voltage  
Symbol  
Test Conditions  
Units  
Min  
Max  
!
VCC  
4.5  
5.5  
16  
V
V
CCL,VC1  
ICC  
Operation Current  
Static and Dynamic  
6
0.8V  
mA  
V
V
0.792  
0.784  
-1  
0.808  
0.816  
1
1
150  
TA=25°C  
Reference Voltage  
VSS  
0°C TA 70°C  
Line Regulation Note 1  
Load Regulation Note 1  
Minimum Pulse Width  
Maximum Duty Cycle  
Maximum Duty Cycle  
Maximum Duty Cycle  
ERROR AMPLIFIERS  
Input Offset Voltage  
DC Open Loop Gain  
Unity Gain Bandwidth  
High Output Voltage  
Low Output Voltage  
%
-1  
All Frequencies  
LX1673-03  
LX1673-06  
nS  
%
%
%
80  
75  
70  
LX1673-09  
!
Vos  
Common Mode Voltage = 1V  
-6.0  
6.0  
mV  
dB  
MHz  
V
mV  
V
70  
16  
5.0  
UGBW  
VOH  
VOL  
I Source = 2mA  
I Sink = 10uA  
3.8  
0.1  
100  
3.5  
Input Common Mode Voltage Range  
Input Bias Current  
Input Offset Voltage < 20mV  
0 and 3.5 V Common Mode Voltage  
100  
nA  
CURRENT SENSE  
Current Sense Bias Current  
Trip Threshold  
Current Sense Delay  
Current Sense Comparator  
Operating Current  
!
!
ISET  
VTRIP  
TCSD  
VCS = VVS – 0.3V , VVS = 5V  
Referenced to VS , VVS = 5V  
45  
260  
50  
300  
350  
55  
340  
µA  
mV  
nS  
ICS  
Current into VS pin  
2
5
mA  
OUTPUT DRIVERS – N-CHANNEL MOSFETS  
Low Side Driver Operating Current  
High Side Driver Operating Current  
Drive Rise Time, Fall Time  
High Level Voltage  
Low Level Voltage  
OSCILLATOR  
IVCCL  
IVC1  
TRF  
VDH  
VDL  
Static  
Static  
CL = 3000pF  
ISOURCE = 20mA, VCCL = 12V  
ISINK = 20mA, VCCL = 12V  
2.5  
3
50  
11  
0.15  
mA  
mA  
nS  
V
10  
0.25  
V
!
LX1673-03  
LX1673-06  
LX1673-09  
255  
510  
765  
300  
600  
900  
1.25  
345  
690  
1035  
PWM Switching Frequency  
Ramp Amplitude  
FSW  
KHz  
VPP  
VRAMP  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 4  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, the following specifications apply over the operating ambient temperature 0°C TA 70°C except where  
otherwise noted and the following test conditions: VCC = 5V, VCCL = 5V, VC1=12V, LDVCC=12V  
LX1673  
Typ  
Parameter  
Symbol  
Test Condition  
Units  
Min  
Max  
UVLO AND SOFT-START (SS)  
Start-Up Threshold (VC1, VCCL, LDVCC  
!
)
3.5  
4.0  
4.0  
4.25  
0.1  
20  
0.1  
10  
4.5  
4.5  
V
V
V
Start-Up Threshold (VCC  
)
Hysteresis VCC  
SS Input Resistance  
SS Shutdown Threshold  
Hiccup Mode Duty Cycle  
RSS  
VSHDN  
KΩ  
V
%
CSS = 0.1µF  
LINEAR REGULATOR CONTROLLER  
Voltage Reference Tolerance  
Source Current  
Sink Current  
DISABLE INPUTS  
!
!
VLDFB = .8V, COUT = 330µF  
Vout = 10V  
Vout = 0.4V  
2
%
mA  
mA  
IHDRV  
ILDRV  
30  
0.2  
1
80  
2.5  
100  
V
KΩ  
V
PWM Disable  
LDO Disable  
DIS  
Pulldown Resistance  
Pulldown Resistance  
I = 3mA  
LDDIS  
KΩ  
POWER GOOD  
Drain to Source Voltage  
Leakage  
0.4  
0.05  
V
uA  
Note 1- System Specification  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 5  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
BLOCK DIAGRAM  
RSET  
ISET  
+5V  
CS  
Vin (5V)  
CS Comp  
-
IRESET  
PWM  
R
Q
VC1  
+
CIN  
VS  
VTRIP  
ISET  
S
Q
V out 1  
TDRV  
L1  
ESR  
COUT  
EAO  
BDRV  
PGND  
+5V  
Error Comp  
+
-
VCCL  
Hiccup  
-
EA-  
+
Amplifier/  
Compensation  
VREF  
+5V  
16V  
16V  
20k  
UVLO  
Ramp  
Oscillator  
UVLO  
EA+  
VCC  
LDVCC  
S
F FAULT S  
R
5.5V  
S
TEMP  
SS1  
SS  
DIS  
CSS  
Figure 1 – Block Diagram of PWM Phase  
1
+12V  
+V  
LDGD  
20  
LDVCC  
VREF  
16V  
VOUT 2  
2
-
LDFB  
+5V  
3
LDDIS  
Figure 2 – LDO Controller Block Diagram  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 6  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
APPLICATION SCHEMATIC  
+5  
+5  
PWM  
Vout  
PWRGD  
+12  
+3.3  
+5  
20  
19  
18  
17  
16  
LDVCC PWGD VC1 TDRV PGND  
1
15  
14  
13  
12  
LDGD  
LDFB  
BDRV  
LDO  
Vout  
2
3
4
5
VCCL  
VCC  
VS  
+5  
LDDIS  
DGND  
AGND  
LX1673  
11  
CS  
DIS  
SS  
EA+ EA- EAO  
10  
6
7
8
9
LDDIS  
DIS  
Figure 3 – Schematic with Bootstrap Supply for PWM High Side Driver  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Integrated Products  
Page 7  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
APPLICATION SCHEMATIC  
+5  
+5  
PWM  
Vout  
PWRGD  
PWM  
Vout  
+5  
20  
19  
18  
17  
16  
LDVCC PWGD VC1 TDRV PGND  
1
15  
LDGD  
LDFB  
BDRV  
LDO  
Vout  
2
3
4
5
14  
13  
12  
VCCL  
VCC  
VS  
+5  
LDDIS  
DGND  
AGND  
LX1673  
11  
CS  
DIS  
SS  
EA+ EA- EAO  
10  
6
7
8
9
LDDIS  
DIS  
Figure 4 – Schematic for 5 Volt only Input  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 8  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
THEORY OF OPERATION  
When the sensed voltage across RDS(ON) plus the set resistor  
exceeds the 300mV, VTRIP threshold, the OCP comparator outputs  
a signal to reset the PWM latch and to start hiccup mode. The  
soft-start capacitor (CSS) is discharged slowly (10 times slower  
than when being charged up by RSS). When the voltage on the SS  
pin reaches a 0.1V threshold, hiccup finishes and the circuit soft-  
starts again. During hiccup both MOSFETs are held off.  
GENERAL DESCRIPTION  
The LX1673 is a voltage-mode pulse-width modulation  
controller integrated circuit. The internal oscillator and ramp  
generator frequency is fixed to 300KHz, 600KHz, or 900KHz.  
The device has external compensation, for more flexibility of  
output current magnitude.  
UNDER VOLTAGE LOCKOUT (UVLO)  
Hiccup is disabled during the soft-start interval, allowing the  
circuit to start up with maximum current. If the rate of rise of the  
output voltage is too fast, the required charging current to the  
output capacitor may be higher than the limit-current. In this case,  
the peak MOSFET current is regulated to the limit-current by the  
current-sense comparator. If the MOSFET current still reaches its  
limit after the soft-start finishes, the hiccup is triggered again.  
When the output has a short circuit the hiccup circuit ensures that  
the average heat generation in both MOSFETs and the average  
current is much less than in normal operation,.  
At power up, the LX1673 monitors the supply voltage for  
VCC, VCCL, LDVCC and VC1 (there is no requirement for  
sequencing the supplies). Before all supplies reach their under-  
voltage lock-out (UVLO) thresholds, the soft-start (SS) pin is  
held low to prevent soft-start from beginning, the oscillator is  
disabled and all MOSFETs are held off. There is an internal  
delay that will filter out transients less that 1.5uSec.  
SOFT-START  
Once the supplies are above the UVLO threshold, the soft-start  
capacitor begins to be charged by the reference through a 20kΩ  
internal resistor. The capacitor voltage at the SS pin rises as a  
simple RC circuit. The SS pin is connected to the error  
amplifier’s non-inverting input that controls the output voltage.  
The output voltage will follow the SS pin voltage if sufficient  
charging current is provided to the output capacitor.  
Over-current protection can also be implemented using a sense  
resistor, instead of using the RDS(ON) of the upper MOSFET, for  
greater set-point accuracy.  
OSCILLATOR FREQUENCY  
An internal oscillator sets the switching frequency at 300kHz,  
600kHz, or 900kHz.  
The simple RC soft-start allows the output to rise faster at the  
beginning and slower at the end of the soft-start interval. Thus,  
the required charging current into the output capacitor is less at  
the end of the soft-start interval. A comparator monitors the SS  
pin voltage and indicates the end of soft-start when SS pin  
voltage reaches 95% of VREF  
.
OVER-CURRENT PROTECTION (OCP) AND HICCUP  
The LX1673 uses the RDS(ON) of the upper MOSFET, together  
with a resistor (RSET) to set the actual current limit point. The  
current sense comparator senses the MOSFET current 350nS  
after the top MOSFET is switched on in order to reduce  
inaccuracies due to ringing. A current source supplies a current  
(ISET), whose magnitude is 50µA. The set resistor RSET is  
selected to set the current limit for the application. RSET and VS  
should be connected directly at the upper MOSFET drain and  
source to get an accurate measurement across the low resistance  
RDS(ON)  
.
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 9  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
APPLICATION NOTE  
OUTPUT INDUCTOR  
OUTPUT CAPACITOR  
The output capacitor is sized to meet ripple and transient  
performance specifications. Effective Series Resistance (ESR) is a  
critical parameter. When a step load current occurs, the output  
voltage will have a step that equals the product of the ESR and the  
current step, I. In an advanced microprocessor power supply, the  
output capacitor is usually selected for ESR instead of capacitance  
or RMS current capability. A capacitor that satisfies the ESR  
requirements usually has a larger capacitance and current  
capability than strictly needed. The allowed ESR can be found by:  
The output inductor should be selected to meet the  
requirements of the output voltage ripple in steady-state operation  
and the inductor current slew-rate during transient. The peak-to-  
peak output voltage ripple is:  
VRIPPLE = ESR× IRIPPLE  
where  
VIN VOUT  
D
ESR×  
(
I
RIPPLE + I < VEX  
)
I =  
×
L
f s  
Where IRIPPLE is the inductor ripple current, I is the maximum  
load current step change, and VEX is the allowed output voltage  
excursion in the transient.  
I is the inductor ripple current, L is the output inductor value  
and ESR is the Effective Series Resistance of the output  
capacitor.  
Electrolytic capacitors can be used for the output capacitor, but  
are less stable with age than tantalum capacitors. As they age, their  
ESR degrades, reducing the system performance and increasing the  
risk of failure. It is recommended that multiple parallel capacitors  
be used, so that, as ESR increase with age, overall performance  
will still meet the processor’s requirements.  
There is frequently strong pressure to use the least expensive  
components possible, however, this could lead to degraded long-  
term reliability, especially in the case of filter capacitors.  
Microsemi’s demonstration boards use the CDE Polymer AL-EL  
(ESRE) filter capacitors, which are aluminum electrolytic, and  
have demonstrated reliability. The OS-CON series from Sanyo  
generally provides the very best performance in terms of long term  
ESR stability and general reliability, but at a substantial cost  
penalty. The CDE Polymer AL-EL (ESRE) filter series provides  
excellent ESR performance at a reasonable cost. Beware of off-  
brand, very low-cost filter capacitors, which have been shown to  
degrade in both ESR and general electrolytic characteristics over  
time.  
I should typically be in the range of 20% to 40% of the  
maximum output current. Higher inductance results in lower  
output voltage ripple, allowing slightly higher ESR to satisfy the  
transient specification. Higher inductance also slows the inductor  
current slew rate in response to the load-current step change, I,  
resulting in more output-capacitor voltage droop. When using  
electrolytic capacitors, the capacitor voltage droop is usually  
negligible, due to the large capacitance  
The inductor-current rise and fall times are:  
I  
TRISE = L×  
(
V VOUT  
)
IN  
and  
.
I  
TFALL = L×  
VOUT  
The inductance value can be calculated by  
V VOUT  
D
IN  
L =  
×
I  
f s  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 10  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
APPLICATION NOTE (CONTINUED)  
OVER-CURRENT PROTECTION  
INPUT CAPACITOR  
Current limiting occurs at current level ICL when the voltage  
detected by the current sense comparator is greater than the current  
sense comparator threshold, VTRIP (300mV).  
The input capacitor and the input inductor, if used, are to filter  
the pulsating current generated by the buck converter to reduce  
interference to other circuits connected to the same 5V rail. In  
addition, the input capacitor provides local de-coupling for the  
buck converter. The capacitor should be rated to handle the RMS  
current requirements. The RMS current is:  
I
CL × RDS(ON) + ISET × RSET = VTRIP  
So,  
IRMS = IL d(1d)  
V
TRIP ICL × RDS(ON)  
300 mVICL × RDS(ON)  
RSET  
=
=
Where IL is the inductor current and d is the duty cycle. The  
maximum value occurs when d = 50%, then IRMS =0.5IL. For a  
5V input and output voltages in the range of 2 to 3V, the required  
RMS current is very close to 0.5IL.  
ISET  
50µA  
Example:  
For 10A current limit, using FDS6670A MOSFET (10mΩ  
R
DS(ON)):  
0.3 10 × 0.010  
SOFT-START CAPACITOR  
RSET  
=
= 4.02 k1%  
The value of the soft-start capacitor determines how fast the  
output voltage rises and how large the inductor current is required  
to charge the output capacitor. The output voltage will follow the  
voltage at the SS pin if the required inductor current does not  
exceed the maximum allowable current for the inductor. The SS  
pin voltage can be expressed as:  
50 ×106  
Note: Maximum RSET is 6K. Any resistor 6Kor greater will not  
allow startup since ICL will equal zero (50uA x 6K=300mV).  
At higher PWM frequencies or low duty cycles where the upper  
gate drive is less than 350nS wide the 350nS delay for current  
limit enable may result in current pulses exceeding the desired  
current limit set point. If the upper MOSFET on time is less than  
350nS and a short circuit condition occurs the duty cycle will  
increase, since Vout will be forced low. The current limit circuit  
will be enabled when the upper gate drive exceeds 350nS although  
the actual peak current limit value will be higher than calculated  
with the above equation.  
SSCSS  
VSS = V ref  
(
1 et/R  
)
Where RSS and CSS are the soft-start resistor and capacitor.  
The current required to charge the output capacitor during the soft  
start interval is.  
dVss  
Iout = Cout  
dt  
Short circuit protection still exists due to the narrow pulse width  
even though the magnitude of the current pulses will be higher than  
the calculated value.  
Taking the derivative with respect to time results in  
VrefCout  
RssCss  
SSCSS  
Iout =  
et/R  
If OCP is not desired connect both VSX and VCX to VCC. Do  
not leave them floating.  
and at t=0  
VrefCout  
RssCss  
Imax =  
The required inductor current for the output capacitor to follow  
the soft start voltage equals the required capacitor current plus the  
load current. The soft-start capacitor should be selected to  
provide the desired power on sequencing and insure that the  
overall inductor current does not exceed its maximum allowable  
rating.  
Values of Css equal to .1uf or greater are unlikely to result in  
saturation of the output inductor unless very large output  
capacitors are used.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 11  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
APPLICATION NOTE (CONTINUED)  
OUTPUT DISABLE  
DDR VTT TERMINATION VOLTAGE  
The LX1673 PWM MOSFET driver outputs are shut off by  
pulling the disable (DIS) pin above 1.2V. There is a 80KΩ  
pulldown resistor on this input.  
The LDO voltage regulator has its own Disable pin (LDDIS)  
for control of this output voltage. Pulling this pin above 3 V  
disables the LDO. There is a 100Kpulldown resistor on this  
input.  
Double Data Rate (DDR) SDRAM requires a termination  
voltage (VTT) in addition to the line driver supply voltage (VDDQ)  
and receiver supply voltage (VDD). Although it is not a  
requirement VDD is generally equal to VDDQ so that only VTT  
and VDDQ are required..  
VTT for DDR memory can be generated with the LX1673 by  
using the positive input of the phase 2 error amplifier RF2 as a  
reference input from an external reference voltage VREF which is  
defined as one half of VDDQ. Using VREF as the reference input  
will insure that all voltages are correct and track each other as  
specified in the JEDEC (EIA/JESD8-9A) specification. The phase 2  
output will then be equal to VREF and track the VDDQ supply as  
required.  
PROGRAMMING THE OUTPUT VOLTAGE  
The output Voltage is sensed by the feedback pin (FBX) which  
is compared to a 0.8V reference. The output voltage can be set to  
any voltage above 0.8V (and lower than the input voltage) by  
means of a resistor divider (see Figure 1).  
When an external reference is used the connection between the  
error amplifier positive input and the Soft Start pin is lost and Soft  
Start will not function. It is recommended that the external  
reference voltage have an R-C time constant that will be long  
enough to allow the output capacitor to charge slowly.  
VOUT = VREF (1 + R1/R2 )  
Note: This equation is simplified and does not account for  
error amplifier input current. Keep R1 and R2 close to 1k (order  
of magnitude).  
See Microsemi Application Note 17 for more details.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Page 12  
Integrated Products  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
APPLICATION NOTE CONSIDERATIONS  
.
1. The minimum Rset resistor value is 1k ohm for the current  
limit sensing. If this resistor becomes shorted, it will do  
permanent damage to the IC.  
2. A resistor has been put in series with the gate of the LDO  
pass transistor to reduce the output noise level. The resistor  
value can be changed to optimize the output transient  
response versus output noise.  
3. To delay the turn on of the LDO controller output, a  
capacitor should be connected between the LDDIS pin and  
the +5volts. The LDDIS input has a 100K pull down  
resistor, which keeps the LDO active until this pin is pulled  
high. During the power up sequence the capacitor connected  
to the LDDIS pin will keep the LDO off until this capacitor,  
being charge by the 100K pull down resistor, goes through  
the low input threshold level.  
4. If current limit is not used connect the VS and VC pins  
together and to VCC. Do not leave them floating. A floating  
VS pin will result in operation resembling a hiccup condition.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Integrated Products  
Page 13  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
PACKAGE DIMENSIONS  
20-Pin Micro Leadframe Package (MLPQ) Package  
LQ  
A
F
I
E
B
H
G
C
MILLIMETERS  
INCHES  
Dim  
MIN  
4.00  
4.00  
0.80  
2.00  
0.18  
MAX  
4.00  
4.00  
1.00  
2.25  
.30  
MIN  
MAX  
A
B
C
E
F
G
H
I
0.157 0.157  
0.157 0.157  
0.031 0.039  
0.078 0.088  
0.007 0.011  
.019 BSC  
0.50 BSC  
2.00  
0.45  
2.25  
0.65  
0.078 0.088  
0.017 0.025  
Note: Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(0.006”) on any side. Lead dimension shall  
not include solder coverage.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Integrated Products  
Page 14  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
High Frequency PWM Regulator  
I N T E G R A T E D P R O D U C T S  
PRELIMINARY  
NOTES  
PRODUCT PRELIMINARY DATA – Information contained in this document is pre-production  
data, and is proprietary to Linfinity. It may not be modified in any way without the express written  
consent of Linfinity. Product referred to herein is not guaranteed to achieve preliminary or  
production status and product specifications, configurations, and availability may change at any  
time.  
Copyright 2000  
Rev. 0.2j, 2002-07-17  
Microsemi  
Integrated Products  
Page 15  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  

相关型号:

LX1673-09CLQTR

1A SWITCHING CONTROLLER, 1035kHz SWITCHING FREQ-MAX, PQCC20, PLASTIC, MLPQ-20
MICROSEMI

LX1673-09CPW

High Frequency PWM Regulator
MICROSEMI

LX1673-09CPW-TR

Switching Controller, Voltage-mode, 1A, 1035kHz Switching Freq-Max, PDSO20, ROHS COMPLIANT, PLASTIC, TSSOP-20
MICROSEMI

LX1675

Multiple Output LoadSHARE⑩ PWM PRODUCTION DATA SHEET
MICROSEMI

LX1675CLQ

Multiple Output LoadSHARE⑩ PWM PRODUCTION DATA SHEET
MICROSEMI

LX1675CLQ-TR

Switching Controller, Voltage-mode, 1.5A, 690kHz Switching Freq-Max, PQCC38, 5 X 7 MM, ROHS COMPLIANT, PLASTIC, MLPQ-38
MICROSEMI

LX1675ILQ

Multiple Output LoadSHARE⑩ PWM PRODUCTION DATA SHEET
MICROSEMI

LX1676

Mobile AMD AthlonTM VRM Controller
MICROSEMI

LX1676-CLQ

Mobile AMD AthlonTM VRM Controller
MICROSEMI

LX1676-CLQTR

1.5A SWITCHING CONTROLLER, 1100kHz SWITCHING FREQ-MAX, PQCC38, PLASTIC, MLPQ-38
MICROSEMI

LX1676-CPW

Mobile AMD AthlonTM VRM Controller
MICROSEMI

LX1676-CPWT

Switching Controller, Voltage-mode, 1.5A, 1100kHz Switching Freq-Max, PDSO38, PLASTIC, TSSOP-38
MICROSEMI