LX1673-09CPW [MICROSEMI]

High Frequency PWM Regulator; 高频PWM稳压器
LX1673-09CPW
型号: LX1673-09CPW
厂家: Microsemi    Microsemi
描述:

High Frequency PWM Regulator
高频PWM稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总13页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
KEY FEATURES  
DESCRIPTION  
ƒ Two Independently Regulated  
Outputs  
ƒ Outputs As Low As 0.8V  
Generated From An Internal 1%  
Reference  
ƒ Integrated High Current MOSFET  
Drivers  
ƒ 300KHz, 600KHz, and 900KHz  
High Frequency Operation  
Minimizes External Component  
Requirements  
The LX1673 is a highly integrated  
With onboard gate drivers, the switching  
power supply controller IC featuring one PWM output is capable of sourcing up to  
PWM switching regulator stage with an 15A. The LX1673 also features an  
additional onboard linear regulator additional Linear Regulator Controller  
driver.  
output, which when coupled with an  
With several switching frequencies inexpensive MOSFET is capable of  
available (up to 900kHz) the LX1673 supplying up to an additional 5A for I/O,  
can be optimized for both cost and PCB memory, and other supplies surrounding  
space.  
Utilizing external com- today’s microprocessor designs.  
Each regulator output voltage is  
pensation, a wide selection of external  
ƒ Soft-Start and Power Sequencing  
Control  
ƒ Adjustable Linear Regulator Driver  
Output  
components can be chosen for use in programmed via a simple voltage-divider  
any application while maintaining network.  
stable operation.  
The LX1673 incorporates a fully is implemented utilizing MOSFET RDS(ON)  
programmable soft-start and power impedance. This enables the LX1673 to  
sequence capabilities. The LDO and monitor maximum current limit conditions  
Integrated hiccup mode current limiting  
ƒ No current-sense resistors  
APPLICATIONS/BENEFITS  
PWM have independent enable pins.  
without the use of expensive current sense  
resistors.  
ƒ Video Card Power Supplies  
ƒ PC Peripherals  
ƒ Computer Add-On Cards  
ƒ 3.3V Power Conversion  
ƒ DDR Memory Termination  
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com  
PRODUCT HIGHLIGHT  
+3.3V  
+5V  
PWRGD  
VOUT1  
+12V  
+3.3V  
+5V  
20  
19  
18  
17  
16  
LDVCC PWGD VC1 TDRV PGND  
1
15  
14  
13  
12  
LDGD  
LDFB  
BDRV  
2
3
4
5
VCCL  
VCC  
VS  
VOUT2  
LDDIS  
DGND  
AGND  
LX1673  
+5V  
11  
CS  
DIS  
SS  
EA+ EA- EAO  
10  
6
7
8
9
LDDIS  
DIS  
PACKAGE ORDER INFO  
Plastic TSSOP  
Plastic MLPQ  
20-Pin  
Switching  
PW  
LQ  
TA (°C)  
20-Pin  
Frequency (kHz)  
RoHS Compliant / Pb-free RoHS Compliant / Pb-free  
-40 to 85  
-40 to 85  
-40 to 85  
300  
600  
900  
LX1673-03CPW  
LX1673-06CPW  
LX1673-09CPW  
LX1673-03CLQ  
LX1673-06CLQ  
LX1673-09CLQ  
Note: Available in Tape & Reel. Append the letters “TR” to the part number. (i.e. LX1673-03CPW-TR)  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Integrated Products Division  
Page 1  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE PIN OUT  
Supply Voltage (VCC) DC................................................................-0.3V to 5.5V  
Supply Voltage (VCC) Transient .........................................................-0.3V to 6V  
Driver Supply Voltage (VCCL) DC.....................................................-0.3V to 13V  
Driver Supply Voltage (VCCL) Transient............................................-0.3V to 16V  
Driver Supply Voltage (VC1) DC.......................................................-0.3V to 19V  
Input Voltage (SS/DIS) .....................................................................-0.3V to 5.5V  
Output Drive Peak Current Source (HO, LO).......................................1A (500ns)  
Output Drive Peak Current Sink (HO, LO) ..........................................1A (500ns)  
Operating Temperature Range.........................................................-40°C to 85°C  
Maximum Operating Junction Temperature ................................................ 150°C  
Storage Temperature Range...........................................................-65°C to 150°C  
16  
LDGD  
LDFB  
1
BDRV  
VCCL  
LDDIS  
DGND  
AGND  
VCC  
VS  
11 CS  
6
Lead Temperature (Soldering 180 seconds) ................................................ 235°C  
Package Peak Temp. for Solder Reflow (40 Seconds Maximum Exposure).. 260°C(+0, -5)  
LQ PACKAGE  
(Top View)  
N.C. – No Internal Connection  
N/U – Not Used  
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to  
RSVD – Do Not Use  
Ground. Currents are positive into, negative out of specified terminal  
.
20  
1
VC1  
PGOOD  
LDOVCC  
LDGD  
LDFB  
LDDIS  
DGND  
AGND  
DIS  
TDRV  
The limitation on transient time is thermal and is due to zener diodes on the supply  
pins, application of maximum voltages will increase current into that pin and  
increase package power dissipation.  
PGND  
BDRV  
VCCL  
VCC  
VS  
CS  
EAO  
EA-  
THERMAL DATA  
10  
11  
EA+  
SS  
Plastic TSSOP 20-Pin  
PW  
THERMAL RESISTANCE  
-
JUNCTION TO  
A
A
MBIENT, θJA  
90°C/W  
PW PACKAGE  
(Top View)  
Pb-free 100% Matte Tin Lead Finish  
Plastic MLPQ 20-Pin  
LQ  
35°C/W  
THERMAL RESISTANCE-JUNCTION TO  
MBIENT, θJA  
Junction Temperature Calculation: TJ = TA + (PD x θJC).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.  
All of the above assume no airflow.  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 2  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
FUNCTIONAL PIN DESCRIPTION  
N
AME  
DESCRIPTION  
Voltage Feedback – Output voltage is connected through a resistor network to this pin for feedback to set the  
desired output voltage of the switching PWM output.  
EA-  
EAO  
EA+  
Error Amplifier Output – Sets error amplifier gain and external compensation if used.  
Voltage Reference – Connect to the SS pin or any other external voltage. Used in conjunction with EA-, and an  
external resistor divider, to set the desired output voltage for the PWM output.  
VCC  
VCCL  
LDFB  
CS  
IC supply voltage (nominal 5V).  
Power supply pin for Low side drivers.  
Low Dropout Regulator Voltage Feedback – Sets output voltage of external MOSFET via resistor network.  
Over-Current Limit Set – Connecting a resistor between CS pin and the source of the high-side MOSFET sets the  
current-limit threshold for the PWM output. A minimum of 1Kmust be in series with this pin.  
PWM Soft-start/Hiccup Capacitor Pin – During start-up, the voltage on this pin controls the output voltage of the  
switching regulator. An internal 20K  
function. The Soft-start function does not initialize until the supply voltage on VCC exceeds the UVLO threshold.  
When an over-current condition occurs, this capacitor is used for the timing of hiccup mode protection.  
resistor and the external capacitor set the time constant for soft-start  
SS  
AGND  
DGND  
LDGD  
PGND  
TDRV  
BDRV  
VC1  
Analog ground reference.  
Digital ground reference.  
Low Dropout Regulator Gate Drive – Connect to gate of external N-Channel MOSFET for linear regulator  
function.  
MOSFET Driver Power Ground. Connects to the source of the bottom N-channel MOSFETS of the switching  
regulator.  
High Side MOSFET Gate Driver  
Low Side MOSFET Gate Driver  
High-Side MOSFET Gate Driver Supply – Connect to separate supply or boot strap supply to ensure proper high-  
side gate driver supply voltage.  
LDO Disable Input – High disables LDO output. This pin has a 100Kpull down resistor.  
LDDIS  
VS  
Voltage reference for Short Circuit Current sense. This pin is also the supply pin for the Current Sense  
Comparator. This pin cannot be left floating, if current limit is not used connect to VCC.  
Power Good Output – Open drain output, goes high at end of Soft Start and no Fault. Pulls low if any Fault  
condition occurs.  
PWGD  
LDVCC  
DIS  
LDO VCC Supply – Connect to voltage supply greater than supply rail for LDO MOSFET drain.  
PWM Disable Input –High disables the PWM output. This pin has a 80Kpull down resistor.  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 3  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, the following specifications apply over the operating ambient temperature 0°C  
otherwise noted and the following test conditions: VCC = 5V, VCCL = 5V, VC1=12V, LDVCC = 12V, TDRV = BDRV = 3000pF Load.  
TA  
70°C except where  
LX1673  
Typ  
Parameter  
SWITCHING REGULATORS  
Input Voltage  
Symbol  
Test Conditions  
Units  
Min  
Max  
`
VCC  
4.5  
5.5  
16  
V
V
CCL,VC1  
ICC  
ILDVCC  
Operation Current  
Static and Dynamic  
6
1
mA  
mA  
V
LDO Operating Current  
0.792  
0.784  
-1  
0.8V  
0.808  
0.816  
1
TA=25°C  
Reference Voltage  
VSS  
V
0°C TA 70°C  
Line Regulation Note 1  
Load Regulation Note 1  
Dead Time  
%
-1  
1
3000pF Load 2 Volt Level  
All Frequencies  
160  
150  
nS  
nS  
%
Minimum Pulse Width  
Maximum Duty Cycle  
Maximum Duty Cycle  
Maximum Duty Cycle  
ERROR AMPLIFIERS  
Input Offset Voltage  
DC Open Loop Gain  
Unity Gain Bandwidth  
High Output Voltage  
Low Output Voltage  
Input Common Mode Voltage Range  
Input Bias Current  
LX1673-03 Load = 3000pF  
LX1673-06 Load = 3000pF  
LX1673-09 Load = 3000pF  
85  
75  
70  
%
%
`
VOS  
Common Mode Voltage = 1V  
-6.0  
6.0  
mV  
dB  
MHz  
V
70  
16  
UGBW  
VOH  
I Source = 2mA  
3.8  
0.1  
5.0  
VOL  
I Sink = 10uA  
100  
3.5  
mV  
V
Input Offset Voltage < 20mV  
0 and 3.5 V Common Mode Voltage  
100  
nA  
CURRENT SENSE  
`
`
Current Sense Bias Current  
Trip Threshold  
ISET  
VTRIP  
TCSD  
VCS = VVS – 0.3V , VVS = 5V  
Referenced to VS , VVS = 5V  
45  
50  
55  
µA  
mV  
nS  
260  
300  
350  
340  
Current Sense Delay  
Current Sense Comparator  
Operating Current  
ICS  
Current into VS pin  
2
5
mA  
OUTPUT DRIVERS – N-CHANNEL MOSFETS  
Low Side Driver Operating Current  
High Side Driver Operating Current  
Drive Rise Time, Fall Time  
High Level Voltage  
IVCCL  
IVC1  
TRF  
VDH  
VDL  
Static  
2.5  
3
mA  
mA  
nS  
V
Static  
CL = 3000pF  
50  
10  
11  
ISOURCE = 20mA, VCCL = 12V  
ISINK = 20mA, VCCL = 12V  
Low Level Voltage  
0.15  
0.25  
V
OSCILLATOR  
`
LX1673-03  
LX1673-06  
LX1673-09  
255  
510  
765  
300  
600  
900  
1.25  
345  
690  
PWM Switching Frequency  
Ramp Amplitude  
FSW  
KHz  
VPP  
1035  
VRAMP  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 4  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Unless otherwise specified, the following specifications apply over the operating ambient temperature 0°C  
otherwise noted and the following test conditions: VCC = 5V, VCCL = 5V, VC1=12V, LDVCC = 12V, TDRV = BDRV = 3000pF Load.  
TA  
70°C except where  
LX1673  
Typ  
Parameter  
Symbol  
Test Condition  
Units  
Min  
Max  
UVLO AND SOFT-START (SS)  
`
Start-Up Threshold (VC1, VCCL, LDVCC  
)
4.0  
4.25  
0.1  
20  
V
V
Start-Up Threshold (VCC  
Hysteresis VCC  
)
4.0  
4.5  
V
SS Input Resistance  
RSS  
K  
V
SS Shutdown Threshold  
Hiccup Mode Duty Cycle  
VSHDN  
0.1  
10  
%
CSS = 0.1µF  
LINEAR REGULATOR CONTROLLER  
Voltage Reference Tolerance  
Source Current  
`
`
VLDFB = .8V, COUT = 330µF  
VOUT = 10V  
2
%
IHDRV  
ILDRV  
30  
mA  
mA  
Sink Current  
VOUT = 0.4V  
0.2  
DISABLE INPUTS  
Threshold  
1
V
KΩ  
V
PWM Disable  
LDO Disable  
DIS  
Internal Pull down Resistance  
Threshold  
80  
2.5  
100  
LDDIS  
Internal Pull down Resistance  
K  
POWER GOOD  
Drain to Source Voltage  
Leakage  
I = 3mA  
0.4  
V
0.05  
µA  
Note 1: System Specification  
Note 2: Low duty cycle pulse testing techniques are used which maintain junction and case temperatures equal to the ambient temperature  
Note 3: Functionality over the –40 to 85 deg C operating temperature range is assured by design, characterization, and statistical process  
control  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Integrated Products Division  
Page 5  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
BLOCK DIAGRAM  
RSET  
ISET  
CS  
Vin (5V)  
CS Comp  
-
IRESET  
PWM  
R
Q
VC1  
+
CIN  
L1  
VS  
VTRIP  
ISET  
S
Q
V out 1  
TDRV  
ESR  
COUT  
EAO  
BDRV  
PGND  
+5V  
Comp  
+
-
VCCL  
Hiccup  
-
EA-  
+
Amplifier/  
Compensation  
VREF  
+5V  
20k  
UVLO  
Ramp  
Oscillator  
UVLO  
EA+  
VCC  
LDVCC  
S
F
FAULT S  
R
5.5V  
S
TEMP  
SS1  
SS  
DIS  
PWGD  
CSS  
Figure 1 – Block Diagram of PWM Phase  
+12V  
+V  
LDGD  
LDVCC  
VREF  
16V  
VOUT 2  
-
LDFB  
+5V  
LDDIS  
Figure 2 – LDO Controller Block Diagram  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 6  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION  
D
ATA SHEET  
APPLICATION SCHEMATIC  
+5  
+5  
PWM  
Vout  
PWRGD  
+3.3  
+12  
+5  
20  
19  
18  
17  
16  
LDVCC PWGD VC1 TDRV PGND  
1
15  
LDGD  
LDFB  
BDRV  
LDO  
Vout  
2
3
4
5
14  
13  
12  
VCCL  
VCC  
VS  
+5  
LDDIS  
DGND  
AGND  
LX1673  
11  
CS  
DIS  
SS  
EA+ EA- EAO  
10  
6
7
8
9
LDDIS  
DIS  
Figure 3 – Schematic with Bootstrap Supply for PWM High Side Drive  
+5  
+5  
PWM  
Vout  
PWRGD  
PWM  
Vout  
+5  
20  
19  
18  
17  
16  
LDVCC PWGD VC1 TDRV PGND  
1
15  
LDGD  
LDFB  
BDRV  
LDO  
Vout  
2
3
4
5
14  
13  
12  
VCCL  
VCC  
VS  
+5  
LDDIS  
DGND  
AGND  
LX1673  
11  
CS  
DIS  
SS  
EA+ EA- EAO  
10  
6
7
8
9
LDDIS  
DIS  
Figure 4 – Schematic for 5 Volt only Input  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 7  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
THEORY OF OPERATION  
When the sensed voltage across RDS(ON) plus the set resistor  
exceeds the 300mV, VTRIP threshold, the OCP comparator outputs  
a signal to reset the PWM latch and to start hiccup mode. The  
soft-start capacitor (CSS) is discharged slowly (10 times slower  
than when being charged up by RSS). When the voltage on the SS  
pin reaches a 0.1V threshold, hiccup finishes and the circuit soft-  
starts again. During hiccup both MOSFETs are held off.  
G
ENERAL DESCRIPTION  
The LX1673 is a voltage-mode pulse-width modulation  
controller integrated circuit. The internal oscillator and ramp  
generator frequency is fixed to 300KHz, 600KHz, or 900KHz.  
The device has external compensation, for more flexibility of  
output current magnitude.  
U
NDER  
V
OLTAGE  
L
OCKOUT (UVLO)  
Hiccup is disabled during the soft-start interval, allowing the  
circuit to start up with maximum current. If the rate of rise of the  
output voltage is too fast, the required charging current to the  
output capacitor may be higher than the limit-current. In this case,  
the peak MOSFET current is regulated to the limit-current by the  
current-sense comparator. If the MOSFET current still reaches its  
limit after the soft-start finishes, the hiccup is triggered again.  
When the output has a short circuit the hiccup circuit ensures that  
the average heat generation in both MOSFETs and the average  
current is much less than in normal operation,.  
At power up, the LX1673 monitors the supply voltage for  
VCC, VCCL, LDVCC and VC1 (there is no requirement for  
sequencing the supplies). Before all supplies reach their under-  
voltage lock-out (UVLO) thresholds, the soft-start (SS) pin is  
held low to prevent soft-start from beginning, the oscillator is  
disabled and all MOSFETs are held off. There is an internal  
delay that will filter out transients less that 1.5µSec.  
SOFT-START  
Once the supplies are above the UVLO threshold, the soft-start  
Over-current protection can also be implemented using a sense  
resistor, instead of using the RDS(ON) of the upper MOSFET, for  
greater set-point accuracy.  
capacitor begins to be charged by the reference through a 20k  
internal resistor. The capacitor voltage at the SS pin rises as a  
simple RC circuit. The SS pin is connected to the error  
amplifier’s non-inverting input that controls the output voltage.  
The output voltage will follow the SS pin voltage if sufficient  
charging current is provided to the output capacitor.  
O
SCILLATOR FREQUENCY  
An internal oscillator sets the switching frequency at 300kHz,  
600kHz, or 900kHz.  
The simple RC soft-start allows the output to rise faster at the  
beginning and slower at the end of the soft-start interval. Thus,  
the required charging current into the output capacitor is less at  
the end of the soft-start interval. A comparator monitors the SS  
pin voltage and indicates the end of soft-start when SS pin  
voltage reaches 95% of VREF  
.
O
VER-CURRENT PROTECTION (OCP) AND HICCUP  
The LX1673 uses the RDS(ON) of the upper MOSFET, together  
with a resistor (RSET) to set the actual current limit point. The  
current sense comparator senses the MOSFET current 350nS  
after the top MOSFET is switched on in order to reduce  
inaccuracies due to ringing. A current source supplies a current  
(ISET), whose magnitude is 50µA. The set resistor RSET is  
selected to set the current limit for the application. RSET and VS  
should be connected directly at the upper MOSFET drain and  
source to get an accurate measurement across the low resistance  
RDS(ON)  
.
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 8  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
APPLICATION NOTE  
supply, the output capacitor is usually selected for ESR instead of  
capacitance or RMS current capability. A capacitor that satisfies  
the ESR requirements usually has a larger capacitance and current  
capability than strictly needed. The allowed ESR can be found by:  
O
UTPUT INDUCTOR  
The output inductor should be selected to meet the  
requirements of the output voltage ripple in steady-state operation  
and the inductor current slew-rate during transient. The peak-to-  
peak output voltage ripple is:  
ESR×  
(
IRIPPLE + I < VEX  
)
VRIPPLE = ESR× IRIPPLE  
Where IRIPPLE is the inductor ripple current, I is the maximum  
load current step change, and VEX is the allowed output voltage  
excursion in the transient.  
where  
VIN VOUT  
D
Electrolytic capacitors can be used for the output capacitor, but  
are less stable with age than tantalum capacitors. As they age, their  
ESR degrades, reducing the system performance and increasing the  
risk of failure. It is recommended that multiple parallel capacitors  
be used, so that, as ESR increase with age, overall performance  
will still meet the processor’s requirements.  
I =  
×
L
f s  
I is the inductor ripple current, L is the output inductor value  
and ESR is the Effective Series Resistance of the output  
capacitor.  
There is frequently strong pressure to use the least expensive  
components possible; however, this could lead to degraded long-  
term reliability, especially in the case of filter capacitors.  
Microsemi’s demonstration boards use the CDE Polymer AL-EL  
(ESRE) filter capacitors, which are aluminum electrolytic, and  
have demonstrated reliability. The OS-CON series from Sanyo  
generally provides the very best performance in terms of long term  
ESR stability and general reliability, but at a substantial cost  
penalty. The CDE Polymer AL-EL (ESRE) filter series provides  
excellent ESR performance at a reasonable cost. Beware of off-  
brand, very low-cost filter capacitors, which have been shown to  
degrade in both ESR and general electrolytic characteristics over  
time.  
I should typically be in the range of 20% to 40% of the  
maximum output current. Higher inductance results in lower  
output voltage ripple, allowing slightly higher ESR to satisfy the  
transient specification. Higher inductance also slows the inductor  
current slew rate in response to the load-current step change, I,  
resulting in more output-capacitor voltage droop. When using  
electrolytic capacitors, the capacitor voltage droop is usually  
negligible, due to the large capacitance  
The inductor-current rise and fall times are:  
I  
TRISE = L×  
(
V VOUT  
)
IN  
and  
INPUT CAPACITOR  
The input capacitor and the input inductor, if used, are to filter  
I  
TFALL = L×  
the pulsating current generated by the buck converter to reduce  
interference to other circuits connected to the same 5V rail. In  
addition, the input capacitor provides local de-coupling for the  
buck converter. The capacitor should be rated to handle the RMS  
current requirements. The RMS current is:  
VOUT  
.
The inductance value can be calculated by  
VIN VOUT  
I  
D
IRMS = IL d(1d)  
L =  
×
f s  
Where IL is the inductor current and d is the duty cycle. The  
maximum value occurs when d = 50%, then IRMS =0.5IL. For a 5V  
input and output voltages in the range of 2 to 3V, the required RMS  
current is very close to 0.5IL.  
O
UTPUT CAPACITOR  
SOFT-START CAPACITOR  
The output capacitor is sized to meet ripple and transient  
performance specifications. Effective Series Resistance (ESR) is  
a critical parameter. When a step load current occurs, the output  
voltage will have a step that equals the product of the ESR and  
the current step, I. In an advanced microprocessor power  
The value of the soft-start capacitor determines how fast the  
output voltage rises and how large the inductor current is required  
to charge the output capacitor. The output voltage will follow the  
voltage at the SS pin if the required inductor current does not  
exceed the maximum allowable current for the inductor.  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 9  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
APPLICATION NOTE (CONTINUED)  
The SS pin voltage can be expressed as:  
current limit set point. If the upper MOSFET on time is less than  
350nS and a short circuit condition occurs the duty cycle will  
increase, since VOUT will be forced low. The current limit circuit  
will be enabled when the upper gate drive exceeds 350nS although  
the actual peak current limit value will be higher than calculated  
with the above equation.  
SSCSS  
VSS = V ref  
(
1 et/R  
)
Where RSS and CSS are the soft-start resistor and capacitor.  
The current required to charge the output capacitor during the soft  
start interval is.  
Short circuit protection still exists due to the narrow pulse width  
even though the magnitude of the current pulses will be higher than  
the calculated value.  
dVss  
Iout = Cout  
dt  
If OCP is not desired connect both VSX and VCX to VCC. Do not  
leave them floating.  
Taking the derivative with respect to time results in  
VrefCout  
RssCss  
SSCSS  
Iout =  
et/R  
O
UTPUT DISABLE  
The LX1673 PWM MOSFET driver outputs are shut off by  
pulling the disable (DIS) pin above 1.2V. There is a 80Kpull  
and at t=0  
VrefCout  
RssCss  
down resistor on this input.  
Imax =  
The LDO voltage regulator has its own Disable pin (LDDIS) for  
control of this output voltage. Pulling this pin above 3 V disables  
the LDO. There is a 100Kpull down resistor on this input.  
The required inductor current for the output capacitor to follow  
the soft start voltage equals the required capacitor current plus the  
load current. The soft-start capacitor should be selected to  
provide the desired power on sequencing and insure that the  
overall inductor current does not exceed its maximum allowable  
rating.  
P
ROGRAMMING THE OUTPUT VOLTAGE  
The output Voltage is sensed by the feedback pin (FBX) which is  
compared to a 0.8V reference. The output voltage can be set to any  
voltage above 0.8V (and lower than the input voltage) by means of  
a resistor divider (see Figure 1).  
Values of CSS equal to 0.1µf or greater are unlikely to result in  
saturation of the output inductor unless very large output  
capacitors are used.  
VOUT = VREF (1+ R1/R 2 )  
O
VER-CURRENT PROTECTION  
Note: This equation is simplified and does not account for error  
amplifier input current. Keep R1 and R2 close to 1K(order of  
magnitude).  
Current limiting occurs at current level ICL when the voltage  
detected by the current sense comparator is greater than the  
current sense comparator threshold, VTRIP (300mV).  
DDR VTT TERMINATION VOLTAGE  
ICL × RDS(ON) + ISET × RSET = VTRIP  
Double Data Rate (DDR) SDRAM requires a termination  
voltage (VTT) in addition to the line driver supply voltage (VDDQ)  
and receiver supply voltage (VDD).  
So,  
VTT for DDR memory can be generated with the LX1673 by  
using the positive input of the phase 2 error amplifier RF2 as a  
reference input from an external reference voltage VREF which is  
defined as one half of VDDQ. Using VREF as the reference input  
will insure that all voltages are correct and track each other as  
specified in the JEDEC (EIA/JESD8-9A) specification. The phase 2  
output will then be equal to VREF and track the VDDQ supply as  
required.  
VTRIP ICL × RDS(ON)  
300 mVICL × RDS(ON)  
RSET  
=
=
ISET  
50µA  
Example:  
For 10A current limit, using FDS6670A MOSFET (10m  
R
DS(ON)):  
0.3 10× 0.010  
RSET  
=
= 4K  
50×106  
When an external reference is used the connection between the  
error amplifier positive input and the Soft Start pin is lost and Soft  
Start will not function. It is recommended that the external  
reference voltage have an R-C time constant that will be long  
enough to allow the output capacitor to charge slowly.  
Note: Maximum RSET is 6K. Any resistor 6Kor greater will  
not allow startup since ICL will equal zero (50µA x 6K=  
300mV).  
At higher PWM frequencies or low duty cycles where the upper  
gate drive is less than 350nS wide the 350nS delay for current  
limit enable may result in current pulses exceeding the desired  
See Microsemi Application Note 17 for more details  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 10  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
APPLICATION NOTE CONSIDERATIONS  
1. The minimum RSET resistor value is 1k ohm for the current  
limit sensing. If this resistor becomes shorted, it will do  
permanent damage to the IC.  
4. . If current limit is not used connect the VS and VC pins  
together and to VCC. Do not leave them floating. A floating VS  
pin will result in operation resembling a hiccup condition.  
2. A resistor has been put in series with the gate of the LDO  
pass transistor to reduce the output noise level. The resistor  
value can be changed to optimize the output transient  
response versus output noise.  
3. To delay the turn on of the LDO controller output, a  
capacitor should be connected between the LDDIS pin and  
the +5volts. The LDDIS input has a 100K pull down  
resistor, which keeps the LDO active until this pin is pulled  
high. During the power up sequence the capacitor connected  
to the LDDIS pin will keep the LDO off until this capacitor,  
being charge by the 100K pull down resistor, goes through  
the low input threshold level.  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 11  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
PACKAGE DIMENSIONS  
20-Pin Micro Leadframe Package (MLPQ) Package  
LQ  
M
ILLIMETERS  
INCHES  
Dim  
D
b
MIN  
0.80  
0
0.25 REF  
0.23  
MAX  
1.00  
0.05  
MIN  
0.031  
0
MAX  
0.039  
0.002  
A
A1  
A3  
b
L
0.010  
0.38  
0.009  
0.015  
D2  
E
D
5.00 BSC  
0.197  
D2  
1.25  
3.25  
0.050  
0.128  
E
E2  
e
5.00 BSC  
0.197  
E2  
e
1.25  
3.25  
0.050  
0.128  
0.65 BSC  
0.026  
L
0.35  
0.75  
0.014  
0.030  
A1  
A
A3  
Note: Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(0.006”) on any side. Lead dimension shall  
not include solder coverage.  
20-Pin Thin Small Shrink Outline (TSSOP)  
PW  
M
MIN  
-
0.05  
0.80  
0.19  
0.09  
6.40  
6.25  
4.30  
ILLIMETERS  
INCHES  
Dim  
MAX  
1.10  
0.15  
1.05  
0.30  
0.20  
6.60  
6.55  
4.50  
MIN  
-
MAX  
0.043  
0.006  
0.041  
0.012  
0.008  
0.260  
0.258  
0.177  
3
2 1  
A
A1  
A2  
b
c
D
E
E1  
0.002  
0.031  
0.007  
0.004  
0.252  
0.246  
0.169  
e
E
E1  
D
1
A2  
A
e
L
0.65 BSC  
0.026 BSC  
L
SEATING PLANE  
c
0.45  
0°  
0.75  
8°  
0.018  
0°  
-
0.030  
8°  
b
A1  
Θ1  
*LC  
-
0.10  
0.004  
solder coverage.  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Page 12  
Integrated Products Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1673  
®
TM  
High Frequency PWM Regulator  
P
RODUCTION DATA SHEET  
NOTES  
PRODUCTION DATA – Information contained in this document is proprietary to  
Microsemi and is current as of publication date. This document may not be modified in  
any way without the express written consent of Microsemi. Product processing does not  
necessarily include testing of all parameters. Microsemi reserves the right to change the  
configuration and performance of the product and to discontinue product at any time.  
Copyright © 2004  
Rev 1.0, 3/18/2005  
Microsemi  
Integrated Products Division  
Page 13  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY