LX1664CN-TR [MICROSEMI]

Switching Controller;
LX1664CN-TR
型号: LX1664CN-TR
厂家: Microsemi    Microsemi
描述:

Switching Controller

开关
文件: 总17页 (文件大小:873K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Not Recommended For New Design  
LX1664 / 64A, LX1665 / 65A  
D
UAL  
OUTPUT PWM CONTROLLER WITH 5-BIT DAC  
P
R O D U C T I O N A T A H E E T  
D
S
T
H E  
I
N F I N I T E  
P
O W E R O F  
I N N O V A T I O N  
KEY FEATURES  
DESCRIPTION  
The LX1664/64A and LX1665/65A are  
a DIP switch on the motherboard, or  
monolithic switching regulator controller hardwired into the processor’s package (as  
„
5-bit Programmable Output For  
CPU Core Supply  
Adjustable Linear Regulator  
Driver Output  
No Sense Resistor Required For  
Short-Circuit Current Limiting  
Designed To Drive Either  
Synchronous Or Non-  
in the case of Pentium® Pro and Pentium II  
processors). The 5-bit code adjusts the  
output voltage between 1.30 and 2.05V in  
50mV increments and between 2.0 and 3.5V  
in 100mV increments, conforming to the  
Intel Corporation specification. The device  
can drive dual MOSFET’s resulting in  
typical efficiencies of 85 - 90% even with  
„
„
„
IC’s designed to provide a low cost, high  
performance adjustable power supply for  
advanced microprocessors and other  
applications requiring a very fast transient  
response and a high degree of accuracy.  
Short-circuit Current Limiting without  
Expensive Current Sense Resistors.  
Current-sensing mechanism can use PCB  
Synchrous Output Stages  
Sobility  
„
„
Monstant Off-Time  
Ae For st Transient  
Re And ple System  
Des
Availabr-Voltage  
Protection (OVP) Crowbar Driver  
d wer Good Flag (LX1665  
trace resistance or the parasitic resistance of loads in excess of 10 amperes. For cost  
the main inductor. The LX1664A and  
LX1665A have reduced current sense  
comparator threshold for optimum  
performance using a sense resistor. For  
applications requiring a high degree of  
sensitive applications, the bottom MOSFET  
can be replaced with a Schottky diode (non-  
synchronous operation).  
Linear Regulator Driver. The LX16
family of devices have a secondary
„
accuracy, a conventional sense resistor can be output. This can drive a OSFET o
APPLICATIONS  
used to sense current.  
transistor as a pass elemeconstr
low-cost adjustable linear retor sui
for powering a 1.5V GTL+ bus .5V  
clock supply.  
„
Socket 7 (Pentium Class)  
Microprocessor Supplies  
(including Intel Pentium  
Processor, AMD-K6TM And  
Cyrix® 6x86TM, Gx86TM and  
M2TM Processors)  
Pentium II and Deschutes  
Processor & L2-Cache Supplies  
Voltage Regulator Modules  
Programmable Synchronous Rectifier  
Driver for CPU Core. The main output is  
adjustable from 1.3V to 3.5V using a 5-bit  
code. The IC can read a VID signal set by  
IMPORTANT: For the most current data, consult MICROSEMI’s website: hmi.com  
„
„
PRDUGHLIGHT  
LX1665 in a PentiuSinglehip Power Supply Solution  
F1 20A  
12V  
5V  
L
1µH  
2
C3  
0.1µF  
6.3V  
C5  
1µF  
1500µF x3  
C2  
Q1  
IRL3102  
1
2
3
4
6
7
8
9
18  
R
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
1
Supply Voltage  
for CPU Core  
17  
16  
15  
14  
13  
12  
11  
10  
L
1
0.0025  
INV  
VOUT  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
2.5µH  
Q2  
IRL3303  
C1  
6.3V, 1500µF x 3**  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
C9  
330µF  
CT  
C8  
680pF  
OV  
Q4  
IRLZ44  
Supply Voltage  
For I/ O Chipset or GTL+ Bus  
VID4  
L
DRV  
L
PWRGD  
FB  
R
C7  
330µF  
5
18-pin  
Wide-Body SOIC  
OV  
PWRGD  
R
6
PACKAGE ORDER INFO  
Plastic DIP  
16-Pin  
Plastic DIP  
Plastic SOIC  
16-Pin  
Plastic SOIC Wide  
18-Pin  
RoHS Compliant / Pb-free  
Transition DC: 0516  
N
N
D
DW  
18-Pin  
RoHS Compliant / Pb-free  
Transition DC: 0503  
TA (°C)  
RoHS Compliant / Pb-free  
Transition DC: 0440  
LX1664CN  
LX1664ACN  
LX1665CN  
LX1665ACN  
LX1664CD  
LX1664ACD  
LX1665CDW  
LX1665ACDW  
0 to 70  
Note: Available in Tape & Reel. Append the letters ‘TR’ to the part number. (i.e. LX1664CD-TR)  
L
I N  
F
I N I T Y  
M
I C R O E L E C T R O N I C S  
I N C .  
Copyright © 1999  
Rev. 1.3a,2005-03-17  
1
11861 WESTERN  
A
VENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION (con't.)  
PACKAGE PIN OUTS  
Smallest Package Size. The LX1664 is  
sient response for a given inductor, reduc-  
ing output capacitor requirements, and re-  
ducing the total regulator system cost.  
Over-Voltage Protection and Power  
Good Flag. The OVP output in the LX1665  
& LX1665A can be used to drive an SCR  
crowbar circuit to protect the load in the  
event of a short-circuit of the main MOSFET.  
The LX1665 & LX1665A also have a logic-  
level Power Good Flag to signal when the  
output voltage is out of specified limits.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SS  
INV  
VC1  
available in a narrow body 16-pin surface  
mount IC package for space sensitive appli-  
cations. The LX1665 provides the additional  
functions of Over Voltage Protection (OVP)  
and Power Good (PWRGD) output drives  
for applications requiring output voltage  
monitoring and protection functions.  
Ultra-Fast Transient Response re-  
duces system cost. The modulated off-  
time architecture results in the fastest tran-  
TDRV  
GND  
BDRV  
VCC  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
CT  
LDRV  
LFB  
E — 16-Pin  
664A (Top View)  
1
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
S  
VC1  
TDRV  
GND  
BDRV  
VCC  
DEVICE SELECTION GUIDE  
VCC_CORE  
VID0  
D1  
VID2  
VID3  
VID4  
LFB  
OVP and  
Current-Sense  
DEVICE  
Packages  
Power Good  
Comp. Thresh. (mV) Optimal Load  
CT  
LX1664  
16-pin SOIC  
& DIP  
100  
60  
Pentium-class (<
OV  
No  
LDRV  
LX1664A  
LX1665  
PeII (> 10
Pentiuass (<1
Pentium I0A)  
PWRGD  
18-pin SOIC  
& DIP  
100  
60  
Yes  
N PACKAGE — 18-Pin  
LX1665/1665A (Top View)  
LX1665A  
ABSOLUTE MAXIMUM RATINGS 
1
16  
15  
14  
13  
12  
11  
10  
9
SS  
INV  
VC1  
2
3
4
5
6
7
8
TDRV  
GND  
BDRV  
VCC  
Supply Voltage (VC1) ........................................................................ 25V  
Supply Voltage (VCC) ........................................................................... 15V  
Output Drive Peak Current Source (500ns)...................................... 1.5A  
Output Drive Peak Current Sink (500ns) .............................................................. 1.5A  
Input Voltage (SS, INV, VCC_CORE, CT, VID0-VID........................... -0.3V to 6V  
Operating Junction Temperature  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
CT  
LDRV  
LFB  
D PACKAGE — 16-Pin  
LX1664/1664A (Top View)  
Plastic (N, D & DW Packages) ........................................................................ 150°C  
Storage Temperature Range ........................................ -65°C to +150°C  
Lead Temperature (SolderinSe................................................... 300°C  
Peak Package Solder Reflow Temp (e)............................................260°C(+0, -5)  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
SS  
INV  
VC1  
Note 1. Exceeding these atings coulthe device. All voltages are with respect  
to Groundpositivve out of the specified terminal. Pin  
numbeges on
TDRV  
GND  
BDRV  
VCC  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
LFB  
RMAL DATA  
CT  
OV  
LDRV  
N (16-PIN DIP)
PWRGD  
THERMAL RESISTO AMBIENT, θJA  
N (18-PIN DIP) PACKA
65°C/W  
60°C/W  
120°C/W  
90°C/W  
DW PACKAGE — 18-Pin  
LX1665/1665A (Top View)  
RoHS / Pb-free 100% Matte Tin Lead Finish  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
D PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DW PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.  
All of the above assume no ambient airflow  
Copyright © 1999  
Rev. 1.3a 11/04  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(
Unless otherwise specified, 10.8 < VCC < 13.2, 0°C TA 70°C. Test conditions: VCC = 12V, T = 25°C. Use Application Circuit.)  
LX1664/1665 (A)  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Reference & DAC Section (See Table 1 - Next Page)  
Regulation Accuracy (See Table 1)  
Regulation Accuracy  
(Less 40mV output adaptive positioning), VCC = 12V, ILOAD = 6A  
-30  
-1  
30  
1
mV  
%
1.8V VOUT 2.8V  
Timing Section  
Off Time Initial  
OT  
VCC_CORE = 1.3V, CT = 390pF  
VCC_CORE = 3.5V, CT = 390pF  
VCC_CORE = 1.3V to 3.5V  
40  
210  
µs  
µs  
ppm  
µA  
V
Off Time Temp Stability  
Discharging Current  
Ramp Peak  
240  
IDIS  
VP  
VCC_CORE = 1.3V, VCT = 1.5V  
0.9  
0.3
1
0.42  
100  
1.1  
0.47  
V
V
Ramp Peak-Valley  
VRPP  
VCC_CORE = 1.3V  
VCC_CORE = 3.5V  
10% Overdrive  
ns  
Ramp Valley Delay to Output  
Error Comparator Section  
Input Bias Current  
IB  
1.3V < VSS = VINV < 3.5V  
10% Overdrive  
0.8  
41  
2
46  
µA  
mV  
ns  
36  
Input Offset Voltage  
EC Delay to Output  
VIO  
200  
Current Sense Section  
Input Bias Current (VCC_CORE Pin)  
IB  
1.3V < VINV = VCC_CORE < 3
Initial Accuracy  
27  
100  
60  
35  
115  
70  
µA  
mV  
mV  
ns  
Pulse By Pulse CL  
LX1664/1665  
VCLP  
85  
50  
LX1664A/1665A  
Initial Accuracy  
200  
CS Delay to Output  
10% Overdrive  
Output Drivers Section  
Drive Rise Time  
Drive Fall Time  
TR  
TF  
VC1 = V2V, CL = 30
VC1 CC = 12V, 3000pF  
VCC ISO= 20mA  
VCC = 12V, ISI200mA  
= VCC = 12V, URCE = 20mA  
70  
70  
11  
ns  
ns  
V
Drive High  
VDH  
10  
V
V
V
0.06  
0.8  
0.8  
0.1  
1.2  
1.4  
Drive Low  
VCC = 12V, ISINK = 200mA  
V
Output Pull Down  
= 0, IPULL UP = 2mA  
UVLO and S.S. Section  
Start-Up Threshold  
Hysteresis  
VHY
ISD  
9.9  
2
10.1  
0.31  
5.5  
10.4  
V
V
mA  
V
SS Sink Current  
VC1 = 10.1V  
0.15  
0.6  
27  
92  
SS Sat Voltage  
VOL  
VC1 = 9V, ISD = 200µA  
Supply Curren
Dynamic Operatin
ICD  
VCC = VC1 = 12V, Out Freq = 200kHz, CL = 0  
mA  
Power Good / Ovetection Section (LX1665 Only)  
Lower Threshold  
Hysteresis  
(VCC_CORE / DACOUT  
)
88  
90  
1
%
%
Power Good Voltage Low  
Over-Voltage Threshold  
OVP Sourcing Current  
I
PWRGD = 5mA  
0.5  
117  
45  
0.7  
125  
V
%
mA  
110  
30  
(VCC_CORE / VDAC  
)
VOV = 5V  
Linear Regulator Section  
Output Voltage  
Set by external resistors  
1.5  
3.6  
1.5  
V
%
Setpoint Accuracy  
IL = 0.5A using 0.5% resistors  
-1.5  
40  
70  
ppm  
%
Output Temperature Drift  
Load Regulation  
1.5  
3
%
mA  
Cummulative Accuracy  
Op-Amp Output Current  
50  
Open Loop  
Copyright © 1999  
Rev. 1.3a 11/04  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
Table 1 - Adaptive Transient Voltage Output (Output Voltage Setpoint — Typical)  
Processor Pins  
Output Voltage (VCC_CORE  
)
0 = Ground, 1 = Open (Floating)  
VID4 VID3 VID2 VID1 VID0  
0.0A  
Nominal Output*  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.34V  
1.39V  
1.44V  
1.49V  
1.54V  
1.59V  
1.64V  
1.69V  
1.74V  
1.79V  
1.84V  
1.89V  
1.94
1.99
2.04V  
2.09V  
4V  
2.2
2.34V  
2.44V  
.54V  
.64V  
2.74V  
2.84V  
2.94V  
3.04V  
3.14V  
3.24V  
3.34V  
3.44V  
3.54V  
1.30V  
1.35V  
1.40V  
1.45V  
1.50V  
1.55V  
0V  
5V  
1.
1.80
1.85V  
1.90V  
5V  
0V  
05V  
2.00V  
2.10V  
2.20V  
2.30V  
2.40V  
2.50V  
2.60V  
2.70V  
2.80V  
2.90V  
3.00V  
3.10V  
3.20V  
3.30V  
3.40V  
3.50V  
* Nomoltage with no adaptive output voltage positioning.  
Note:  
Adaptive Te Out
In order tesponse a 40mV  
offset is bunse comparator.  
At high currut voltage will be  
lower than the point, as shown in  
Figure 1. The actual output voltage will be a  
function of the sense resistor, the output current  
and output ripple.  
Time - 100µs/Div.  
FIGURE 1 — Output Transient Response  
(using 5msense resistor and 5µH output inductor)  
Copyright © 1999  
Rev. 1.3a 11/04  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTICS CURVES  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
Output Set Point  
Output nt  
EFFICIENCY AT 3.1V  
V  
EFFICIENCY AT 2.8V  
EFFICIENCY AT 1.8V  
2.8V  
75  
AT 1.8V  
70  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
1
3
6
7
8
9
10  
11  
12  
13  
14  
IOUT (A)  
IOUT (A)  
FIGURE 2 Efficiency Test Results:  
URE 3 Efficiency Test Results:  
Non-Synchronous Operation, VIN = 5V  
Synchronous Operation, VIN = 5V  
90  
85  
5  
60  
Output Set Point  
1.8V EFFICIENCY  
2.8V EFFICIENCY  
3.3V EFFICIENCY  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
IOUT (A)  
FIGURE 4 Efficiency Test Results: Synchronous Operation, VIN = 12V.  
Note: Non-synchronous operation not recommended for 12V operation, due to power loss in Schottky diode.  
Copyright © 1999  
Rev. 1.3a 11/04  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
BLOCK DIAGRAM  
VCC  
VC1  
18  
1
SS  
PWM Latch  
Trimmed  
2V REF  
2V Out  
UVLO  
S
Q
TDRV  
GND  
BDRV  
17  
16  
15  
R DOM  
10.6/10.1  
R
Q
Internal  
VCC  
VREG  
Break  
40mV  
Be
M
2
INV  
0.7V  
Error Comp  
CS Comp  
Off-Time  
Controller  
SYNC EN  
Comp  
VCC  
14  
100mV **  
3
VCC_CORE  
OV Cp  
13  
CT  
OV*  
12  
10  
PWRGD*  
UV Comp  
10k  
DAC OUT  
LX1665/1665A ONLY  
Linear Op Amp  
1.5V  
DAC  
LDRV  
11  
9
LFB  
4
5
ID4  
Note: Pin numbers are correct for LX1665/1665A, 18-pin package.  
* Not connected on LX1664/1664A.  
VID1  
** 60mV in LX1664A/1665A.  
FIGURE 5 LX1664/1665 Block Diagram  
Copyright © 1999  
Rev. 1.3a 11/04  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
FUNCTIONAL PIN DESCRIPTION  
Pin  
Name  
LX1664  
Pin #  
LX1665  
Pin #  
Description  
SS  
INV  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Soft-Start pin, internally connected to the non-inverting input of the error comparator.  
Inverting input of the error comparator.  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
Output voltage. Connected to non-inverting input of the current-sense comparator.  
Voltage Identification pin (LSB) input used to set output voltage.  
Voltage Identification pin (2nd SB) input.  
Voltage Identification pin (3rd SB) input.  
Voltage Identification pin (4th SB) input.  
Voltage Identification pin (MSB) input. This pin is also tange select pin — when low  
(CLOSED), output voltage is set to between 1.2.05V in increments. When high  
(OPEN), output is adjusted from 2.0 to 3.5V ements.  
LFB  
9
9
Linear regulator feedback pin. referennnecto a resistor divider to set desired  
output voltage.  
PWRGD  
LDRV  
N.C.  
10  
10  
11  
12  
13  
14  
15  
Open collector output pulls low when output voltage is out of limits.  
Linear regulator drive pin. Cto gate MOSFET for linear regulator function.  
SCR driver goes high whor's supply is over specified voltage limits.  
The off-time is programng a timing capacitor to this pin.  
This is the (12V) pply to well as gate drive to the bottom FET.  
OV  
N.C.  
11  
CT  
VCC  
12  
BDRV  
13  
This is the gdrive to e bottom FET. Leave open in non-synchronous operation (when bottom  
FET is reped ky diode).  
GND  
TDRV  
VC1  
14  
15  
16  
16  
1
18  
Both power and signal und of the device.  
or toOSFET.  
parate power supply input for the top drive. Can be connected to a charge pump  
V is available.  
Copyright © 1999  
Rev. 1.3a 11/04  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION  
IC OPERATION  
PROGRAMMING THE OUTPUT VOLTAGE  
Referring to the block diagram and typical application circuit, the  
output turns ON the top MOSFET, allowing the inductor current to  
increase. At the error comparator threshold, the PWM latch is reset,  
the top MOSFET turns OFF and the synchronous MOSFET turns ON.  
The OFF-time capacitor CT is now allowed to discharge. At the  
valley voltage, the synchronous MOSFET turns OFF and the top  
MOSFET turns on. A special break-before-make circuit prevents  
simultaneous conduction of the two MOSFETS.  
The VCC_CORE pin is offset by +40mV to enhance transient  
response. The INV pin is connected to the positive side of the  
current sense resistor, so the controller regulates the positive side  
of the sense resistor. At light loads, the output voltage will be  
regulated above the nominal setpoint voltage. At heavy loads, the  
output voltage will drop below the nominal setpoint voltage. To  
minimize frequency variation with varying output voltage, the OFF-  
time is modulated as a function of the voltage at the VCC_CORE pin.  
The output voltage is set by means of a 5-bit digital Voltage  
Identification (VID) word (See Table 1). The VID code may be hard-  
wired into the package of the processor which do not have a VID  
code, the output voltage can be set by means of a DIP switch or  
jumpers. For a low or '0' signal, connect the VID pin to ground (DIP  
switch ON); for a high or '1' signal, lehe VID pin open (DIP  
switch OFF).  
The five VID pins on the LX166designed to interface  
directly with a Pentium Pro or Penprocer. Therefore, all  
inputs are expected ther gror flng. Any floating  
input will be pulled higternal cons. If using a Socket  
7 processor, or other load, VID code can be set directly by  
connecting jumpers or DIP sws the VID[0:4] pins.  
The VID pt desigto take TTL inputs, and  
should not ted high. Unpredictable output voltages  
result. I66x vices are to be connected to a logic  
cirsuch aS, forogramming of output voltage, they  
shoulbufferCMOS gate with open-drain, such as a  
74HC125 4C906.  
ERROR VOLTAGE COMPARATOR  
The error voltage comparator compares the voltage at the positive  
side of the sense resistor to the set voltage plus 40mV. An external  
filter is recommended for high-frequency noise.  
GOOD IGNAL (LX1665 only)  
collector output is provided which presents high imped-  
n the output voltage is between 90% and 117% of the  
med VID voltage, measured at the SS pin. Outside this  
dow the output presents a low impedance path to ground. The  
Power Good function also toggles low during OVP operation.  
CURRENT LIMIT  
Current limiting is done by sensing the inductor currenteeding  
the current sense threshold turns the output drive Oand latches  
it OFF until the PWM latch Set input goes high ag. See 
Limit Section in "Using The LX1664/65 Devices" his da
sheet.  
OVER-VOLTAGE PROTECTION  
The controller is inherently protected from an over-voltage condi-  
tion due to its constant OFF-time architecture. However, should a  
failure occur at the power switch, an over-voltage drive pin is  
provided (on the LX1665 only) which can drive an external SCR  
crowbar (Q3), and so blow a fuse (F1). the fault condition must be  
removed and power recycled for the LX1665 to resume normal  
operation (See Figure 9).  
OFF-TIME CONTROL TIMING  
The timing capacitor CT allows proFF-time. The  
timing capacitor is quarged dme of the top  
MOSFET and alloe when p MOSFET is OFF.  
In order to mintions wproviding different  
supply voltageis modulated by the voltage  
at the VCC_CORE nversely proportional to the  
VCC_CORE voltage
LINEAR REGULATOR  
The product highlight application shows an application schematic  
using a MOSFET as the pass element for a linear regulator. this  
output is suitable for converting the 5V system supply to 3.3V for  
processor I/O buffers, memory, chipset and other components. The  
output can be adjusted to any voltage between 1.5V and 3.6V in  
order to supply other (lower) power requirements on a mother-  
board. See section "Using the LX1664/1665 Devices" at the end of  
this data sheet.  
UNDER VOLTAGE LO
The purpose of the UVLO is to keep the output drive off until the  
input voltage reaches the start-up threshold. At voltages below the  
start-up voltage, the UVLO comparator disables the internal biasing,  
and turns off the output drives. The SS (Soft-Start) pin is pulled low.  
SYNCHRONOUS CONTROL  
The synchronous control section incorporates a unique break-  
before-make function to ensure that the primary switch and the  
synchronous switch are not turned on at the same time. Approxi-  
mately 100 nanoseconds of deadtime is provided by the break-  
before-make circuitry to protect the MOSFET switches.  
Copyright © 1999  
Rev. 1.3a 11/04  
8
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
APPLICATION INFORMATION  
12V  
5V  
C3  
0.1µF  
6.3V  
C5  
1500µF x3  
U1  
LX1664  
1µF  
C2  
1
2
3
4
5
6
7
8
16  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
Q1  
15  
14  
13  
12  
11  
10  
9
INV  
R1  
2.5m  
IRL3102  
Supply age  
or Core  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
L1, 2.5µ
W
VID0  
VID1  
VID2  
VID3  
VID4  
VOUT  
Q2  
IRL3303  
C1  
CT  
C8  
680pF  
6.3V, 1500µF x 3**  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
LDRV  
9  
LFB  
30µF  
16-pin  
Narrow Body SOIC  
Q4  
IRLZ44  
R5  
Supply Voltage  
For I/O Chipset or GTL+ Bus  
C7  
330µF  
R6  
FIGURE 6 LX1664 In A Pentium / S7 Single-Cower Supply Controller Solution (Synchronous)  
12V  
5V  
C3  
0.1µF  
6.3V  
1500µF x3  
LX
C5  
C2  
6
7
8
16  
1µF  
VC1  
TDRV  
GND  
BDRV  
VCC  
15  
14  
13  
12  
11  
10  
9
R1  
0.005  
Supply Voltage  
for CPU Core  
Q1  
IRL3102  
ORE  
D0  
VID1  
VID2  
VID3  
VID4  
L1, 5µH  
VID0  
VOUT  
D1  
VID1  
VID2  
VID3  
VID4  
C1  
6.3V, 1500µF x 3**  
CT  
C9  
330µF  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
LDRV  
Q4  
IRLZ44  
C8  
680pF  
Supply Voltage  
For I/O Chipset or GTL+ Bus  
LFB  
16-pin  
Narrow Body SOIC  
C7  
330µF  
R5  
R6  
FIGURE 7 LX1664 In A Non-Synchronous / Socket 7 Power Supply Application  
Copyright © 1999  
Rev. 1.3a 11/04  
9
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
APPLICATION INFORMATION  
CS  
F1 15A  
12V  
5V  
L2  
1µH  
C3  
0.1µF  
RS  
C5  
1µF  
C2  
U1  
LX1665  
6.3V  
1500µF x3  
Q1  
IRL3102  
1
2
3
4
5
6
7
8
9
18  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
y Voltage  
CPU e  
17  
16  
15  
14  
13  
12  
11  
10  
L
INV  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
LFB  
2.5µ
UT  
Q2  
IRL3303  
VID0  
VID1  
VID2  
VID3  
VID4  
or 3.3V  
S
C1  
CT  
6.3V, 1500µF x 3  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
C8  
680pF  
OV  
C9  
330µF  
LDRV  
PWRGD  
1.5V for  
GTL+ Bus Supply  
18-pin  
Wide Body SOIC  
OV  
PWRGD  
IRL
R5  
C7  
330µF  
R6  
FIGURE 8 VRM 8.2 (Pentium II / DeschuteDesign With Loss-Less Current Sensing  
D2  
D3  
12V 5V  
6.3V  
F1 20A  
1N414
1N4148  
C10  
0.1µF  
C3  
0.1µF  
C5  
1500µF x3  
R7  
10  
C2  
1
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
Q1  
IRL3303  
R1  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
Supply Voltage  
for CPU Core  
L1 2.5µH  
0.0025  
INV  
CC_CORE  
ID0  
VID1  
VID2  
VID3  
VID4  
LFB  
VOUT  
Q2  
IRL3102  
VID0  
C9  
330µF  
VID1  
VID2  
VID3  
VID4  
CT  
Q3  
D4  
C1  
C8  
1500µF  
SCR  
2N6504  
1N5817  
OV  
LDRV  
PWRGD  
Q4  
IRLZ44  
R2, 10k  
18-pin  
Wide-Body SOIC  
Supply Voltage  
PWRGD  
For I/O Chipset or GTL+ Bus  
C7  
330µF  
R5  
R6  
FIGURE 9 Full-Featured Pentium II Processor Supply With 12V Power Input  
Copyright © 1999  
Rev. 1.3a 11/04  
10  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
BILL OF MATERIALS  
LX1665 Bill of Materials (Refer to Product Highlight)  
Ref  
Description  
Part Number / Manufacturer  
Qty.  
C1  
1500µF, 6.3V capacitor  
1500µF, 6.3V capacitor  
330µF, Electrolytic  
0.1µF  
MV-GX Sanyo  
MV-GX Sanyo  
MV-GX Sanyo  
SMD Cap  
4
2
2
1
1
1
1
1
1
1
1
1
2
1
1
C2  
C7, C9  
C3  
C4  
390pF  
SMD Cap  
C8  
680pF  
SMD Cap  
C5  
1µF, 16V  
SMD Ceramic  
HM0096832 BI or equivalent  
L1  
2.5µH Inductor  
1µH Inductor  
L2  
Q1  
Q2  
Q3  
R5, R6  
R1  
MOSFET  
IRL3102 International Rectifier or equi
IRL3303 International Requivale
IRLZ44 International uivalent  
SMD Rtor  
MOSFET  
MOSFET  
Resistor (See Table 6 for values)  
2.5mSense Resistor  
Controller IC  
IRC OARr PCB t
U1  
LX1665CDW finity  
Total  
21  
USING THE LX5 DEVICES  
The LX1664/65 devices are very easy to design with, requiri
only a few simple calculations to implement a given degn. The  
following procedures and considerations should vide effec-  
tive operation for virtually all applications. Refto the
cation Information section for component resign
tors.  
using a 5V input voltage, the switching frequency (fS)  
approximated as follows:  
IDIS  
C = 0.621  
*
T
fS  
Choosing a 680pF capacitor will result in an operating  
frequency of 183kHz at VOUT = 2.8V. When a 12V power input  
is used, he capacitor value must be changed (the optimal timing  
capacitor for 12V input will be in the range of 1000-1500pF).  
TIMING CAPACITOR SELECTI
The frequency of operation of thtion of duty  
cycle and OFF-time. TFF-time to the timing  
capacitor (which in all n schematics in  
this data sheeted to nimize frequency  
variations witquency is constant, during  
steady-state oodulation of the OFF-time.  
The timing ld be selected using the  
following equat
L1 OUTPUT INDUCTOR SELECTION  
The inductance value chosen determines the ripple current  
present at the output of the power supply. Size the inductance  
to allow a nominal ±10% swing above and below the nominal DC  
load current, using the equation L = VL T/I, where T is the  
*
OFF-time, VL is the voltage across the inductor during the OFF-  
time, and I is peak-to-peak ripple current in the inductor. Be  
sure to select a high-frequency core material which can handle  
the DC current, such as 3C8, which is sized for the correct power  
level. Typical inductance values can range from 2 to 10µH.  
Note that ripple current will increase with a smaller inductor.  
Exceeding the ripple current rating of the capacitors could cause  
reliability problems.  
(1 - VOU
DIS  
CT =  
f (1.52 - 0.29  
V
)
*
S
OUT  
Where IDIS is fixed at 200µA and fS is the switching frequency  
(recommended to be around 200kHz for optimal operation and  
component selection).  
Copyright © 1999  
Rev. 1.3a 11/04  
11  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
INPUT INDUCTOR SELECTION  
C1 FILTER CAPACITOR SELECTION (continued)  
In order to cope with faster transient load changes, a smaller  
output inductor is needed. However, reducing the size of the  
output inductor will result in a higher ripple voltage on the input  
supply. This noise on the 5V rail can affect other loads, such as  
graphics cards. It is recommended that a smaller input inductor,  
aluminum electrolytic, and have demonstrated reliability. The  
Oscon series from Sanyo generally provides the very best  
performance in terms of long term ESR stability and general  
reliability, but at a substantial cost penalty. The MV-GX series  
provides excellent ESR performance, meeting all Intel transient  
specifications, at a reasonable cost. Beof off-brand, very-low  
cost filter capacitors, which have bto degrade in both  
ESR and general electrolyte charover ime.  
L (1 - 1.5µH), is used on the 5V rail to filter out the ripple. Ensure  
2
that this inductor has the same current rating as the output  
inductor.  
C1 FILTER CAPACITOR SELECTION  
CURRENT LIMIT  
The capacitors on the output of the PWM section are used to filter  
the output current ripple, as well as help during transient load  
conditions, and the capacitor bank should be sized to meet ripple  
and transient performance specifications.  
Current limiting occura sensed voltage, proportional to  
load current, exceeds the nt-sense comparator threshold  
value. The currbe senser by using a fixed sense  
resistor in she inductor to cause a voltage drop  
pportional t, or y using a resistor and capacitor in  
pel with ductosense the voltage drop across the  
pararesistaof thnductor.  
The 66x famiffers two different comparator thresholds.  
The LX161665 have a threshold of 100mV, while the LX1664A  
X1665e a threshold of 60mV. The 60mV threshold is  
ited to higher current loads, such as a Pentium II or  
s processor.  
When a transient (step) load current change occurs, the output  
voltage will have a step which equals the product of the Effective  
Series Resistance (ESR) of the capacitor and the current step (I).  
when current increases from low (in sleep mode) to high, the  
output voltage will drop below its steady state value. In the  
advanced microprocessor power supply, the capacitor should  
usually be selected on the basis of its ESR value, rather than th
capacitance or RMS current capability. Capacitors that satisfy
ESR requirement usually have a larger capacitance and curre
capability than needed for the application. The allowable ESR can  
be found by:  
Resistor  
current sense resistor, R , is selected according to the formula:  
1
ESR * (IRIPPLE + I) < VEX  
R1 = VTRIP / ITRIP  
Where VEX is the allowable output e excursion ie  
transient and IRIPPLE is the indurippegulatrs such  
as the LX166x series, have adapositioning,  
which adds 40mV to the DC set-pis therefore  
the difference betwow load he minimum  
dynamic voltage microsor.  
Where VTRIP is the current sense comparator threshold (100mV  
for LX1664/65 and 60mV for LX1664A/65A) and ITRIPis the desired  
current limit. Typical choices are shown below.  
TABLE 2 - Current Sense Resistor Selection Guide  
Sense Resistor  
Value  
Recommended  
Controller  
Load  
Ripple curreoutput ductor value (LOUT),  
and can be ap:  
Pentium-Class Processor (<10A)  
Pentium II Class (>10A)  
5mΩ  
2.5mΩ  
LX1664 or LX1665  
LX1664A or LX1665A  
IRIPPLE  
=
A smaller sense resistor will result in lower heat dissipation (I²R)  
and also a smaller output voltage droop at higher currents.  
There are several alternative types of sense resistor. The  
surface-mount metal staple” form of resistor has the advantage of  
exposure to free air to dissipate heat and its value can be  
controlled very tightly. Its main drawback, however, is cost. An  
alternative is to construct the sense resistor using a copper PCB  
trace. Although the resistance cannot be controlled as tightly, the  
PCB trace is very low cost.  
Where fS is the swquency.  
Electrolytic capacitors can be used for the output filter capaci-  
tor bank, but are less stable with age than tantalum capacitors. As  
they age, their ESR degrades, reducing the system performance  
and increasing the risk of failure. It is recommended that multiple  
parallel capacitors are used so that, as ESR increases with age,  
overall performance will still meet the processor's requirements.  
There is frequently strong pressure to use the least expensive  
components possible, however, this could lead to degraded long-  
term reliability, especially in the case of filter capacitors. Linfinity's  
demo boards use Sanyo MV-GX filter capacitors, which are  
Copyright © 1999  
Rev. 1.3a 11/04  
12  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
CURRENT LIMIT (continued)  
CURRENT LIMIT (continued)  
The current flowing through the inductor is a triangle wave. If the  
sensor components are selected such that:  
PCB Sense Resistor  
A PCB sense resistor should be constructed as shown in Figure  
10. By attaching directly to the large pads for the capacitor and  
inductor, heat is dissipated efficiently by the larger copper masses.  
Connect the current sense lines as shown to avoid any errors.  
L/RL = RS CS  
*
The voltage across the capacitor will be equal to the current  
flowing through the resistor, i.e.  
2.5m  
W
Sense Resistor  
VCS = ILRL  
100mil Wide, 850mil Long  
2.5mm x 22mm (2 oz/ft2 copper)  
Since VCS reflects the inducrent, selecting the  
appropriate RS and CSn be to rethe comparator  
voltage (60mV for LXor 100he LX166x) at the  
desired trip current.  
Inductor  
Design Examp
(Pentium II ca maximum static current of 14.2A)  
gain of r cae characterized as:  
Output  
Capacitor Pad  
|T
j
w
Sense Lines  
FIGURE 10 Sense Resistor Construction Diagram  
Recommended sense resistor sizes are given in the followin
table:  
/RSCS  
TABLE 3 - PCB Sense Resistor Selection Guide  
Copper Copper Desired Resistor Dimensionx l)  
Weight Thickness Value  
2 oz/ft2  
68µm 2.5m  
5m  
w
mm  
inches  
1/RSCS RL/L  
FIGURE 12 Sensor Gain  
2.5 x 2
2.5 x 43  
.8
0.1 x 1.7  
The dc/static tripping current Itrip,S satisfies:  
Loss-Less Current Sensing UsReductor  
Any inductor has a parasitic rescauses a DC  
voltage drop when current flows thor. Figure 11  
shows a sensor cirg of a unt resistor, RS,  
and capacitor, the inor, eliminating the  
current sense
Vtrip  
Itrip,S  
=
RL  
Select L/RSCS RL to have higher dynamic tripping current  
than the static one. The dynamic tripping current Itrip,d satisfies:  
Vtrip  
Itrip,d  
=
L/(RSCS)  
RL  
Load  
General Guidelines for Selecting RS , CS , and RL  
Vtrip  
RL =  
Select: RS 10 kΩ  
Itrip,S  
RS  
Ln  
CS  
RS2  
and CS according to:  
CS n  
=
RL RS  
Current  
Sense  
Comparator  
The above equation has taken into account the current-de-  
pendency of the inductance.  
VCS  
The test circuit (Figure 6) used the following parameters:  
RL = 3m, RS = 9k, CS = 0.1µF, and L is 2.5µH at 0A current.  
FIGURE 11 Current Sense Circuit  
Copyright © 1999  
Rev. 1.3a 11/04  
13  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
CURRENT LIMIT (continued)  
FET SELECTION (continued)  
In cases where RL is so large that the trip point current would  
be lower than the desired short-circuit current limit, a resistor (RS2)  
can be put in parallel with CS, as shown in Figure 11. The selection  
of components is as follows:  
For the IRL3102 (13mRDS(ON)), converting 5V to 2.8V at 14A  
will result in typical heat dissipation of 1.48W.  
Synchronous Rectification Lower MOSFET  
The lower pass element can be either a MOSFET or a Schottky  
diode. The use of a MOSFET (synchronectification) will result  
in higher efficiency, but at higher cg a Schottky diode  
(non-synchronous).  
RL (Required)  
RL (Actual)  
RS2  
=
RS2 + RS  
L
L
RS + RS2  
RS2  
Power dissipated ithe bottoFET wbe:  
CS =  
=
*
RL (Actual) (RS2 // RS)  
RL (Actual)  
R
*
S
*
PD = I2  
R
uty Cycle] 4W  
*
*
DS(ON)  
[IRL3303 or 1.12W for t3102]  
Again, select (RS2//RS) < 10k.  
Catch Diode SFET  
FET SELECTION  
A low-poweiode, such as a 1N5817, is recommended  
e connetweehe gate and source of the lower  
MOT wheating m a 12V-power supply (see Figure 9).  
This welp proontroller IC against latch-up due to the  
inductor ge going negative. Although latch-up is unlikely, the  
of such atch diode will improve reliability and is highly  
ended
To insure reliable operation, the operating junction temperature  
of the FET switches must be kept below certain limits. The Intel  
specification states that 115°C maximum junction temperature  
should be maintained with an ambient of 50°C. This is achieved  
by properly derating the part, and by adequate heat sinking. One  
of the most critical parameters for FET selection is the RDS ON  
resistance. This parameter directly contributes to the pow
dissipation of the FET devices, and thus impacts heat sink desi
mechanical layout, and reliability. In general, the larger t
current handling capability of the FET, the lower the RON will  
be, since more die area is available.  
chronous Operation - Schottky Diode  
Schottky diode, with a forward drop of 0.6V will dissipate  
4 [1 2.8/5] = 3.7W (compared to the 1.1 to 2.2W dissipated  
*
by a MOSFET under the same conditions). This power loss  
becomes much more significant at lower duty cycles – synchro-  
nous rectification is recommended especially when a 12V-power  
input is used. The use of a dual Schottky diode in a single TO-220  
package (e.g. the MBR2535) helps improve thermal dissipation.  
TABLE 4 - FET Selection Guide  
This table gives selection of suitable FETs from Interectifie
Device  
RDS(ON)  
@
ID @  
Max. Brea
10V (m)  
TC =
down age  
IRL3803  
IRL22203N  
IRL3103  
IRL3102  
IRL3303  
IRL2703  
6
56  
24  
17  
30  
30  
30  
20  
30  
30  
MOSFET GATE BIAS  
7
The power MOSFETs can be biased by one of two methods:  
charge pump or 12V supply connected to VC1.  
1) Charge Pump (Bootstrap)  
When 12V is supplied to the drain of the MOSFET, as in  
Figure 9, the gate drive needs to be higher than 12V in order  
to turn the MOSFET on. Capacitor C10 and diodes D2 & D3  
are used as a charge pump voltage doubling circuit to raise  
the voltage of VC1 so that the TDRV pin always provides a  
high enough voltage to turn on Q1. The 12V supply must  
always be connected to VCC to provide power for the IC  
itself, as well as gate drive for the bottom MOSFET.  
All devices in Tface mount devices (TO-263 /  
D2-Pak), add 'S' tRL3103S.  
The recommended n is to use IRL3102 for the high side  
and IRL3303 for the low side FET, for the best combination of cost  
and performance. Alternative FETs from any manufacturer could  
be used, provided they meet the same criteria for RDS(ON)  
.
Heat Dissipated In Upper MOSFET  
The heat dissipated in the top MOSFET will be:  
2) 12V Supply  
When 5V is supplied to the drain of Q1, a 12V supply should  
be connected to both VCC and VC1.  
PD = (I2  
R
Duty Cycle) + (0.51  
V
t
f )  
*
S
*
*
*
*
DS(ON)  
IN  
SW  
Where tSW is switching transition line for body diode (~100ns)  
and fS is the switching frequency.  
Copyright © 1999  
Rev. 1.3a 11/04  
14  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
LINEAR REGULATOR  
LINEAR REGULATOR (continued)  
Referring to the front page Product Highlight, a schematic is  
presented which uses a MOSFET as a series pass element for a  
linear regulator. The MOSFET is driven by the LX1664 controller,  
and down-converts a +5V or +3.3V supply to the desired VOUT  
level, between 1.5 & 3.5V, as determined by the feedback  
resistors.  
The current available from the Linear regulator is dictated by  
the supply capability, as well as the MOSFET ratings, and will  
typically lie in the 3-5 ampere range. This output is well suited  
for I/O buffers, memory, chipset and other components. Using  
3.3V supply to convert to 1.5V for GTL+ Bus will significantly  
reduce heat dissipation in the MOSFET.  
MOSFET Comments  
Heatsinking the MOSFET becomes important, since the linear  
stage output current could approach 5 amperes in some applica-  
tions. Since there are no switching losses, power dissipation in  
the MOSFET is simply defined by PD = (VIN - VOUT  
)
I output  
*
current. This means that a +5V to +3.3VOUT at 5A will require that  
IN  
the MOSFET dissipate (5-3.3) 5 = 8.5 watts. This amount of  
*
FE 13 Typical Transient Response  
power in a MOSFET calls for a heatsink, which will be the sam
physical size as that required for a monolithic LDO, such as t
LX8384 device.  
annel 2 = Linear Regulator Output.  
Set point = 3.3V @ 2A (20mV/div.)  
hannel 4 = Switching Regulator Output.  
VCC_CORE set point = 2.8V  
The dropout voltage for the linear regulator stage is the produ
of RDS ON  
I
. Using a 2SK1388 device at 5A, tropout  
*
OUT  
voltage will be (worst case) 37 milliohms x 5A = 5mV.  
Note that the RDS ON of the (linear regulator) MSFET
affect heat dissipation, only dropout voltage. sons
economy, a FET with a higher resistance can be chosen for
linear regulator, e.g. 2SK1388 r IRLZ
Channel 3 = Switching Regulator Load Current  
Transient 0 - 13A  
Output Voltage Setting  
As shown in Application Information Figures 6-9, two resistors (R5  
& R6) set the linear regulator stage output voltage:  
TABLE 5 - Linear RegulatoGuide  
VOUT = 1.5 (R + R ) / R  
*
6
Device  
RD
@
ax. Break-  
5
6
1
TC =
own Voltage  
As an example, to set resistor magnitudes, assume a desired  
VOUT of 3.3 volts:  
IRFZ24N  
IRL2703  
IRLZ44N  
12  
17  
29  
55  
30  
55  
1.5 (12.1k + 10k) / 10k = 3.3 volts (approximately)  
*
In general, the divider resistor values should be in the vicinity  
of 10-12k ohm for optimal noise performance. Please refer to  
Table 6.  
Avoiding Crosstalk  
To avoid a load transien the switching output affecting the  
linear regulator, follow these guidelines:  
1) Separate 5V supply traces to switching & linear FETs as  
much as possible.  
2) Place capacitor C9 as close to drain of Q4 as possible.  
Typical transient response is shown in Figure 13.  
Copyright © 1999  
Rev. 1.3a 11/04  
15  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
LINEAR REGULATOR (continued)  
TABLE 6 -  
LAYOUT GUIDELINES - THERMAL DESIGN  
A great deal of time and effort were spent optimizing the thermal  
design of the demo boards. Any user who intends to implement  
an embedded motherboard would be well advised to carefully  
read and follow these guidelines. If the FET switches have been  
carefully selected, external heatsinking is generally not required.  
However, this means that copper trace he PC board must now  
be used. This is a potential troublch copper area as  
possible must be dedicated to hehe FET switches, and  
the diode as well if a on-synchsolutiis used.  
In our VRM modutsink was tn from internal  
ground and VCC planeh were acplit and connected  
with VIAS to the power dtabs. The TO-220 and TO-263  
cases are well suited for this icon, and are the preferred  
packages. Reemove conformal coating from all  
exposed PC h are involved in heatsinking.  
Resistors Settings for Linear Regulator Output Voltage  
Nominal  
Set Point (V)  
R5 (k)  
R6 (k)  
VOUT (V)  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
12  
10  
10  
10.7  
11  
3.30  
3.20  
3.08  
3.00  
2.90  
2.80  
2.71  
2.59  
2.50  
2.41  
2.31  
2.21  
2.10  
2.00  
2.13  
1.80  
1.70  
1.61  
1.50  
11.3  
11.3  
11  
10.3  
10  
11  
11.5  
12.4  
13.7  
14.7  
14.7  
16.5  
18.7  
22.1  
26.7  
21  
35.7  
53.6  
100  
10  
10  
9.76  
8.87  
8.87  
8.87  
8.87  
8.87  
8.87  
7.15  
7.15  
7.15  
7.15  
Gel Note
As alwbe suride local capacitive decoupling close to  
the chipsure use ground plane construction for all high-  
quency . Use low ESR capacitors where justified, but be  
dampand ringing problems. High-frequency designs  
careful routing and layout, and may require several  
to achieve desired performance levels.  
Capacitor Selection  
Referring to the Product Highlight schematic on the front page, t
standard value to use as the linear regulator stage output capaci
is on the order of 330µF. This provides sufficient hold-up for a
expected transient load events in memory and I/O itry.  
r Traces  
To reduce power losses due to ohmic resistance, careful consid-  
eration should be given to the layout of traces that carry high  
currents. The main paths to consider are:  
Disabling Linear Output  
Linear regulator output can be disabled by pullinback p
(L ) up to 5V as shown in Figure 14.  
FB  
I Input power from 5V supply to drain of top MOSFET.  
I Trace between top MOSFET and lower MOSFET or Schottky  
diode.  
TABLE 7 - Linear EnabIN Table  
LIN EN  
I Trace between lower MOSFET or Schottky diode and  
ground.  
I Trace between source of top MOSFET and inductor, sense  
resistor and load.  
En
Input  
5V or 12V  
LX166
C9  
330µF  
C10  
0.1µF  
10  
9
LDRV  
LFB  
Q4  
IRLZ44  
Supply Voltage  
For I/O Chipset  
C7  
330µF  
LX166x  
Output  
R5  
R6  
10k  
10k  
LIN EN  
2N2222  
FIGURE 14 Enabling Linear Regulator  
FIGURE 15 Power Traces  
Copyright © 1999  
Rev. 1.3a 11/04  
16  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
LAYOUT GUIDELINES - THERMAL DESIGN (continued)  
All of these traces should be made as wide and thick as  
possible, in order to minimize resistance and hence power losses.  
It is also recommended that, whenever possible, the ground, input  
and output power signals should be on separate planes (PCB  
layers). See Figure 15 – bold traces are power traces.  
Layout Assistance  
Please contact Linfinitys Applications Engineers for assistance  
with any layout or component selection issues. A Gerber file  
with layout for the most popular devices is available upon re-  
quest.  
Evaluation boards are also availapon request. Please  
check Linfinity's web site for furton notes.  
C5 Input Decoupling (VCC) Capacitor  
Ensure that this 1µF capacitor is placed as close to the IC as  
possible to minimize the effects of noise on the device.  
RELATED DEVICES  
LX1662/1663 - Single Output PWM C
LX1553 - PWM Controller for V - 3.3V ion  
LX1668 - Triple Output M Cont
Pentium is a registered trademark of Intel Corporation.  
Cyrix is a registered trademark and 6x86 and Gx86 are trademarks of Cyrix Corporation. K6 is a trademark of AMD.  
Power PC is a trademark of International Business Machines Corporation. Alpha is a trademark of Digital Equipment Corporation.  
PRODUCTION DATA - Information contained in this document is proprietary to LinFinity, and is current as of publication date. This document  
may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of  
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.  
Copyright © 1999  
Rev. 1.3a 11/04  
17  

相关型号:

LX1665

DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1665A

DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1665ACDW

DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1665ACDW-TR

Switching Controller, Current-mode, 1.5A, 200kHz Switching Freq-Max, PDSO18, ROHS COMPLIANT, PLASTIC, SOIC-18
MICROSEMI

LX1665ACDWT

Switching Controller, Current-mode, 1.5A, 200kHz Switching Freq-Max, BIPolar, PDSO18, PLASTIC, SOIC-18
MICROSEMI

LX1665ACN

DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1665ACN-TR

Switching Controller
MICROSEMI

LX1665CDW

DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1665CDW-TR

Switching Controller, Current-mode, 1.5A, 200kHz Switching Freq-Max, PDSO18, ROHS COMPLIANT, PLASTIC, SOIC-18
MICROSEMI

LX1665CN

DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1665CN-TR

Switching Controller
MICROSEMI

LX1668

PROGRAMMABLE MULTIPLE OUTPUT DC:DC CONTROLLER
MICROSEMI